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Abstract   A finite-volume model has been developed to study incompressible forced flow heat 
transfer of air over a circular cylinder in cross flow. An artificial compressibility technique is applied 
to couple the continuity to the momentum equations. The proposed explicit finite-volume method 
(FVM) uses a novel discretization in time and space. The governing equations are solved by time-
marching using a new third- order algorithm at each time level. The discretization of the viscous and 
thermal conduction terms are very simplified using the new scheme instead of common methods. The 
new scheme is similar to the Jameson's flux averaging in the convective terms, while for viscous and 
thermal conduction terms, the first- order derivatives are averaged in the vicinity of two cells. The 
proposed model is able to converge at higher Reynolds numbers up to 101000. The numerical results 
agree well with the available experimental and numerical data. The proposed FVM is capable of 
capturing the flow details at wide range of Reynolds numbers. 
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   مدلي بر اساس روش حجم محدود براي مطالعه جريان صليبي سيال غير قابل تراكم و همراه با انتقال      چكـيده چكـيده چكـيده چكـيده 
 ضريب تراكم   براي پيوند معادلات پيوستگي و ممنتوم ، تكنيك       . حـرارت از روي استوانه توسعه داده شده است        

در روش حجم محدود پيشنهادي و صريح، براي گسسته سازي مشتقات        . پذيـري مصـنوعي اعمـال شـده است        
جملات زماني معادلات حاكمه با طرح جديد از مرتبه سوم و با . زماني و مكاني طرحهاي جديدي بكار رفته اند   

ال، با استفاده از يك طرح جديد       در گسسته سازي جملات لزجت و رسانش سي       . شوند الگـوي زمانروي حل مي    
اين طرح شبيه به طرح اختلاف      . بـه جـاي طـرحهاي مرسوم، ساده سازي قابل ملاحظه اي صورت گرفته است              

مركـزي در گسسـته سـازي عـبارتهاي همرفت است، با اين تفاوت كه در مرز دو سلول مجاور بجاي ميانگيري         
مدل پيشنهادي قادر است براي اعداد رينولدز بالا و . شود اده ميمتغيرهاي وابسته، از ميانگين مشتق اول آنها استف   

روش حجم محدود   . نتايج حاصله تطابق خوبي با نتايج موجود تجربي و عددي دارد          .  همگـرا شود   ۱۰۱۰۰۰تـا   
 .پيشنهادي توانائي آشكار نمودن رفتارهاي جزئي سيال در محدوده وسيعي از اعداد رينولدز را داراست

 
 

1. INTRODUCTION 
 
Many forms of heat exchangers are employed in 
the different branches of modem technology. 
Curvilinear bodies in cross flow constitute a very 
common group of elements in such devices. These 
may be circular cylinders, rectangular or elliptic 
pipes, and bodies of other geometries. Circular 
cylinders find perhaps the most widespread 
application in heat exchangers, power generators, 
and other thermal apparatus. The circular cylinder 

constitutes a classical element in boilers, steam or 
gas turbines, compressors, and in various 
aerodynamic problems. A variety of cross-sections 
are also used in buildings, chimneys, etc. 
     With a cylinder in laminar cross-flow, boundary 
layer is formed on the front part as a result of 
viscous forces. It is commonly accepted that, in the 
lower range of Reynolds number (Re ≅ 1), the 
cylinder is enveloped all around by a laminar 
boundary layer, which separates from its surface 
only at the rear stagnation point.  An increase of 
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Re leads to an increase in the effect of inertial 
forces, so that the laminar boundary layer separates 
from the surface at the certain distance from the rear 
stagnation point, and a complex vortex structure is 
formed in the wake (Re<2.105) [1]. For Reynolds 
numbers less than 40 the separated flow is steady. 
In the range of Reynolds numbers from about 60 to 
about 5000 there exists behind the cylinder a 
Karman vortex street which shows a regular, 
periodic structure [2]. The heat transfer in the rear 
part is governed by a vortex-separated flow. An 
interpretation in terms of Nu = c.Rem.Prn was a long 
time commonly accepted for experimental data on 
heat transfer [l]. 
     Numerical methods have been used by a number 
of investigators to deal with the problem of fluid 
flow and heat transfer over a circular cylinder. An 
efficient code is the key to solution methodologies 
which would produce results using the least 
amount of computing time and memories. This is 
particularly true for problems with high Reynolds 
numbers. Most of the previous numerical studies 
have been done for Reynolds numbers less than 
5000. Krall and Eckert [3] studied forced convection 
for Reynolds numbers up to 200 using the donor- 
cell technique. Chun and Boehm [4] carried out an 
analysis for Reynolds numbers up to 3480 by 
stream function-vorticity approach along with a 
mapping transformation. Also they assumed the 
line symmetry in treating the wake region, which is 
not physically meaningful. The vorticity-stream 
function loses its capability when applied to three-
dimensional flows because stream function does 
not exist in this case [5]. Most of the previous 
studies have used the central difference scheme 
[3,4]. 
     Algorithms for solving the Euler and Navier-
Stokes equations with FVMs have been grown in 
recent years [6,7,8,9]. The FVM of Jameson et al 
has proved to be useful as a tool for aerodynamic 
applications and even in solving the Navier-stokes 
equations [9,10,11,12].  Among the various 
schemes proposed for the flux calculation in FVMs 
[13,14], the Jameson's flux averaging is still of use 
because of its simplicity. In FVM a mapping is not 
needed. Therefore the scheme is applied directly in 
the physical domain. 
     Lin and Wu [15] presented an algorithm for 
solving the two-dimensional incompressible 
Navier-Stokes equations. They applied an artificial 

compressibility method using higher-order upwind 
FVM for the convective terms and a second-order 
scheme for the viscous terms at Reynolds numbers 
of 20 and 40. 
     To suppress the tendency for odd and even point 
decoupling, in the central differencing schemes are 
added the artificial dissipation terms [6,16]. The 
artificial dissipation is not needed in the proposed 
method. 
     In this paper, a new third-order algorithm is 
devised for time discretization instead of the 
fourth-order Runge-Kutta scheme. The new third-
order algorithm resulted in the rapid convergence 
in comparison to the fourth-order Runge-Kutta 
scheme [17]. Also the rate of convergence of the 
proposed FVM has proved to be faster than the 
other time discretization methods [17]. The artificial 
compressibility approach is applied, which produces a 
hyperbolic-dominated system of equations. An 
advantage of the proposed algorithm is that it can 
solve the flow around cylinder at quite high 
Reynolds numbers up to 200,000. 
 
 

2. GOVERNING EQUATIONS 
 

The integral form of the Navier-Stokes equations 
with artificial compressibility can be written as: 
 

∫∫∫∫
∂∂∂

−=−+Ω
∂
∂

AAA

SdxRdyGdxFdyQd
t

)()(  (1) 

 


















+

=



















=

θ

β

θ u

uv

pu

u

F
v

u

p

Q
2

, ,



















+
=

θ

β

v

pv

uv

v

G
2

,

























∂
∂

∂
∂
∂
∂

=

x

x

v
x

u
o

R

θ
Pr

1

Re

1
,

























∂
∂

∂
∂
∂
∂

=

y

y

v
y

u
o

S

θ
Pr

1

Re

1
 

 (2) 
 
in which A and ∂ A are the domain area and perimeter 
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respectively. The vector Q shows the pressure, the 
Cartesian velocity components and the 
temperature. The artificial compressibility 
parameter is denoted by β and Re is the diameter 
based Reynolds number. Pr shows the Prandtl 
number. The Prandtl number is assumed to be 
constant and for air Pr=0.7 is considered. Equation 
1 is in non-dimensional form by applying the 
following relations: 
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For simplicity the * has been eliminated in Equation 
1. After some algebraic manipulations, Equation 1 
can be written as: 
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in which p, u, v and θ  are the pressure, the 
Cartesian velocity and the temperature, stored in the 
cell centers. A denotes the cell area. Equations 5 
show that the governing equations are the first order 
ordinary differential equations with respect to time. 
 
 
 

3. GRID FEATURES 
 

Grid is generated algebraically where the clustering 
was used near the cylinder surface (Figure 1). The 
following hyperbolic function was used for 
clustering the cells in the vicinity of the cylinder 

surface: 
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As the η approaches unity, more grid points are 
clustered near the solid wall. In this work a 120x120 
grid were used, with circular far-field having the 
semi axes at 30 chords. It should be noted that, in 
Figure 1 only a part of the 120x 120 grid is shown. 
 
 
 

4. BOUNDARY CONDITIONS 
 

Good solid boundary conditions must ensure the 
disturbance dissipation in the discretized domain 
without reflection [10,16]. On the solid boundary, the 
usual no-slip condition is applied, 1=θ . u=0, v=0 
and the pressure at the wall is obtained by setting the 
normal gradient of p equal to zero at the no-slip wall, 

]15[0/.. =∂∂ npei .For the energy equation, the 

boundary condition is 1=θ  at solid boundary[4]. 
     At the far-field boundary, characteristic boundary 
conditions are used. The inflow boundary 
condition is computed by two free stream and one 
extrapolated from the interior. This can be written 

 
Figure 1. A part of 120x120 algebraic grid for the circular
cylinder. 



306 - Vol. 15, No. 3, September 2002 IJE Transactions A: Basics 

in terms of the left eigenvector L as [15]: 
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For the outflow boundary, only one boundary 
condition can be imposed [15]. 
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For the energy equation, the boundary condition 

0=θ  is used at far-field [4]. 
 
 
 
5. DISCERTIZATION OF THE GOVERNING 

EQUATIONS 
 
5.1 Time Discretization   For numerical solution 
of the first-order ordinary differential Equations 5, 
a new third-order algorithm has been proposed by 
Mirzaee, instead of the classical fourth-order 
Runge-Kutta scheme [17]. To describe briefly, 
Equation 5-b is integrated from time level n to time 
level n+1/2 and also n+l (Figure 2). Therefore one 
can write: 
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In which ∆ t is the time step and 2/1
,
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jiu  and 1
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jiu  are the 

values of ui,j in the time levels n+1/2 and n+1, 

respectively. Then 2/1
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are defined such as the mean values of the first-order 
time derivatives in the time intervals [0, t∆ /2] and 
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Then the following relations are resulted: 
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Figure 2. Cells in the finite- volume approach. 
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in which n
jidtdu ,)/( , 2/1

,)/( +n
jidtdu and 1

,)/( +n
jidtdu  

are the first-order time derivatives of ui,j in the 
time level n, n+1/2 and n+l, respectively. 

2/1
,)/( +n

jidtdu  and 1
,)/( +n

jidtdu  are obtained from 

substituting Equation 11 into Equation 5-b. In the 
third-order Mirzaee algorithm, one can observe 

that the procedure for solving 1
,
+n
jiu  is necessarily 

an iterative process at each time level. Beginning 

at the time level n, 2/1
,)/( +n

jidtdu  and 1
,)/( +n

jidtdu  

are taken the values of n
jidtdu ,)/( , and then 

corrected by Equation 12. The process is repeated 

until 1
,
+n
jiu  converges to a certain value. 

 
5.2 Space Discretization   Right hand side of 
Eqs. (5) is written at time level n as: 
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also one has: 
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Equations 13 and 14 show that the viscous and 
thermal conduction terms have similar form, so 
they can be discretized in the same way. System of 
ordinary differential equations is obtained by applying 
Equations 13 and 14 to each cell separately. For 
example in Equation 14 for the convective term, we 
choose the flux-averaging scheme. In this scheme 
each quantity such as CDu )( θ and CDv )( θ is evaluated 

as the average of the cells on either side of the face 
(Figure 2): 
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Flux averaging is applied here for the viscous and 
thermal conduction terms. In this new method, we 
need to know the first-order derivatives such as 

jix ,)/( ∂θ∂ and jiy ,)/( ∂θ∂  and so on (at the cell centre). 

To calculate the unknowns such as jix ,)/( ∂θ∂ and 

jiy ,)/( ∂θ∂ , The Taylor series are used.  As seen in 

Figure 2, for variables of the cell vertices, such as 
θ B one has: 
 

)(
4

1
,11,11,, jijijijiB −−−− θ+θ+θ+θ=θ  (16) 

 

Therefore the information of the fourth points such 
as B, C, D and E are found. To find the values of 

jix ,)/( ∂θ∂  and jiy ,)/( ∂θ∂ , one should use the 

Taylor series as: 
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For the first thermal conduction term in Equation 
14, we use the central differencing scheme. Each 
quantity for example CDx)/( ∂θ∂ and CDy)/( ∂θ∂  is 
found such as: 
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6. NUMERICAL RESULTS 
 
To investigate the performance of the proposed 
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FVM, a series of tests were conducted. Error norm 
is defined by: 
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where IM and JM are the cell numbers along 
circumferential and radial directions respectively. 
In this work the convergence criteria was set to 

710− . 
     In Figure 3 the angular distribution of local Nusselt 
number along the circumference of the cylinder for 
different values of β  are plotted at Re=50. Results 

show that the solutions are not sensitive to β . In 
Figure 4 the total drag CD is plotted versus Reynolds 
number and is compared with the numerical 
solutions of the other investigator [1]. The CD includes 
both skin drag and pressure drag. Figure 4 
illustrates that as the Reynolds number increases, 
the viscous effects become restricted more and 
more to the boundary layer and there is a 
decreasing CD. After Re = 5000, is shown the 
considerable rise in the CD. This is due to the 
separation process moving toward the top and 
bottom of the cylinder. When separation occurs 
closer to the top and bottom of the cylinder with 
little pressure recovery in the wake, there is a 
smaller pressure in the back of cylinder, thus 
resulting in greater drag. 
     Figure 5 represent streamlines for the 
selected Reynolds numbers. As is shown, the 
recirculation zone or wake is generated behind a 
cylinder. Also these plots show that, the wake 
affects the path line and acts like "aerodynamic 
rollers" over which the main stream flows. 
     Isotherms are plotted in Figure 6 and Figure 7. We 
know that the temperature gradient causes these 
phenomena. As is shown, isotherms are restricted to 
the boundary layer and those effects are seen in the 
wake. Also the temperature contours do not show any 
symmetry. 
     Local Nusselt numbers for a circular cylinder in 
cross flow are plotted in Figure 8 and are compared 
with the numerical solutions of the other 
investigators [4]. The present numerical results 
agree well with them. These plots show the angular 
distribution of local Nu along the circumference of 

cylinder in which the peak at the front stagnation 
point is observed. This is anticipated, since the 
downstream growth of a thermal boundary layer 
would certainly increase the thermal resistance. 

 
 
Figure 3. Independency of Nu to β . 

 
 
 
 

 
 
Figure 4. Comparison of total drag for different Reynolds
numbers, with the experimental results of [1]. 
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     In Figure 9 local Nusselt numbers are plotted at 
Re=71000 and Re=101000, and are compared with 

the experimental data [I8], Also in Figure 10 is 
plotted the convergence history versus the iteration 

 
 

Figure 5. Streamlines of 2D flow over a circular cylinder for different Reynolds numbers. 
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numbers. Results show that there is good agreement 
with the Giedt. 
     In Figures 11a and 11b the peak values of the 
local Nu at the front stagnation point for different 
Reynolds numbers, are plotted and compared with 
the experimental formula of Sarma and Sukhatme 
Nusp=0.91 Re0.5 [4]. An acceptable agreement does 
exist. 
     Figure 12a shows the calculated average Nuselt 
numbers up to Re=597 for the UWT case. In this 
figure the numerical solutions of other investigators 
are compared with the present results and good 
agreement would exist. 
     Figure 12b shows the calculated average 
Nusselt numbers up to Re=10,000, for the UWT 
case. Herein, the present results are compared 
with the two different proposed experimental 
formulas. One of them is the experimental 
formula of Zukauskas [18]: 

nmcNu PrRe=  
1000Re405.0,51.0 <<== whenmc       

200000Re10006.0,26.0 <<== whenmc  

(20) 
 

And other is the experimental formula of Churchill 
and Bernstein[18]: 
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Figure 6. Temperature contours of 2D laminar flow over the 
circular cylinder. 

 
 
Figure 7. Temperature contours of 2D laminar flow over the
circular cylinder. 
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As it is seen, from Figure 12b, close agreement 
dose exist between the results of the proposed 
FVM and the experimental formulas. 

7. CONCLUDING REMARKS 
 
The novel FVM developed in the present work was 

 
 

Figure 8. Comparison of the local Nu of FVM with other investigaters. 
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quite successful in predicting the forced flow heat 
transfer of air over a circular cylinder in cross 
flow. This was due to the discretization scheme  
that organically relates the physical behavior to the 
mathematics. The proposed FVM has twofold 
character, one in the time and other in the space 
discretizations. We have applied the new third 
order algorithm for time discretization of the 
governing equations. This method resulted in the 
rapid convergence in comparison to the fourth-
order Runge-Kutta scheme [I7]. For the 
space discretization, the information of the 

neighbouring cells for finding the flow parameters 
at corners has been used. Then by using Taylor's 
expansion, we calculate the values of the first-
order derivatives. In this way, the discretization of 
the viscous and thermal conduction terms are very 
simplified as similar to the Jameson's flux 
averaging for the convective terms, while for 
viscous and thermal conduction terms, the first-
order derivatives are averaged in the vicinity of 
two cells. The proposed FVM is able to converge 
at higher Reynolds numbers up to 101000. The 
choice of the cell arrangement for the evaluation of 
first and second-order derivatives is crucial for the 
suppression of odd-even decoupling. In the 
proposed FVM the convective and viscous terms 
were treated using a novel approach, which in turn 
resulted in the widened stability range. An 
attractive feature of the proposed FVM is its 
capability for vector processing. 
 
 
 

8. NOMENCLATURE 
 

A Cell area 
CD Drag coefficient 
D Diameter 
Error Residual 
IM Maximum number of circumferential 

cells 
JM Maximum number of radial cells 

 
 

Figure 9. Comparison of the local Nu of FVM with other investigator. 
 
 
 
 

 
 
Figure 10. Comparison of convergence histories at different 
Reynolds numbers. 
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L Aigenvector 
Nu Local Nusselt number 

Nu  Average Nusselt number 
p Pressure 
Pr Prandtl number 
Re Reynolds number 
u Velocity along x direction 
UWT Uniform wall temperature 
v Velocity along y direction 

Greek 
 

α  Thermal diffusivity 
β  Artificial compressibility parameter  

ν  Kinematic viscosity  
η  Clustring parameter 

∂ A Perimeter 
∆ t Time step 
θ  Temperature 

 
 

Figure 11. The peak values of the Nu at the front of stagnation point. 
 
 
 
 

 
 
 

Figure 12. Comparison of average Nusselt numbers with: a)The other numerical solutions, b)The other experimental data. 
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Superscripts 
 

- Mean 
n Time level 
 
Subscripts 
 

∞  Free-stream 
i Number of circumferential cells 
j Number of radial cells 
m Mean 
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