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Abstract In this paper energy method is used to calculate rotor response with loose rotating disk on
it. System equation of motion is obtained based on energy method and Lagrange equation.
Mathematical modeling of loose disk in a rotor bearing system has resulted in terms similar to
unbalance and gyroscopic effect in the system equation of motion. The effect of loose disk axial
position and orthotropic bearing has been considered in this investigation. By assuming that shaft and
loose disk are always in contact, the results of these study shows that clearance between loose disk
and shaft, shaft speed, mass and mass moment of inertia of disk have a major effect on a rotor
response and beating phenomena.
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1. INTRODUCTION

Eventual involvement in rotor bearing systems is
one of the machine common malfunctions. Loose
disks, Looseness in thrust collars on rotating shafts,
and mechanical looseness in pedestal or bearing
housing are the main causes for eventual
involvement.

The supper harmonics of shaft rotational speed
in frequency analysis of the system response, and
high phase change when measuring in different
points on the system, are used to detect this
malfunction [1].

Muszyneska [2] studied the effect of loose
rotating parts on the dynamic behavior of rotor
bearing systems. An Experimental model along
with a theoretical approach was used in the
investigation. The experimental and analytical results
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obtained by Muszyneska show the existence of
subsynchronous self-excited vibrations with
frequencies related to shaft rotating speed.

Muszyneska and Goldman [3] investigated the
dynamic behavior of rotor-bearing-stator systems
with stationary or rotational joint looseness. They
used chaos theory for studying the machine behavior
due to mechanical looseness and concluded that
harmonic and sub harmonic responses, as well as
chaotic patterns of vibrations are the main
characteristics of such systems.

Goldman and Muszyneska [4] developed an
analytical algorithm for investigating local nonlinear
effects in rotor systems. They used a specially
developed variable transformation which smoothes
discontinuities, and then applied an averaging
technique. Their results show good agreement with
experimentally observed typical behavior and orbits
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Figure 1. Rotor with loose disk.

of rubbing rotors.

In this paper, the energy equation is used to
calculate the system response due to loose rotating
parts. By using this method any axial position for
loose item, and isotropic or orthotropic supports can
be handled.

2. MATHEMATICAL MODEL OF
ROTOR PARTS

In the study by Muszyneska [2] the system with
loose rotating part was divided into a simple rotor
and a loose part. The translatory equation of
motion for rotor and loose part in their coordinate
systems was derived.

The normal force between loose part and rotor

can be calculated from rotational equation of motion
of loose Part. Finally, a geometric constraint is used
for deriving the equation of motion of system with
loose part in a constant rotating speed.
In this investigation the governing equation of
bearing, shaft, and disk are calculated. For a rigid
disk with small rotation about x and z-axis the
kinetic energy is as follows:

_1 .2 .2) 1( 2 2 2)
TD—EMD(U + W +E|DX(JJX+IDZ(A)Z+IDy(JJy

(1)
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For a symmetric disk with constant rotative speed

and !ox = oz one has:

TD :%MD(]:lz +W2)+%IDX(62 +LIJ2)

+% Ipy (u)2 +2mpe) @

1 2
The term E | DyW™ represents the energy of rotating

disk and | Dyaxpe is due to Coriolis Effect. The

energy of a rotating shaft is the sum of kinetic and
strain energies. The kinetic energy of a shaft can be
calculated by integrating the kinetic energy of a
disk over the shaft length. For a shaft with length L
this equation is:

LBt ol

L
+plLw’ + 2prJ’O Pody 5

By neglecting the axial force effect and for small
deflection, the shaft strain energy becomes:

EI L %‘sz ET Zugg
== 4)
Uo=—1, Tov? +%yz 5dy

A linear bearing is assumed in the system and the
bending effect is neglected. The virtual work of the
forces acting on the shaft in bearing can be written
in matrix form as:

3. CALCULATION FOR A SIMPLE MODEL

A simple symmetric rotor of length L with two
simply supported ends, a symmetric disk and mass
unbalance at y=L, is considered. The displacements
in x and z directions, and the angular displacements
about x and z axis are considered in the following
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form.
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(6)

The second derivatives of the displacement for the
strain energy is:

92u
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(7

By using Equations 6 and 7 the energy equations for
disk and shaft can be calculated as:
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The force component in the support can be written
as:

OW = F(t) f(L,)dq; + F,(t) f(L,)dq,
(11)

By using the Lagrange equation, the system
equation of motion can be written in the following
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form:

dP(T, +T)HH O(T, +T,) . Ou, _F
dtg 0q, dq, dq, °
i:p(TD-I-Ts) a(TD+Ts)+aus :F2
dt aq, dq, dq, °
(12)
4. LOOSE DISK

A loose disk at distance L; is considered on the
shaft. By using Equations 2 and 12, the equation of
motion of the loose disk in its own coordinate
system can be written in the following form:

™M omqu1 -G 0 400 Of 0
otlclet o=0.'0

EO Mqum %5 0 El'Eﬂ 0 OO0
(13)

[C] is the damping matrix that includes, the component
of damping elements between rotor and loose part.
A geometrical constraint is used for coupling the
equation of motion of loose disk and rotating shaft

[2].

5.FINITE ELEMENT MODEL

The shaft, disk and bearing elements along with
mass unbalance are considered in the finite
element analysis of the rotor. The shaft is modeled
as a beam element with two nodes and four
degrees of freedom per node (two translations and
two rotations). The shape functions used in this
study are those used by Nelson and McVaugh
[6,7,8].

Using Lagrange equations for a shaft element
one has:

%%ﬁ—wws)qw
(14)

Similarly, by using strain energy the stiffness of
shaft can be included. By integrating along the
shaft length, the mass, gyroscopic and stiffness
matrices can be calculated from equation (14).
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TABLE 1. Shaft and Disk Data.

Mp Inx R Ipy R L p Rout Rin v )
[ ke] [kgm’] | [kgm’] | [m] | [kg/m’] | [m] | [py INmT | 1) | [m]

Disk

16.47 9.427¢e-2 | 0.1861 - - - - - - - -

Shaft

- - - 0.4 7800 0.01 0 0.3 2ell - -

Mass
unbalance

_ . - N - - - - - 10* | 0.015

Read Data

v
Call Assemble
Call Boundary
Condition

Call Force

* Y es

Call Solution

v

Call Report

END

Figure 2. Flow chart used for FEM analysis of rotor with loose disk.

In this study a rigid disk is positioned at a given of the disk are obtained by using Lagrangian equation.
node on a shaft element. Each disk has four degrees At the bearing locations, the effects of slopes
of freedom. Then the mass and gyroscopic effects are omitted and only the forces are included in the
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Figure 3. Rotor-Bearing system with loose disk.

equations.
The general expression of forces due to mass
unbalance is:

of, 0 2 Chin(wt +a) 0 (15)
Gl Ros@t+a)p

The total equation of motion for the rotor bearing
system will be:

Mg +Cq+kq=F(t) (16)

In the presence of mass unbalance and loose disk,
equation (16) can be derived and solved in time
domain by wusing Newmark-f method. The

algorithm is shown in Figure 2.

6. ANALYSISFOR A SSIMPLE ROTORWITH
A LOOSE DISK

For investigating the effects of mass unbalance and
loose disk on the rotor bearing response a model
shown in Figure 3 is considered in this study. The
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numerical data for this model is given in Table 1.
The second disk as a loose disk is considered as the
same disk on the system.

Now by using Equations 8, 9, and 10 the kinetic
and strain energy of shaft, disk, and mass unbalance is
obtained as follows:

T, =6.902(4; +45)-2.87wq,q,

T =0.2454(G7 +¢3)-1.512e-3wq,q,
T, =1.299 x10 7 (4, cos wt — g, sin wt)
U =5.977 x10° (g2 + q3)

(7

The system equation of motion can be given as:

429 o O 0 0O 0 -2871w0

Ho 14.29%%+ Hsrio o [ e]%q b

[1.195¢6 0 % = (1299%10 swz)ﬁmwt@

H 0 1.195€e6 oswt
(18)
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The underlined matrix C, in Equation 18 is due to
the external damping that acts on the rotor in the
loose disk location. Now one can obtain the
equation of motion for a loose disk located at

L; = % L as follows:

13806 0 OO0 0 208760 0
B0 13sesH,E Bstw o Hp B
0§) 000
[Clo., 0=00
20 a

(19)

where @' is the constant rotative speed of the
loose disk. The following geometrical constraint is
used to convert the prime system on the loose disk
to the fixed frame:

(o O qum kinw't
0,0=-0 0O-&0 0 (20)
20 EﬂzD [Fosw'tQ

€ is the clearance between the loose disk and the
rotating shaft and considered 1.0e-6 (m). By
calculating the first and second derivatives of
Equation 20, and then substituting into Equation 19
one can obtain the equation of motion for loose
disk in fixed reference system as follows:

13.809 0 EI]j;hD 0o —287w|][ql 0, O
O o+ , o+da' g
oo 13809[@125 %87@ 0 sz 20
[(Binwtd [{—2.807ew)Sinw t[]
= —£(13.806)wW > [ D—E( Sinwtl]
swt] [2.807ew)Cosw't ]
(2D

The equation of motion for rotor - bearing system
with mass unbalance and loose rotating disk is the
sum of Equation 21 and 18 as follows:

28096 0 E[EEHD 0 0 - (2.87160+2087 ks [T
Ho  28096Fi,0 Bsnmzsﬂm 0 20
6 [Bi th
H.195%10 0 65&11  (1229%10 5&)2)%:“

B 0 10195x10 @jﬂzu
[Binwtd [F-2.807ew Si ootl]
(13806032 =
%3 osw'tr] []2.807ew CosootD

I;‘_I:I

(22)

The matrix [C] in both Equations 18 and 21 is the
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Figure 4. (a) System response due to unbalance and
gyroscopic effect and (b) shaft orbit for analytical
solution.

external damping in the loose disk location between
the shaft and the loose disk and cancels out when
adding Equations 18 and 21. It is clear from Equation
22 that the effects of loose disk is an additional
mass unbalance and a forcing that depends on the
rotative speed of the loose disk. The Equation of
motion 22 can be solved separately for each forcing
function.
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Figure 5. The system response due to unbalance effect for
analytical solution.
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Figure 6. System response due to gyroscopic effect.

7. SOLUTION OF THE EQUATION OF
MOTION

Solving Equation 22 needs to superpose the results
for three parts including initial mass unbalance,
gyroscopic effect and additional mass unbalance
due to loose disk. Figure 4a shows the time response
for this case from zero to one second by 0.001
second time step. The rotative speed of shaft and
loose disk are 50Hz and 47Hz respectively and the
clearance between loose disk and shaft is 1.e-6
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Figure 7. Finite element model of an unbalance rotor with
loose disk.

(m). Shaft orbit for this example is given in Figure
4b. In Figure 5 the gyroscopic effect of loose disk
is neglected. From Figure 5 one can see the negligible
effect of gyroscopic terms for this example. For
comparing gyroscopic and mass unbalance effects
the system response are shown in Figures 5 and 6
separately. It can be seen that the gyroscopic effect
is less than unbalance response in this example. A
finite element model with only three elements
shown in Figure 7 is used to study the effect of loose
disk at Node 3. The time responses for both unbalance
and combination of unbalance and gyroscopic
effect are shown in Figures 8 and 9 on Node 2.
From these two figures, one can conclude that the
gyroscopic term has no major effect on the system
response. In these figures, the response for Node 2
has been calculated. Comparing Figures 8a and 9
with Figures 4a and 5 one can see an excellent
agreement between the results of analytical and
finite element methods. However, Figures 4a and
5 are the results of analytical solution with two
degrees of freedom while Figures 8a and 9 are
the results of finite element model with 4 nodes.
This will result in a slightly different shape of
results at different locations.

8. CONCLUSION

The energy method is used for studying the effects
of loose disk on rotor response. The rotor has been
divided into three elements including supports or
bearings, disks, and shafts. The energy equation for
each element is written in the fixed coordinate
system. By implementing the Lagrange equation,
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Figure 8. (a) System response due to unbalance and
gyroscopic effects at Node 2 for numerical solution; (b) shaft
orbit for numerical solution at Node 2.

system equation of motion is derived. A loose disk
is considered at an arbitrary position along the
shaft. Similar to a fixed disk on shaft, the equation
of motion for loose disk is written in its plane. By
assuming that the loose disk is in contact with shaft
during rotation, a geometrical constrain is used for
converting the equation of motion of loose disk to
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Figure 9. System response due to unbalance at Node 2 for
numerical solution.

the fixed reference system. During this transformation,
it has been observed that loose disk on a shaft has
similar terms as gyroscopic effect and unbalance.
Assuming constant speed for loose disk and
shaft results of this study shows that rotor response
and beating phenomena are a function of
measurement location, loose disk mass and inertia,

w . .
— ratio, and clearance between loose disk and

WL
shaft.
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10. NOMENCLATURE

(OF Damping in ij direction

D Disk diameter

E Young modulus

Fuw Generalized force component in u and w

directions
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[G]

u,v,w

e

Gyroscopic matrix

Area moment of inertia about neutral axis
Mass moment of inertia in ij direction
Stiffness in ij direction

Length

Mass

Mass of unbalance

General displacement coordinates
Generalized independent coordinate

system

Inner radius

Outer radius
Radius of unbalance mass
Unbalance mass radius

Cross sectional area

Shaft

Time (second)

Displacement in x, y and z directions
Derivatives with respect to time
Rotational frequency of shaft
Rotational frequency of loose disk

Clearance between loose disk and rotating
shaft

IJE Transactions B: Applications

\Y

Poisson ratio

Y, 0, @ Rotation about z, x and y directions
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