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Abstract   In this paper energy method is used to calculate rotor response with loose rotating disk on 
it. System equation of motion is obtained based on energy method and Lagrange equation. 
Mathematical modeling of loose disk in a rotor bearing system has resulted in terms similar to 
unbalance and gyroscopic effect in the system equation of motion. The effect of loose disk axial 
position and orthotropic bearing has been considered in this investigation. By assuming that shaft and 
loose disk are always in contact, the results of these study shows that clearance between loose disk 
and shaft, shaft speed, mass and mass moment of inertia of disk have a major effect on a rotor 
response and beating phenomena. 
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 مقاله روش انرژي براي محاسبه پاسخ روتور با ديسك لق دوار واقع بر آن بكار گرفته شده                      در اين    چكيدهچكيدهچكيدهچكيده
نتيجه مدل رياضي ديسك لق . معادله حركت با استفاده از روش انرژي و معادله لاگرانژ بدست  آمده است       . است

معادله حركت سيستم   اتاقان پيدايش ترمهايي شبيه ناميزاني و اثر ژيروسكوپيك در            ي - در يك سيستم روتور    
در اين تحقيق در نظر گرفته شده        ) اورتوتروپيك(اثر موقعيت طولي ديسك لق و ياتاقانهاي نامتقارن          . مي باشد
با فرض تماس دائم شفت و ديسك لق، نتايج مقاله نشان مي دهد كه تلرانس لقي بين ديسك و شفت،                      . است

 .ي در پاسخ روتور و پديده ضربان دارا مي باشندرسي جرمي ديسك اثر عمده انسرعت شفت، جرم و ممان اي
 
 

1. INTRODUCTION 
 
Eventual involvement in rotor bearing systems is 
one of the machine common malfunctions. Loose 
disks, Looseness in thrust collars on rotating shafts, 
and mechanical looseness in pedestal or bearing 
housing are the main causes for eventual 
involvement. 
     The supper harmonics of shaft rotational speed 
in frequency analysis of the system response, and 
high phase change when measuring in different 
points on the system, are used to detect this 
malfunction [1].  
     Muszyneska [2] studied the effect of loose 
rotating parts on the dynamic behavior of rotor 
bearing systems. An Experimental model along 
with a theoretical approach was used in the 
investigation. The experimental and analytical results 

obtained by Muszyneska show the existence of 
subsynchronous self-excited vibrations with 
frequencies related to shaft rotating speed. 
     Muszyneska and Goldman [3] investigated the 
dynamic behavior of rotor-bearing-stator systems 
with stationary or rotational joint looseness. They 
used chaos theory for studying the machine behavior 
due to mechanical looseness and concluded that 
harmonic and sub harmonic responses, as well as 
chaotic patterns of vibrations are the main 
characteristics of such systems. 
     Goldman and Muszyneska [4] developed an 
analytical algorithm for investigating local nonlinear 
effects in rotor systems. They used a specially 
developed variable transformation which smoothes 
discontinuities, and then applied an averaging 
technique. Their results show good agreement with 
experimentally observed typical behavior and orbits 
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of rubbing rotors. 
     In this paper, the energy equation is used to 
calculate the system response due to loose rotating 
parts. By using this method any axial position for 
loose item, and isotropic or orthotropic supports can 
be handled. 
 
 
 

2. MATHEMATICAL MODEL OF 
ROTOR PARTS 

 
In the study by Muszyneska [2] the system with 
loose rotating part was divided into a simple rotor 
and a loose part. The translatory equation of 
motion for rotor and loose part in their coordinate 
systems was derived. 
     The normal force between loose part and rotor 
can be calculated from rotational equation of motion 
of loose Part. Finally, a geometric constraint is used 
for deriving the equation of motion of system with 
loose part in a constant rotating speed. 
In this investigation the governing equation of 
bearing, shaft, and disk are calculated. For a rigid 
disk with small rotation about x and z-axis the 
kinetic energy is as follows: 
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represents the energy of rotating

 
disk and θψω &DyI  is due to Coriolis Effect. The 
energy of a rotating shaft is the sum of kinetic and 
strain energies. The kinetic energy of a shaft can be 
calculated by integrating the kinetic energy of a 
disk over the shaft length. For a shaft with length L 
this equation is: 
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By neglecting the axial force effect and for small 
deflection, the shaft strain energy becomes: 
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A linear bearing is assumed in the system and the 
bending effect is neglected. The virtual work of the 
forces acting on the shaft in bearing can be written 
in matrix form as: 
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3. CALCULATION FOR A SIMPLE MODEL 

 
A simple symmetric rotor of length L with two 
simply supported ends, a symmetric disk and mass 
unbalance at y=L1 is considered. The displacements 
in x and z directions, and the angular displacements 
about x and z axis are considered in the following 
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Figure 1. Rotor with loose disk. 
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form. 
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The second derivatives of the displacement for the 
strain energy is: 
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By using Equations 6 and 7 the energy equations for 
disk and shaft can be calculated as: 
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The force component in the support can be written 
as: 
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 (11) 
 
By using the Lagrange equation, the system 
equation of motion can be written in the following 

form: 

1q
1

s

1

sD

1

sD F
q
u

q
)TT(

q
)TT(

dt
d =

∂
∂

+
∂
+∂

−





∂
+∂
&  

2q
2

s

2

sD

2

sD F
q
u

q
)TT(

q
)TT(

dt
d =

∂
∂

+
∂
+∂

−





∂
+∂
&  

 (12) 
 
 
 

4. LOOSE DISK 
 
A loose disk at distance L3 is considered on the 
shaft. By using Equations 2 and 12, the equation of 
motion of the loose disk in its own coordinate 
system can be written in the following form: 
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[C] is the damping matrix that includes, the component 
of damping elements between rotor and loose part. 
A geometrical constraint is used for coupling the 
equation of motion of loose disk and rotating shaft 
[2]. 
 
 
 

5. FINITE ELEMENT MODEL 
 
The shaft, disk and bearing elements along with 
mass unbalance are considered in the finite 
element analysis of the rotor. The shaft is modeled 
as a beam element with two nodes and four 
degrees of freedom per node (two translations and 
two rotations). The shape functions used in this 
study are those used by Nelson and McVaugh 
[6,7,8]. 
     Using Lagrange equations for a shaft element 
one has: 
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Similarly, by using strain energy the stiffness of 
shaft can be included. By integrating along the 
shaft length, the mass, gyroscopic and stiffness 
matrices can be calculated from equation (14). 
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     In this study a rigid disk is positioned at a given  
node on a shaft element. Each disk has four degrees 
of freedom. Then the mass and gyroscopic effects 

of the disk are obtained by using Lagrangian equation. 
     At the bearing locations, the effects of slopes 
are omitted and only the forces are included in the 

TABLE 1. Shaft and Disk Data. 
 

 MD 
[ kg] 

IDX 
[kgm2] 

IDy 
[kgm2] 

L 
[m] 

ρ  
[kg/m3] 

Rout 
[m] 

R in  
[m] 

ν  
E 

[N/m2] 
M u  
[kg] 

ur  
[m] 

Disk 16.47 9.427 e-2 0.1861 - - - - - - - - 

Shaft - - - 0.4 7800 0.01 0 0.3 2e11 - - 

Mass 
unbalance - - - - - - - - - 10-4 0.015 
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Figure 2. Flow chart used for FEM analysis of rotor with loose disk. 
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equations. 
     The general expression of forces due to mass 
unbalance is: 
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The total equation of motion for the rotor bearing 
system will be: 
 

)(tFqkqCqM =++ &&&&  (16) 
 
In the presence of mass unbalance and loose disk, 
equation (16) can be derived and solved in time 
domain by using Newmark-β  method. The 
algorithm is shown in Figure 2. 
 
 
6. ANALYSIS FOR A SIMPLE ROTOR WITH 

A LOOSE DISK 
 
For investigating the effects of mass unbalance and 
loose disk on the rotor bearing response a model 
shown in Figure 3 is considered in this study. The 

numerical data for this model is given in Table 1. 
The second disk as a loose disk is considered as the 
same disk on the system. 
     Now by using Equations 8, 9, and 10 the kinetic 
and strain energy of shaft, disk, and mass unbalance is 
obtained as follows: 
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The system equation of motion can be given as: 
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Figure 3. Rotor-Bearing system with loose disk. 
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The underlined matrix Ce in Equation 18 is due to 
the external damping that acts on the rotor in the 
loose disk location. Now one can obtain the 
equation of motion for a loose disk located at 

LL
3
2

3 =  as follows: 
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where ω′  is the constant rotative speed of the 
loose disk. The following geometrical constraint is 
used to convert the prime system on the loose disk 
to the fixed frame: 
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ε  is the clearance between the loose disk and the 
rotating shaft and considered 1.0e-6 (m). By 
calculating the first and second derivatives of 
Equation 20, and then substituting into Equation 19 
one can obtain the equation of motion for loose 
disk in fixed reference system as follows: 
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The equation of motion for rotor - bearing system 
with mass unbalance and loose rotating disk is the 
sum of Equation 21 and 18 as follows: 
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The matrix [C] in both Equations 18 and 21 is the 

external damping in the loose disk location between 
the shaft and the loose disk and cancels out when 
adding Equations 18 and 21. It is clear from Equation 
22 that the effects of loose disk is an additional 
mass unbalance and a forcing that depends on the 
rotative speed of the loose disk. The Equation of 
motion 22 can be solved separately for each forcing 
function. 
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Figure 4. (a) System response due to unbalance and
gyroscopic effect and (b) shaft orbit for analytical
solution. 
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7. SOLUTION OF THE EQUATION OF 
MOTION 

 
Solving Equation 22 needs to superpose the results 
for three parts including initial mass unbalance, 
gyroscopic effect and additional mass unbalance 
due to loose disk. Figure 4a shows the time response  
for this case from zero to one second by 0.001 
second time step. The rotative speed of shaft and 
loose disk are 50Hz and 47Hz respectively and the 
clearance between loose disk and shaft is 1.e-6 

(m). Shaft orbit for this example is given in Figure 
4b. In Figure 5 the gyroscopic effect of loose disk 
is neglected. From Figure 5 one can see the negligible 
effect of gyroscopic terms for this example. For 
comparing gyroscopic and mass unbalance effects 
the system response are shown in Figures 5 and 6 
separately. It can be seen that the gyroscopic effect 
is less than unbalance response in this example. A 
finite element model with only three elements 
shown in Figure 7 is used to study the effect of loose 
disk at Node 3. The time responses for both unbalance 
and combination of unbalance and gyroscopic 
effect are shown in Figures 8 and 9 on Node 2. 
From these two figures, one can conclude that the 
gyroscopic term has no major effect on the system 
response. In these figures, the response for Node 2 
has been calculated. Comparing Figures 8a and 9 
with Figures 4a and 5 one can see an excellent 
agreement between the results of analytical and 
finite element methods. However, Figures 4a and 
5 are the results of analytical solution with two 
degrees of freedom while Figures 8a and 9 are 
the results of finite element model with 4 nodes. 
This will result in a slightly different shape of 
results at different locations. 
 
 
 

8. CONCLUSION 
 
The energy method is used for studying the effects 
of loose disk on rotor response. The rotor has been 
divided into three elements including supports or 
bearings, disks, and shafts. The energy equation for 
each element is written in the fixed coordinate 
system. By implementing the Lagrange equation, 

 

 
Figure 5. The system response due to unbalance effect for 
analytical solution. 
 
 
 

 
Figure 6. System response due to gyroscopic effect. 

1 2 3 4

L/3 L/3 L/3

Figure 7. Finite element model of an unbalance rotor with
loose disk. 
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system equation of motion is derived. A loose disk 
is considered at an arbitrary position along the 
shaft. Similar to a fixed disk on shaft, the equation 
of motion for loose disk is written in its plane. By 
assuming that the loose disk is in contact with shaft 
during rotation, a geometrical constrain is used for 
converting the equation of motion of loose disk to 

the fixed reference system. During this transformation, 
it has been observed that loose disk on a shaft has 
similar terms as gyroscopic effect and unbalance.  
     Assuming constant speed for loose disk and 
shaft results of this study shows that rotor response 
and beating phenomena are a function of 
measurement location, loose disk mass and inertia, 

Lω
ω

 ratio, and clearance between loose disk and 

shaft. 
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10. NOMENCLATURE 
 

Cij Damping in ij direction 
D Disk diameter 
E Young modulus 
Fu,w Generalized force component in u and w 

directions 
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   (b) 
 
Figure 8. (a) System response due to unbalance and 
gyroscopic effects at Node 2 for numerical solution; (b) shaft 
orbit for numerical solution at Node 2. 

 
 
Figure 9. System response due to unbalance at Node 2 for
numerical solution. 
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[G] Gyroscopic matrix 
I Area moment of inertia about neutral axis 
Iij Mass moment of inertia in ij direction 
Kij Stiffness in ij direction 
L Length 
MD Mass 
mu Mass of unbalance 
Q General displacement coordinates 

2,1q  Generalized independent coordinate 
system 

R in  Inner radius 

R out  Outer radius 

Ru Radius of unbalance mass 

ur  
Unbalance mass radius 

s Cross sectional area 
S Shaft 
t Time (second) 
u,v,w Displacement in x, y and z directions 
. Derivatives with respect to time 
ω  Rotational frequency of shaft 
ω Rotational frequency of loose disk 
ε  Clearance between loose disk and rotating 

shaft 

ν  Poisson ratio 
φθψ ,,  Rotation about z, x and y directions 

 
 
 

11. REFERENCES 
 

1. Bloch, H. P. and Geitner, F. K., �Machinery Failure 
Analysis and Troubleshooting�, Hoston, Golf Publisher, 
Vol. 2, (1986). 

2. Muszyneska, A., �Effects of Loose Rotating Parts on 
Rotor Dynamics�, Vibration in Rotating Machinery, 
C241/88, (1988), 573-578. 

3. Muszyneska, A. and Goldman, P., �Nonlinear Vibrations 
Chaotic Vibrations of Rotor/Bearing/Stator System with 
Looseness or Rubs�, ASME DE, Vol. 54, (1993), 187-
194. 

4. Goldman, P. and Muszyneska, A., �Smoothing Technique 
for Rub or Looseness-Related Rotor Dynamic Problem�, 
ASME Design Engineering Technical Conferences, Vol. 
3-Part A, (1995), 565-572. 

5. Lalanne, M. and Ferraris, G., �Rotordynamics Prediction 
in Engineering�, Wiley Second Edition, (1998). 

6. Nelson, H. D. and Mcvaugh, J. M., �The Dynamics of 
Rotor-Bearing System Using Finite Elements�, Journal of 
Engineering for Industry, (1976), 593-599. 

7. Chen, W. R., Keer, L. M., �Transverse Vibrations of a 
Rotating Twisted Timoshenko Beam Under Axial 
Loading�, Journal of Vibration and Acoustics, Vol. 115, 
(1993), 285-294. 

8. An-Chen Lee, Yuan Kang, Kun-Lung Tsai, Kuo-Mo 
Hsiao, �Transient Analysis of an Asymmetric Rotor-
Bearing System During Acceleration�, Journal of 
Engineering for Industry, Vol. 114, (1992), 465-
475. 

 


