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Abstract A finite-volume model has been developed to study incompressible forced flow heat
transfer of air over acircular cylinder in cross flow. An artificial compressibility technique is applied
to couple the continuity to the momentum equations. The proposed explicit finite-volume method
(FVM) uses a novel discretization in time and space. The governing equations are solved by time-
marching using a new third- order algorithm at each time level. The discretization of the viscous and
thermal conduction terms are very simplified using the new scheme instead of common methods. The
new scheme is similar to the Jameson's flux averaging in the convective terms, while for viscous and
thermal conduction terms, the first- order derivatives are averaged in the vicinity of two cells. The
proposed model is able to converge at higher Reynolds numbers up to 101000. The numerical results
agree well with the available experimental and numerical data. The proposed FVM is capable of
capturing the flow details at wide range of Reynolds numbers.
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1. INTRODUCTION

Many forms of heat exchangers are employed in
the different branches of modem technology.
Curvilinear bodies in cross flow constitute a very
common group of elements in such devices. These
may be circular cylinders, rectangular or elliptic
pipes, and bodies of other geometries. Circular
cylinders find perhaps the most widespread
application in heat exchangers, power generators,
and other thermal apparatus. The circular cylinder
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congtitutes a classical element in boilers, steam or
gas turbines, compressors, and in various
aerodynamic problems. A variety of cross-sections
are aso used in buildings, chimneys, etc.

With a cylinder in laminar cross-flow, boundary
layer is formed on the front part as a result of
viscous forces. It is commonly accepted that, in the
lower range of Reynolds number (Relll), the
cylinder is enveloped all around by a laminar
boundary layer, which separates from its surface
only at the rear stagnation point. An increase of
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Re leads to an increase in the effect of inertial
forces, so that the laminar boundary layer separates
from the surface a the certain distance from the rear
stagnation point, and a complex vortex structure is
formed in the wake (Re<2.10°) [1]. For Reynolds
numbers less than 40 the separated flow is steady.
In the range of Reynolds numbers from about 60 to
about 5000 there exists behind the cylinder a
Karman vortex street which shows a regular,
periodic structure [2]. The heat transfer in the rear
part is governed by a vortex-separated flow. An
interpretation in terms of Nu = c.Re".Pr" was along
time commonly accepted for experimental data on
heat transfer [1].

Numerica methods have been used by a number
of investigators to deal with the problem of fluid
flow and heat transfer over a circular cylinder. An
efficient code is the key to solution methodol ogies
which would produce results using the least
amount of computing time and memories. This is
particularly true for problems with high Reynolds
numbers. Most of the previous numerical studies
have been done for Reynolds numbers less than
5000. Krall and Eckert [3] studied forced convection
for Reynolds numbers up to 200 using the donor-
cell technique. Chun and Boehm [4] carried out an
analysis for Reynolds numbers up to 3480 by
stream function-vorticity approach aong with a
mapping transformation. Also they assumed the
line symmetry in treating the wake region, which is
not physically meaningful. The vorticity-stream
function loses its capability when applied to three-
dimensional flows because stream function does
not exist in this case [5]. Most of the previous
studies have used the central difference scheme
[3.4].

Algorithms for solving the Euler and Navier-
Stokes equations with FVMs have been grown in
recent years [6,7,8,9]. The FVM of Jameson et a
has proved to be useful as atool for aerodynamic
applications and even in solving the Navier-stokes
equations [9,10,11,12]. Among the various
schemes proposed for the flux calculation in FVMs
[13,14], the Jameson's flux averaging is still of use
because of its simplicity. In FVM amapping is not
needed. Therefore the scheme is applied directly in
the physical domain.

Lin and Wu [15] presented an agorithm for
solving the two-dimensional incompressible
Navier-Stokes equations. They applied an artificial
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compressibility method using higher-order upwind
FVM for the convective terms and a second-order
scheme for the viscous terms at Reynolds numbers
of 20 and 40.

To suppress the tendency for odd and even point
decoupling, in the central differencing schemes are
added the artificial dissipation terms [6,16]. The
artificial dissipation is not needed in the proposed
method.

In this paper, a new third-order agorithm is
devised for time discretization instead of the
fourth-order Runge-Kutta scheme. The new third-
order algorithm resulted in the rapid convergence
in comparison to the fourth-order RungeKutta
scheme [17]. Also the rate of convergence of the
proposed FVM has proved to be faster than the
other time disretization methods [17]. The atificd
compressibility approach is applied, which produces a
hyperbolic-dominated system of equations. An
advantage of the proposed algorithm is that it can
solve the flow around cylinder at quite high
Reynolds numbers up to 200,000.

2. GOVERNING EQUATIONS

The integral form of the Navier-Stokes equations
with artificial compressibility can be written as:

% [[Qu0 + f(Fdy =G = f(Rey -9 (v

O O O 0Opv O
0 . .0 O 0
ng‘mng‘ "POog=0" O
O Ow O OF+pd
%D 0 O O 0
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Sa%% 0ou O
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QDFGXE rayD

)

inwhich A and d A arethe domain areaand perimeter
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respectively. The vector Q shows the pressure, the

Cartesian  velocity components and  the
temperature. The artificial compressibility

parameter is denoted by [ and Re is the diameter

based Reynolds number. Pr shows the Prandtl
number. The Prandtl number is assumed to be
constant and for air Pr=0.7 is considered. Equation
1 is in non-dimensional form by applying the
following relations:

s _ X +_Y +_U . _V
X =—'y :—,u =—,V = —
D D U, U,
t*: t ,p*:p_zpm,Re:umD'Pr:E
D/u, pUS v Y

©)

. T-T
0 = T—°° uniform wall temperature(UWT)

(4)

For amplicity the * has been diminated in Equation
1. After some algebraic manipulations, Equation 1
can be written as:

w o

% :% f.(B,% y,u,V) (5-a)
%:%\ f,(x Y, p.u,v,Re) (5-b)
% :% f,(X, Y, p,u,Vv,Re) (5-¢)
% :% f,(% y,u,v,6,Re Pr) (5-d)

in which p, u, v and 6 are the pressure, the
Cartesian velacity and the temperature, stored in the
cell centers. A denotes the cell area. Equations 5
show that the governing equations are the first order
ordinary differential equations with respect to time.

3. GRID FEATURES

Grid is generated dgebraicaly where the clustering
was used near the cylinder surface (Figure 1). The
following hyperbolic function was used for
clustering the cells in the vicinity of the cylinder
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Figure 1. A part of 120x120 algebraic grid for the circular
cylinder.

surface:

j-1
tanh( B ——=) _

g=— M~ B=oin p>1 (6)
tanh( B) 2 n+l

As the napproaches unity, more grid points are
clustered near the solid wall. In thiswork a 120x120
grid were used, with circular far-field having the
semi axes at 30 chords. It should be noted that, in
Figure 1 only a part of the 120x 120 grid is shown.

4. BOUNDARY CONDITIONS

Good solid boundary conditions must ensure the
disturbance dissipation in the discretized domain
without reflection [10,16]. On the solid boundary, the
usual no-dip condition is applied, 8 =1. u=0, v=0
and the pressure at the wall is obtained by setting the
normal gradient of p equal to zero at the no-dip wall,
i.edp/on =0[15] .For the energy equation, the

boundary conditionis 8 =1 at solid boundary[4].

At the far-fild boundary, characteristic boundary
conditions are wused. The inflow boundary
condition is computed by two free stream and one
extrapolated from the interior. This can be written
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in terms of the left eigenvector L as[15]:

Hu he hsHPH Hl11P +112U +113V) freestream [
Ox 1 IO =21 +155U +123V) freestream d
HSl l3p I3 HB’ E,omdary E (3P + 132U + 1 33V) iy rerior

(7)

For the outflow boundary, only one boundary
condition can be imposed [15].

Hll lp i3 %DH B|11p+|12U+|13V) freestreamH
Oa I lsduO =0 (Iyp+lpu+tlyy)

0
H3l |32 |33%"E,oundary E(|31p+|32u'|'|33v)|rtrenor E
8

For the energy equation, the boundary condition
8 =0 isused at far-field [4].

5. DISCERTIZATION OF THE GOVERNING
EQUATIONS

5.1 Time Discretization  For numerica solution
of the first-order ordinary differential Equations 5,
a new third-order algorithm has been proposed by
Mirzaee, instead of the classical fourth-order
Runge-Kutta scheme [17]. To describe brigfly,
Equation 5-b isintegrated from time level n to time
level n+1/2 and also n+l (Figure 2). Therefore one
can write:

At/2

l
U ; £ =y +1 J’f (X, Y, p,u,v, Re)dt

At

u't = +1If (x,Y, p,u,v, Re)dt
9

Inwhich Atisthetimestepand u;*'? and u;* arethe
values of u; in the time levels n+1/2 and n+l,
respectively. Then (du/dt)!"'> and (du/dt)"}!

are defined such as the mean values of the firg-order
time derivatives in the time intervas [0, At/2] and
[0,At ], respectively.

Therefore one has:
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Figure 2. Cellsin the finite- volume approach.

u—“ At/2
L =—— [f.(x,y, p,u,c,Re)dt
dt At/2.!2( VP )
— D+l At
uH 1
H =—[f,(x,y, p,u,c,Re)dt
] At_! 2(% Y, P )
(10)
Then the following relations are resulted:
i At/20duf
Ui ;" =i, +——
A Hdt j
— n+l1
n+l n At u
U= —
! A Hdt j
(11)

(du/dt)?lf” ? and (du/dt)™ are corrected by
the following equations[17]:
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inwhich (du/dt);, (du/dt)"?and (du/dy™

are the first-order time derlvatlves of uj; in the
time level n, n+tl/2 and n+l, respectively.

(du/dt)!*'? and (du/dt)" are obtained from

substituting Equation 11 into Equation 5-b. In the
third-order Mirzaee agorithm, one can observe

that the procedure for solving ui'jjﬂ is necessarily
an iterative process at each time level. Beginning
at the time level n, (du/dt)!*' and (du/dt)!*

and then

are teken the values of (du/dt)?,
corrected by Equation 12. The process is repeated
until un+1 convergesto acertain value.

5.2 Space Discretization  Right hand side of
Egs. (5) iswritten at time level nas:

%__ jB(vdx udy)

du_101 _Qu_  du .. _ =

E_;%;ej[&dy oy dx] j[(u + p)dy (UV)dX]D

0

% i\ ! ;f[—d ——dx] flimay=(7 +I0)dX]D
(13)

also one has:

o 10 1 48 O

T A ePrI[_dy__dX]_i[(ue)dy_(ve)dx]g

(14)

Equations 13 and 14 show that the viscous and
thermal conduction terms have similar form, so
they can be discretized in the same way. System of
ordinary differential equationsis obtained by applying
Equations 13 and 14 to each cell separately. For
example in Equation 14 for the convective term, we
choose the flux-averaging scheme. In this scheme

each quantity such as (uB) ., and (VB) -, isevaluated

as the average of the cells on either side of the face
(Figure 2):

(U8)cy =-§[(ue>hj+-(ue)ﬁlj]
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(B)co = [(8),, + ()., ]

(15

Flux averaging is applied here for the viscous and
thermal conduction terms. In this new method, we
need to know the first-order derivatives such as
(08/0x); ; and (98/0y); ; andsoon (at thecell centre).

To calculate the unknowns such as (06/0x); ; and
(08/0y); j, The Taylor series are used. Asseenin

Figure 2, for variables of the cell vertices, such as
0 s one has:

1
G :Z(ei,j +0,,1+0,,,%0,)) (16)

Therefore the information of the fourth points such
as B, C, D and E are found. To find the values of
(08/0x); ; and (06/dy); ;, one should use the

Taylor series as:

og O
d 0e=%,)" Op-y;)0 .

Ba%; %) 2" 2’1 O i g

: GexP 6 Fe %E g B

%)Y O, _

%E:‘X,j o'l 72] Z’J %( 5 y %%c 8,0

4. -6 .0

0 0ot Ob~¥)°D %% 0Og° Mg

DX b¥ o =0 % G0 @ 6,8
0 2 2 0D
%rx- oy G O %E O
2 2 2 H i H

(17)

For the first thermal conduction term in Equation
14, we use the central differencing scheme. Each
quantity for example(a8/9x)cp and (00/0y)cp IS

found such as:

aeH 1 %OGE N B@H O
== O
00X by 2 F10Xx0,; 00xO.y; {
ae% _1 aeE . aeE .
0y [, 2 [0y ; oy 1 B

6. NUMERICAL RESULTS

To investigate the performance of the proposed
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FVM, a series of tests were conducted. Error norm
is defined by:

M IM

.Z‘ ]Z (Uir,]}rl - uirjj)z

IM xJIM

Error = (29

where IM and JM are the cell numbers along
circumferential and radial directions respectively.
In this work the convergence criteria was set to
107.

In Figure 3 the angular distribution of local Nusselt
number along the circumference of the cylinder for
different values of [ are plotted at Re=50. Results

show that the solutions are not sensitiveto 3. In

Figure 4 the total drag Cp, is plotted versus Reynolds
number and is compared with the numerical
solutions of the other investigator [1]. The G includes
both skin drag and pressure drag. Figure 4
illustrates that as the Reynolds number increases,
the viscous effects become restricted more and
more to the boundary layer and there is a
decreasing Cp. After Re = 5000, is shown the
considerable rise in the Cp. This is due to the
separation process moving toward the top and
bottom of the cylinder. When separation occurs
closer to the top and bottom of the cylinder with
little pressure recovery in the wake, there is a
smaller pressure in the back of cylinder, thus
resulting in greater drag.

Figure 5 represent streamlines for the
selected Reynolds numbers. As is shown, the
recirculation zone or wake is generated behind a
cylinder. Also these plots show that, the wake
affects the path line and acts like "aerodynamic
rollers' over which the main stream flows.

Isotherms are plotted in Figure 6 and Figure 7. We
know that the temperature gradient causes these
phenomena. As is shown, isotherms are redtricted to
the boundary layer and those effects are seen in the
wake. Also the temperature contours do not show any
symmetry.

Local Nusselt numbers for acircular cylinder in
cross flow are plotted in Figure 8 and are compared
with the numerical solutions of the other
investigators [4]. The present numerical results
agree well with them. These plots show the angular
distribution of local Nu along the circumference of
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Figure 4. Comparison of total drag for different Reynolds
numbers, with the experimental results of [1].

cylinder in which the peak at the front stagnation
point is observed. This is anticipated, since the
downstream growth of a thermal boundary layer
would certainly increase the thermal resistance.
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In Figure 9 local Nusselt numbers are plotted at the experimental data [I8], Also in Figure 10 is
Re=71000 and Re=101000, and are compared with plotted the convergence history versustheiteration
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Lia=5a97

Figure 6. Temperature contours of 2D laminar flow over the
circular cylinder.

numbers. Results show that there is good agreement
with the Giedt.

In Figures 11a and 11b the peak values of the
local Nu at the front stagnation point for different
Reynolds numbers, are plotted and compared with
the experimental formula of Sarma and Sukhatme
Nug,=0.91 Re® [4]. An acceptable agreement does
exist.

Figure 12a shows the calculated average Nuselt
numbers up to Re=597 for the UWT case. In this
figure the numerica solutions of other investigators
are compared with the present results and good
agreement would exist.

Figure 12b shows the calculated average
Nusselt numbers up to Re=10,000, for the UWT
case. Herein, the present results are compared
with the two different proposed experimental
formulas. One of them is the experimenta
formula of Zukauskas [18]:
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Re=101000

Figure 7. Temperature contours of 2D laminar flow over the
circular cylinder.

Nu=cRe"Pr"

c=051Lm=05when 40<Re<1000

c=0.26,m=0.6 when 1000 < Re< 200000
(20)

And other isthe experimental formulaof Churchill
and Bernstein[18]:

4/5

NG o3s 062REZPIS D0 Re g“‘g
© [1+(04/Pr)MtF 2820000 [

,RePr>0.2
(21)
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As it is seen, from Figure 12b, close agreement 7. CONCLUDING REMARKS
dose exist between the results of the proposed
FVM and the experimental formulas. The novel FVM developed in the present work was
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Figure 10. Comparison of convergence histories at different
Reynolds numbers.

quite successful in predicting the forced flow heat
transfer of air over a circular cylinder in cross
flow. This was due to the discretization scheme
that organically relates the physical behavior to the
mathematics. The proposed FVM has twofold
character, one in the time and other in the space
discretizations. We have applied the new third
order algorithm for time discretization of the
governing equations. This method resulted in the
rapid convergence in comparison to the fourth-
order Runge-Kutta scheme [I7]. For the
space discretization, the information of the
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neighbouring cells for finding the flow parameters
at corners has been used. Then by using Taylor's
expansion, we calculate the values of the first-
order derivatives. In this way, the discretization of
the viscous and thermal conduction terms are very
simplified as smilar to the Jameson's flux
averaging for the convective terms, while for
viscous and thermal conduction terms, the first-
order derivatives are averaged in the vicinity of
two cells. The proposed FVM is able to converge
at higher Reynolds numbers up to 101000. The
choice of the cell arrangement for the evaluation of
first and second-order derivativesis crucial for the
suppression of odd-even decoupling. In the
proposed FVM the convective and viscous terms
were treated using a novel approach, which in turn
resulted in the widened stability range. An
attractive feature of the proposed FVM is its
capability for vector processing.

8. NOMENCLATURE

A Cell area

Co Drag coefficient

D Diameter

Error Residual

IM Maximum number of circumferentid
cells

IM Maximum number of radia cells
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Nu
Nu

Pr
Re

uwT

Aigenvector
Local Nusselt number

Average Nusselt number
Pressure

Prandtl number

Reynolds number
Velocity along x direction
Uniform wall temperature
Velocity along y direction
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Thermal diffusivity

Artificial compressibility parameter
Kinematic viscosity

Clustring parameter

Perimeter

Time step

Temperature

Vol. 15, No. 3, September 2002 - 313



Superscripts

- Mean

n Time level
Subscripts

0 Free-stream

Number of circumferential cells
Number of radial cells
Mean
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