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Abstract This paper develops a method for solving the single product multi-period production-
planning problem, in which the production and the inventory costs of each period are concave and
backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves
according to a continuous time Markov process. We prove that this production-planning problem can
be stated as a problem of finding the dynamic shortest path from the source node to the sink node.
Finally, we apply the stochastic dynamic programming to find the dynamic shortest path from the
source node to the sink node and obtain the optimal production scheduled for each period.
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1. INTRODUCTION

The classical ~multi-period  production-planning
problem specifies a discrete-time finite horizon
single product inventory management problem
subject to deterministic time-varying demand that
must be satisfied. This problem has been the subject
of extensive research since its introduction in the
late 1950s until today. When the production cost
and the inventory cost of each period are linear,
several authors have presented theorems that can
reduce the computational effort required in solving
the problem. Wagner and Whitin [1], Zabel [2]
give results for the no-backlogging case, while
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Zangwill [3] analyzes the backlog case. Florian and
Robillard [4] have constructed a branch and bound
algorithm for solving the concave cost network
flow problem with capacity constraints. Many
generalizations of the basic model have been
considered including introducing bounds on
inventory and/or production capacity as well as
generalizations to multi-product settings; see Bahl
et al. [5] for a review of relevant literature.

In the last decade, two important papers, Aggarwal
and Park [6] and Federgruen and Tzur [7] improved
the time complexity for obtaining an optimal solution
from O(T°) to O(T log T), if T represents the length
of the planning horizon. Lee et al. [8] studied the
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multi-period production-planning problem with
demand time windows, during which a particular
demand can be satisfied with no penalty, and provided
polynomial time algorithms for computing its
solution.

This paper develops a method for solving
the single product multi-period production-
planning problem and obtaining the optimal
production scheduled for each period, in which the
production cost of each period is linear and the
inventory cost of cach period is concave and
backlogging is not permitted. We then extend this
assumption to some more general setting, in which
the production cost of each period can be concave.
It is also assumed that the unit variable cost of the
production evolves according to a continuous time
Markov process.

When the unit variable cost of the production in
cach period is a constant value, the production-
planning problem can be stated as a problem of
finding the shortest path from the source node to
the sink node. In this case, the standard shortest
path algorithms can help us to solve the problem.
When the unit variable cost of the production
evolves according to a continuous time Markov
process, we should find the dynamic shortest path
from the source node to the sink node for solving
the problem.

In this paper, we apply the stochastic dynamic
programming to find the dynamic shortest path
from the source node to the sink node and obtain
the optimal production scheduled for each period.
This approach for solving the dynamic multi-
period production planning problem is a new
approach and we could not find the similar papers
in this area.

In section 2, we describe the framework of the
proposed method. In section 3, we solve a numerical
example, and finally we draw the conclusion of the

paper.

2. FRAMEWORK OF THE PROPOSED
METHOD

Let X, represent the production scheduled in period
t (t=1,2,..,T), D, represent the expected demand in
period ¢, 7, represent the net inventory at the end of
period ¢ (assuming l,=I;=0), H(I) represent the
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inventory cost in period ¢ which 1s a concave
function and ¢, represent the unit variable cost in
period ¢ which evolves according to a continuous
time Markov process under the following assumptions.
1. Assume that the number of states of the unit
variable cost is equal to N (these states are in this
order: ¢, .., ¢") and p,, rcpresents the
probability of transition of this cost from ¢’ to ™.

2. Let ¢;, represent the duration of time that the unit
variable cost is ¢!, before transition to ¢”. Its density
function is equal to fi,(¢). It is clear that wy(?) or the
density function of the staying time in state ¢’ is
computed from this equation:

w ()= P fn () | (1)

m=l

3. Let ¢

that the unit variable cost becomes ¢”, given that at
time zero, it was ¢,

How can a process that started by entering state
¢ at time zero be in state ¢ at time 7. One way this
can is for ¢ and ¢" to be the same state and for the
process never to have left state ¢ throughout the
period (0,¢). This requires that the process make its
first transition after time 7. Every other way to get
from state ¢' to state ¢" in the interval (0,¢) requires
that the process make at least one transition during
that interval. For example, the process could have
made its first transition from state ¢’ to some state
¢ at a time T, 0<7T<¢, and then by some
succession of transitions have made its way to state
¢" at time r. These considerations lead us to

Equation 2 for computing @, (7) .

(1) represent the conditional probability

im

(ﬁ:’m (z) i 5!"; _[m H)i (T)dT + z‘Pd £ fh! (f)ﬁﬁh,, (f “T)d'f
1=l

)
0

=] if =m

im

=0 otherwise (2)

in

Certainly we cannot directly compute @, () from
Equation (2), but since the second integral of
Equation (2) is a convolution of the two functions,

we can computé ¢. (¢) by the Laplace transform.

im

Let ¢, (s) represent the Laplace transform of

m
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¢,, (¢) that is computed in this manner:

el {==} J\II

05 (5)=5,, jo _[ e w, (VT dt+ Y. Py fE()P5, (5)
I=]

(3)

The appropriate model for obtaining the optimal
values of X; is in this manner:

T 7=l
MIN Z= E(z e X, +Y H, U’)J
1=l =1

ST

X, =D, =1

ILi+X,—D =I(=23,.7T=1)
Lij+ Xo—Dyp =0

I 20.X,240

4)

When the values of ¢ (t = 12,..,T) are
constant, it is proved that an optimal program has
the property that production in any period t must

k
be one of these values: 0 or Z DJ. ,fork =t t+],
A=
..o T, because XJI. = 0 (see Johnson and
Montgomery [9] for more details). For example,
Figure 1 is a network representing such programs
for T = 5. Arc (j,k) represents a decision to supply
the requirements for period j+1, j+2,.., k by
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production in period j+1.

If Mj. represents the cost of arc (j,k) which
includes production and inventory costs, arc (j,k)
could be assumed to have length M;, and the
production planning problem could be stated as a
problem of finding the shortest path from node 0 to
node T,

Now, we consider the case that the unit variable
cost of the production evolves according to a
continuous time Markov process. In this case, the
structure of constraints does not change. Then

Ao =il 0 0 F DY
! k
L=Xu~ Y D, =Y D[t=j+l5+2,..k=1)
r=j+l r=i+]
li=L=1 (5)

Now, if the unit variable cost of the production
at the beginning of period j+1 is ¢, we have these
relations:

k-1
Mjk :CIX_;'H + ZH:([r)

i=j+!
Uk k=l L3 (6)
My=c' ¥ D+ H{Y D)
r=f+l 1=+l r=t+l

Let A(j) represent the set of adjacent nodes of node
J- It is clear that A(j)={j+1, j+2, .., T}. Let V()
represent the minimum of production and inventory
costs from period j+1 to T, if the unit variable cost
at the beginning of period j+1 is c'.
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Theorem 1. Vj(ci) forI=1,2, .., N can be
obtained from the recursive functions (7).

V;(CJ):
&k k-1 k N
minge 4 pic’ D, Det 3, Hi( D, DY+ D Gk = Wile™)
| e ] 1=+ r=t+l m=l
i=12,...N

(7)
Proof. If the unit variable cost of the production
at the beginning of period j+1, taking into account
the state variable of the system is ¢' and we decide
to satisfy requirements in periods j+1,j+2,..k
(ke A)) by production in period j+1, the costs of
production and inventory from period j+1 to k
would be

LS -1 k
¢y Dx ¥ H(YD,) (8)

r=j+l t=j+| r=+l

The probability that after k-j periods, the unit
variable cost of the production becomes ¢, given
that at the beginning of period j+1 this cost was c',
would be ¢

Markov process corresponding to the transitions of
the unit variable cost is memoryless. Now, by
conditioning on the state of the unit variable cost
after k-j periods, it is proved that the cost of
production and inventory from period k+1 to T
would be

(k- Jj), because the continuous time

im

S 9 (k- Vilc™) 9

m=]

and Theorem 1 is proved. []

The steps of this algorithm are as follows:
Step 1. Begin from node j=T. It is clear that
V(c)=0 for all values of 1.
Step 2. Set j=j-1. Then compute ¢, (k — j) for all
values of i, m and ke A; by getting the inverse

Laplace of ¢, (s) in Equation (3).

im

im

Step 3. Compute Vj(ci) for all values of 1, from the
recursive functions (7). If Vj(c') is obtained from
ke A,, the optimal value of production, taking into

k
account ¢’ would be Xj.= Z L.

r=j+l

Step 4. If j>0, then go to 2. Otherwise go to 5.
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Step 5. Stop. The optimal values of production in
any period t=1,2, ..,T taking into account the state
of the unit variable cost of the production at the
beginning of period t was obtained.

The time complexity of this algorithm in step 2
is O((T-1)N?), because the number of states of the
unit variable cost is equal to N, and we should
repeat this step T-1 times. The time complexity of

this algorithm in step 3 is O(T(T—H)%]’

because in each node j=0,1,..,T-1, we have T-j
combinations for all values of Vj(¢)), for i=1,2, ..,N,

Tl R
and Z(_T - = T+ 1)/2 . Therefore, the time
=0

complexity of this algorithm in these steps is
polynomial.

We can also extend the assumptions of this
paper in order to solve the multi-period
production-planning  problem  with  concave
production cost. Let cF(X,) represent the
production cost of period t, in which F(X;) is a
concave function and c, is its cost coefficient. For
example, ¢,F,(X,) can be given by

e FX)= c Al X, (10)

Now, we assume that the cost coefficient evolves
according to a continuous time Markov process.
Let Vj-(ci) represent the minimum of production
and inventory costs from period j+1 to T, if the
cost coefficient at the beginning of period j+1 is c.

Corollary 1. V(¢ for i=1,2,..,N can be obtained
from the recursive functions (11).

[’J; ((-"I} =

f=1

k & N
minge 4y ¢ Fimil 3, D)+ Y, H (Y, D, }+2¢m.{k—.f)f/g{cm)}

r= g+l =+l r=r+d m=l
% Py

i=12,..,N

k]

(1)

Proof. In this case, the cost of production in
period j+1 for satisfying requirements in periods

k
j+H1j+2, .k (ke A)) is equal to C’I*}_H(Z‘D,,),
r=j+l
and Corollary 1 is proved the same as Theorem 1.
The steps of the algorithm for solving this new
problem is the same as the previous model, except that
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we should refer to the recursive functions (11) instead
of the recursive functions (7), and also the time
complexity of the related algorithm is polynomial.

3. NUMERICAL EXAMPLE

Production is to be planned for a five-period horizon.
There is no initial inventory and the final inventory
level is to be zero. The production and inventory
costs have the following forms:

cF(X)=c, /X,
H,(I)=h;
(12)

It is assumed that the cost coefficient evolves according
to a continuous time Markov process with two states,
¢'=150 and ¢*=200 whose transition matrix is

0 1
P=

A .6
It is also assumed that the values of fj,(t) are as
follows:

fu® =fo) =) =fa)=¢" t>0 (13)
Estimates of h, and D, are given in Table 1.

The network corresponding to this numerical
example is shown in Figure 1. The results of solving
this numerical example have been summarized in
Table 2.

Therefore, in each period, we should produce as
equal as its demand in both states. It is because of
the great values of the unit holding costs per each

period t, in this numerical example.

4. CONCLUSION

In this paper, we presented an algorithm based on
Semi-Markov decision processes and network flows
theory to solve the single product multi-period
production planning problem, in which the production
and the inventory costs of each period are concave
and backlogging is not permitted and also the unit
variable cost of the production evolves according
to a continuous time Markov process.

It was proved that this production-planning problem
could be stated as a problem of finding the dynamic
shortest path from the source node to the sink

TABLE 1. Data For the Numerical Example.

t D, h,

1 100 40

2 200 50

3 150 30

4 180 20

5 200 30

TABLE 2. Results of Solving the Numerical Example.

t V(@) Vo () X, (if c=c) X, (if c=c)
5 2121.3 2828.4 200 200
4 4515.6 5356.1 180 180
3 6806.6 7620.7 150 150
2 9367.5 10270 200 200
1 11354.9 12071.5 100 100
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node. Finally, we used the stochastic dynamic
programming to find the dynamic shortest path
from the source node to the sink node and obtained
the optimal production scheduled for each period.
Finally, we proved that the time complexity of this
algorithm in both cases (linear production cost or
concave production cost) is polynomial.
This model can be extended in these directions:

1. Solving the multi-product multi-period production-
planning problem.

2. It can be considered that some other parameters
of the model, like the unit holding cost per period,
evolve according to the semi-Markovian processes.
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