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Abstract   The non-orthogonal boundary-fitted coordinate transformation method is applied to the 
solution of steady three-dimensional momentum and energy equations in laminar flow to obtain 
temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross-
sectional geometries. The conservation equations originally written in Cartesian coordinates are 
parabolized in the axial direction and then transformed to the non-orthogonal curvilinear coordinate 
system to handle arbitrary duct geometries. The transformed equations are discretized using the 
control-volume finite-difference approach in which the convective and diffusive terms are discretized 
by the upwind and central difference schemes respectively. The discretization equations are solved by 
a line-by-line TDMA algorithm. Numerical results of Nusselt numbers and temperature profiles are 
obtained for constant wall temperature boundary condition and Pr = 6.78. 
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م و  و   روش غير متعامد در برگيرنده حدود اشكال هندسي براي حل معادلات دائمي سه بعدي ممنت                     چكيدهچكيدهچكيدهچكيده
انرژي در جريان آرام به كار برده شده تا ميدان دما و اعداد ناسلت در منطقه حرارتي ورودي مجراهاي مستقيم با 

تزين نوشته شده، در جهت محوري      معادلات بقا كه در ابتدا در مختصات كار        . سطح مقطع مختلف بدست آيد    
يابند تا اشكال هندسي دلخواه      خطي انتقال مي  _ پارابوليزه شده و سپس به سيستم مختصات غير متعامد منحني            

هاي متناهي،  توزيع گسسته يافته كه در آن به جملات جابجايي            معادلات انتقال يافته با روش تفاضل     . را بگيرند 
معادلاتي كه توزيع گسسته    . شوند  برخورد مي  central difference و روش    upwindو نفوذ به ترتيب با روش        

هاي دما براي    نتايج عددي اعداد ناسلت و پروفيل      . شوند  خط به خط حل مي      TDMA با الگوريتم     ،اند يافته
 . بدست آورده شده استPr = ٧٨/٦شرايط مرزي دماي ثابت ديواره 

1. INTRODUCTION 

A review of literature reveals that the majority of 
the studies in this area were related to rectangular 
and square ducts. Clark and Kays [1] obtained the 
fully developed theoretical and experimental Nusselt 
numbers and temperature profiles for laminar flow 
constant temperature and constant heat flux boundary 
conditions in rectangular ducts. Han [2] obtained 
an analytical solution for fully developed temperature 
profiles in laminar flow for rectangular ducts with 
two opposite walls treated as extended surfaces. 
Sparrow and Siegel [3] obtained the fully developed 
temperature profiles for constant peripheral heat 
flux using a variational method. Dennis et al. [4] 
considered the thermal entrance region problem 

and obtained the analytical solution of heat transfer 
to the wall of a rectangular duct through which a 
hot viscous fluid passes in steady laminar motion. 
Savino and Siegel [5] analyzed the effect of 
unequal heat flux at adjacent walls of rectangular 
ducts for fully developed laminar heat transfer. 
Montgornery and Wibulswas [6] obtained the 
thermal entrance region Nusselt numbers for constant 
flux boundary condition in rectangular ducts with 
infinite wall conduction by finite difference method. 
Shah and London [7] collected up to 1978 of a 
review of the laminar flow heat transfer literature 
for rectangular ducts. Lyczkowski. Solbrig and 
Gidaspow [8] obtained a finite difference solution 
for laminar flow heat transfer of a flowing gas in a 
rectangular duct for different boundary conditions. 
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Results have been obtained for several duct aspect 
ratios in the thermal entrance and in the fully developed 
regions. Neti and Eichhorn [9] presented results of a 
finite difference study of combined entrance region 
development (hydrodynamic plus thermal) in square 
ducts. Temperature profiles and Nusselt number 
variations are presented for the constant wall temperature 
case and Pr = 6.0. They have shown that Nusselt 
number values are smallest near the corners and largest 
on the central planes. 
     The objective of the present study is to develop 
a numerical method by non-orthogoanl boundary-
fitted transformation to analyze the thermal entry 
region of ducts of complex geometry cross-sections 
[10]. Results are presented for square, triangular, 
trapezoidal and pentagonal ducts. 

2. THE MATHEMATICAL MODELLING 

The basic equations, boundary conditions and 
simplifying arrangements used in this study 
are illustrated in the following sections and 
Figures 1 to 6. 

The Governing Equations   The strongly 
conservative form [11] of the steady overall continuity, 
momentum and energy equations are expressed as 
follows: 

The Overall Continuity Equation 

( ) 0v =ρ⋅∇  (1) 

The Momentum Equation 

( ) ( ) 0gPvv =ρ+τ⋅∇−∇−ρ⋅∇−  (2) 

The Energy Equation 

( ) ( ) ( ) 0vq.TvCp =∇τ+∇+ρ⋅∇  (3) 

     The conservative form enhances the subsequent 
treatment of the equations for numerical solution. 
The body force i.e. the gravitational field is applied 
only in the “y” direction for the coordinate system 
selected in Figure 1. For the case where there is a 
variation of density with temperature in the flow 
field, the body force term can be modified to a 
buoyancy force term along with a modified 
definition of the pressure [12,13]. The buoyant 
force is the cause of a natural convection flow in 
the transverse direction. 

The Parabolized Governing Equations in 
Cartesian Coordinates 

The Overall Continuity Equation 
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Figure 2. Grid arrangement adopted at each axial section. 

 
 
Figure 1. Arbitrary cross-sectional duct in Cartesian coordinates. 
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The Energy Equation 
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     The pressure, P in the above equations is dynamic 
pressure due to the introduction of buoyancy terms 
in the “y” momentum equation. In cases of negligible 
buoyancy effect, P would be the total pressure 
defined as hydrostatic plus dynamic pressures. 
 
 
The Boundary Conditions 
 
Inlet (@z = 0) 

1. Axial Velocity   A uniform entrance velocity 
profile is specified at inlet: 

inletww =  (9) 

2. Transverse Velocities   It is assumed that 
there is no secondary flow at inlet: 

u = 0, v = 0 (10) 

3. Temperature   A uniform temperature profile 
is assumed at inlet: 

wallTT =  (11) 

Walls of the Duct 

1. Axial Velocity   No slip-condition is assumed 
on the walls of the duct: 

w = 0 (12) 

2. Transverse Velocities 

u = 0, v = 0 (13) 

3. Temperature   For a constant wall temperature: 

T = Twall (14) 

Outflow Conditions   For the parabolized governing 
equations used here no downstream boundary 
conditions are required. 

 
 
Figure 3. .Physical velocities over the completely computational 
domain. 
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3. THE NUMERICAL METHOD OF 
SOLUTION 

The Boundary-Fitted Method  The development 
of the boundary-fitted method brought about the 
coordinate transformation of the physical domain, 
such as Cartesian coordinates to the curvilinear 

coordinates so that all the boundaries match the 
coordinate lines in the new system and the need to 
interpolate the boundary conditions as practiced 
before is eliminated [14,15]. The curvilinear 
coordinate system may be either orthogonal or non-
orthogonal in the sense of the mesh generated over 
the physical-domain. In this study the non-orthogonal 
method is applied to the solution of the present three-

 

 
 
 

Figure 4. Three-dimensional control volume in transformed-plane. 
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dimensional problem arbitrary cross-sectional ducts. 

 
Numerical Grid Generation   This is necessary 
to determine the location of the coordinate lines in 
the interior of the physical domain. A coordinate 
line is specified as being coincident with each 
boundary line segment while the other coordinate 
varies monotonically along that line. A method of 
generating the general boundary-fitted coordinate 
system is to let the curvilinear coordinates to be the 
solutions of an elliptic partial differential system in 
the physical plane, with Dirichlet boundary conditions 
on all the boundaries. 

Transformation of Governing PDE’s   It is 
necessary to transform the partial-differential equations 
under consideration into the new coordinate variables 
before being discretized. In general, the transformation 
operation generates additional terms in the governing 
equations so that these equations become more 
complicated upon transformation. The physical 
Cartesian velocities tire retained as the dependent 
variables in transformation, however, contravariant 
velocity components also take part in the structure 
of the transformed equations. The transformed 
equations and boundary conditions are as follows: 

The Overall Continuity Equation 
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The Energy Equation 
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The Boundary Conditions 

Inlet (@z = 0) 

1. Axial Velocity 

( ) inletw,w =ηξ  (20) 

2. Transverse Velocities 

( ) ( ) 0,v,0,u =ηξ=ηξ  (21) 
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3. Temperature 

( ) inletT,T =ηξ  (22) 

Walls of the Duct 

1. Axial Velocity 

( ) inletw,w =ηξ   
11

11

L,...,1forM1
M,...,1forL1

=ξ≤η≤
=η≤ξ≤

 (23) 

2. Transverse Velocities 

( ) ( ) 0,v,0,u =ηξ=ηξ  
11
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 (24) 

3. Temperature 

( ) wallT,T =ηξ   
11
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Note:transformation parameters: 
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Discretization of Transformed Equations 
For a non-orthogonal grid system, the best grid 
configuration is a modified classical staggered-grid 
in which both components of “if and “v” velocities 
are used coincidentally at the same location with 
the contravariant-velocities normal and parallel to 
the faces of the cell (Figure 2). Physical velocities 
over the whole computational domain is shown in 
Figure 3. A three-dimensional control volume is 
shown in Figure 4. 
     The transformed governing equations are discretized 
using the method known as the “control-volume” 
approach [16,17]. The upwind difference scheme is 
used for discretization of convective terms and the 
central difference scheme is used for discretization 

of diffusion terms. The discretization equations are 
algebraic equations and are solved by a line-by-
line tridiagonal matrix (TDMA) algorithm. For the 
proper location of the control-volume faces, the B-
type grid [17] is employed here. The pressure-
velocity coupling in the transverse direction is 
handled by the SIMPLER algorithm [17] after 
being modified for the non-orthogonal coordinate 
system. The method adopted in this work to handle 
the pressure-velocity coupling in the axial direction 
is that of Raithby and Schneider [18]. 
 
Solution Procedure     This work demonstrates the 
suitability of the numerical model and the solution 
procedure applied to 3D parabolized momentum 
and energy equations in straight ducts of arbitrary 
but uniform cross-sections. A review of some of 
the related developments in the numerical methods 
for the solution of conservation equations reveals 
the elegant features of the numerical procedure 
applied to this work. In general, coupling between 
the momentum and mass conservation equations is 
often the major cause of the slow convergence of 
the iterative solution methods. Caretto et al. [19] 
applied a numerical method to the solution of the 
momentum equations, which involved an implicit 
simultaneous solution of coupled nonlinear difference 
equations without linearization or decoupling. The 
solution procedure was, however, a point-by-point 
iterative method due to which slow convergence is 
inevitable. The method of Patankar and Spalding 
[16] involved linearization and decoupling of the 
equations. In their method, the non-linear terms 
(the product terms) of the momentum equations are 
handled by setting the value of velocities in these 
terms the same as their values at the previous axial 
step. 
     The axial momentum equation is treated 
separately from the transverse momentum 
equations, which are decoupled by assuming a 
pressure-field in the transverse direction. In the 
computations of transverse velocities, corrections 
are made for the tentative transverse velocities and 
pressure field by iteratively solving a Poisson like 
equation for the pressure-correction. The method 
proposed by Briley [20] requires two Poisson like 
equations to be solved, one for a velocity potential 
for velocity corrections and the other for the 
pressure field. The method of Patankar and 
Spalding [16] developed later brought about the 
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SIMPLE and SIMPLER algorithms [17]. The  
SIMPLE and SIMPLER algorithms have been 
already applied to solve problems using the non-

orthogonal boundary fitted coordinate transformation 
system. Some of these works are worthy to 
mention here. Hadjisophocleous et al. [21], Shyy et 

 Square Equilateral-triangular Trapezoidal Pentagonal 
 

 
 

Figure 5. The selected geometries in the physical domain. 
 
 
 

21×21 B-type grid for square duct     21×21 B-type grid for triangle duct 

             
 
 

             21×21 B-type grid for trapezoidal duct         21×21 B-type grid for pentagonal duct 

                   
 

Figure 6. The selected geometries in the physical domain. 
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al. [22] and Braaten et al. [23] employed the 
SIMPLE algorithm in their analysis for non-
orthogonal systems. Maliska [24] applied a mixed 
scheme comprising of SIMPLE and SIMPLER 
algorithms. 
     The use of nonorthogonal coordinates versus 
orthogonal system has the advantage of getting rid 
of the generation of orthogonal grids at certain 
locations, which are difficult or impossible to 
make. The staggered grid employed in this work 
uses both of the u and v velocity components at 
each velocity locations. This grid arrangement 
together with the numerical scheme in which both 
of the physical Cartesian and contravariant velocities 
are involved, have led the finite difference 
equations to converge faster without numerical 
instabilities. Besides, a combination of upwind 
difference scheme for the convective terms and 
central difference scheme for the diffusive terms, 
which is employed in this work, provided satisfactory 
results. 

4. RESULTS AND DISCUSSION 

The numerical results of heat transfer analysis for 
constant wall temperature and Pr = 6.78 are shown 
in Figures 7 to 8 and Tables 6 and 7. A general-
purpose computer program in Fortran developed 
by the author was employed to obtain the present 
results. The specific geometries selected for the 
present analysis are as flows: 
 
• square duct, 
• equilateral triangular duct, 
• trapezoidal duct (acute-angle = 60 o , one side 

twice the other), 
• pentagonal duct (each angle = 108 o ). These 

geometries are shown in Figure 5. 
 
     The grids are shown in Figure 6. All the above 
ducts were selected on the basis of the same 
equivalent diameter. Consequently, the same value 
of relaxation factor was applied to all geometries 
corresponding to each discretization equation. It is 
believed that this scheme is valid if the geometries 
selected do not involve oddity. For a pictorial 
representation of this concept, one may refer to 
Bejan [25] for a scale drawing of the duct sizes for 

some geometry. Other than the ducts mentioned 
above, circular and rectangular ducts (of two 
aspect ratios: 2/1 and 3/2) were also examined for 
validation of the model and the computer code. 
     The problem was solved for an axial step size of 
0.276 m for which 250 marching stations were 
required in the axial direction to reach to the 
converged solution. For the sake of numerical 
accuracy and computational economy the mesh 
size selected was 21 x 21 over the transversed 
plane. The memory requirement for computations 
was 2720 K and the typical CPU time was about 
26 minutes for one run on IBM ESA9000 machine 
(mainframe). The computations were performed 
for fully developed velocity and developing 
temperature profiles. Referring to Kays et al. [26] 
the results obtained in this analysis are well suited 
for the simultaneously developing velocity and 
temperature profiles for the respective Prandtl 
number. The buoyancy effect in this study is 
negligible due to the close temperatures selected 
for the fluid at inlet and at wall. About 5 iterations 
were required to obtain converged solution over 
each transversed plane. The convergence criteria 
were set on the residual values defined as follows: 
 
i. the residual of the energy equation, that is, the 

remainder of this equation when the results are 
substituted for the enthalpy into this equation. 
In general ∑ ϕ−+ϕ= PPnbnb abaR  and R 
will be zero when the discretization equation 
is satisfied [17]. 

ii. the residual of enthalpy values, that is, the 
difference in enthalpy values between two 
successive iterations. 

 
     Table 1 shows the residual values of energy equation 
and enthalpy values at the converged solution. 
     The local Nusselt number for constant temperature 
wall boundary conditions, is expressed in terms of 
the fluid bulk-temperature-gradient along the flow 
path length by 

**
b

b
T,z dZ

d
4

1Nu θ
θ

−=  (27) 

Refer to the Appendix for derivation. 
The logarithmic mean Nusselt number for constant 
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wall temperature boundary condition is expressed 
by: 
 







θ

=
b

**T,m
1ln

Z4
1Nu  (28) 

 
which is obtained from Equation 27 by integration. 
     The thermal entry length is analyzed in terms of 
the dimensionless bulk and centerline temperatures 
in Figure 7(a, b) and Figure 8(a, b) for square, 
triangular, trapezoidal and pentagonal ducts. Bulk 
temperature is the mean temperature over the 
section and centerline temperate is the mean 
temperature over the centerline. The thermal entry 
length obtained in this study for square ducts is 

TABLE 1. Residual Values. 
 

Geometry Energy-
equation 
Residual 

Enthalpy 
Residual 

Square 0.303×10-7 -0.275×10-4 

Triangular 0.160×10-6 -0.270×10-4 

Trapezoidal 0.533×10-7 -0.270×10-4 

Pentagonal 0.694×10-7 -0.385×10-4 
Rectangular 

(2/1) 
0.224×10-7 -0.357×10-4 

Rectangular 
(3/2) 

0.262×10-7 -0.315×10-4 

Circulare 0.105×10-6 -0.501×10-4 

 
 
 

TABLE 2. Thermal Entry Length and Limiting TNu  Results. 
 

Geometry Z**= thermal entry 
length Limiting NuT 

RT1 = 

InletTWallT
InletTUnitT

−

−
 

RT2 = 

InletTWallT
InletTTCL

−

−
 

Square 0.381 2.980 0.993 0.986 
Triangular 0.397 2.598 0.993 0.986 
Trapezoidal 0.382 2.972 0.993 0.986 
Pentagonal 0.339 3.098 0.993 0.986 
for comparison:     
Rectangular (2/1) 0.341 3.363 0.993 0.986 
Rectangular (3/2) 0.366 3.118 0.993 0.986 
Circulare 0.317 3.603 0.993 0.986 

 
 
 

TABLE 3. Comparison of Limiting Nusselt Numbers. 
 

 Square Rectangular 
(2/1) 

Rectangular 
(3/2) 

Equilateral 
Triangular Circular 

Clark and Kays 2.890 3.390 - - - 
Dennis et al. 2.980 3.390 3.120 - - 
Shah and London 2.976 3.391 3.117 - - 
Schmidt 2.970 3.383 3.121 - - 
Javeri 2.981 3.393 - - - 
Lyczkowski et al. 2.975 3.395 3.117 - - 
Kays and Crawford 2.980 3.390 - 2.350 3.658 
Wibulswas - - - 2.570 - 
This Study 2.980 3.363 3.118 2.598 3.603 
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Z** = 0.381 which is close to the value obtained by 
Neti et al. [9], Z** = 0.352. The value in this study 
is corresponding, however, to the dimensionless 
bulk and centerline temperatures of 0.993 and 
0.986 respectively while the values obtained by 
Neti et al. [9] are that of 0.988 and 0.979 
respectively. The temperature is nondimensionalized 
here with the difference between the fluid wall 
temperature and the fluid temperature at the duct 
entrance. The results for the limiting Nusselt 
numbers are indicated in Table 2 for all geometries 
under consideration. The limiting Nusselt numbers 
( TNu ) for square, rectangular, triangular and 
circular ducts obtained in this study are compared 
with the analytical and numerical results of other 
investigators in Table 3. These results confirm the 
validity of the model and computer code in this 
study. 
     The results of central plane thermal development 
are shown in Figures 9(a, b) and 10(a, b) for 
square, triangular, trapezoidal and pentagonal 
ducts in terms of the dimensionless temperature 
profiles. The temperature is nondimensionalized 
here with the difference between the uniform wall 
temperature and the bulk fluid temperature. 
Temperature profiles are shown at three different 
axial positions. The peak value of RT for triangular 
and pentagonal ducts tends towards the corner of 
the ducts on the central plane. This is due to zero 
friction at corners due to which the peak value of 
velocity profile on the central plane tends closer to 

the corner and induces temperature accordingly. 

     The results obtained for square ducts for 
Newtonian fluids ( T,zNu , T,mNu ) are compared 
with the numerical solutions of Chandrupatla & 
Sastri [27] in Tables 4 and 5. There is a close 
agreement between their solutions and the present 
results for T,zNu  but there are some differences 

between T,mNu  values. The results obtained by 
Chandrupatla and Sastri [27] are with no secondary 
flow and no viscous dissipation effects. Also, the 
effect t of variation of Prandtl number is ignored in 
their analysis and no value is mentioned for the 
Prandtl number corresponding to their results. It is 
believed that, the differences existing in the results 
of T,mNu  as observed in Table 5 are mainly due to 
the difference in the values of Prandtl numbers. 
Chandrupatla and Sastri [27] ignores the effect of 
Prandtl number on T,mNu  by reasoning that it is 

included in the relevant ( )4X
Pr

 term. However, 

T,mNu  is affected by Pr through the effect bθ  
according to the following relations: 

( ) 





θ

=
θ

=
bb

T,m
1ln

4X
Pr

4
11ln

X
PrNu  (29) 

TABLE 4. Comparison of Nusselt Number: Tz,Nu  

Variation for Square Ducts. 
 

Chandrupatla Present Analysis 
Gz Nuz,T Gz Nuz,T 
0 2.975 0 2.980 

40 3.432 37 3.204 
50 3.611 50 3.527 
80 4.084 75 4.104 

100 4.357 100 4.635 
133.3 4.755 127 4.845 
200 5.412 190 5.808 

 
 

TABLE 5. Comparison of Nusselt Number: Tm,Nu  

Variation for Square Ducts. 
 

Chandrupatla Present Analysis 
Gz Nuz,T Gz Nuz,T 
0 2.975 0 2.980 

40 4.841 37 4.878 
50 5.173 50 5.441 
80 5.989 75 6.386 
100 6.435 100 7.186 

133.3 7.068 127 8.084 
200 8.084 190 9.612 
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or 







θ

=
b

zT,m
1lnG

4
1Nu  (30) 

but 

( )Prfb =θ  (31) 

therefore 

( )PrgG
4
1Nu zT,m =  (32) 

or 

( )Pr,GhNu zT,m =  (33) 

     The results of local and mean Nusselt numbers 
for ducts of different cross-sectional geometries are 
presented in Tables 6 and 7. 

5. CONCLUSIONS 

This paper shows the application of a non-
orthogonal boundary fitted coordinate (BFC) 
procedure in the solution of 3D parabolized 
momentum and energy equations for various non-
circular cross-sectional ducts. The thermal entrance 
region temperature profiles, thermal entry lengths, 
Nusselt number variations and limiting Nusselt 
number values are obtained for square, triangular, 
trapezoidal and pentagonal ducts. Experimental 
work is required in the entrance region of 
noncircular ducts to verify some of the results. 

  
 
 

Figure 7. (a, b) D. L. temperature vs. D. L. axial distance, (square, triangular). 
 
 
 
 

  
 
 

Figure 8. (a, b) D. L. temperature vs. D. L. axial distance, (trapezoidal, pentagonal). 
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6. NOMENCLATURE 

a coefficient in the discretization equations 
AR aspect ratio 
b constant term in the discretization equations 
Cp specific heat 
D. L. dimensionless 
Dh, DE hydraulic diameter (or equivalent diameter) 

 DE = 4rh = 
perimeterwetted

areaflow4×
 

g acceleration due to gravity 

Gz Greatz number ( **z Z
1G = ) 

h enthalpy (h = CPT) 
I index of “ ξ ” axis in transformed plane 
J index of “ η ” axis in transformed plane 
J Jacobian of transformation 
k thermal conductivity 

L1 maximum value of “I” index (on “ξ ” axis) 
M1 maximum value of “J” index (on “ η ” axis) 
Nuz,T local Nusselt number 
Num,T mean Nusselt number  
NuT limiting Nusselt number 
P total pressure (dynamic + hydrostatic) 
P dynamic pressure 
P  mean viscous pressure 

Pr Prandtl number (Pr = 
k

CPµ
) 

Pe Peclet number (Pe = Re . Pr = 
k

wDC hPρ
) 

q heat flux 
R residual of discretization equation 

Re Reynolds number (Re =
( )

µ
ρ wDh ) 

T temperature 

TABLE 6. Nuz,T, Variations of Different Geometries. 
 

Gx Square Triangular Trapezoidal Pentagonal 
100 4.635 4.373 4.564 4.689 
75 4.104 3.871 4.025 4.157 
60 3.767 3.575 3.701 3.844 
50 3.527 3.377 3.479 3.633 
43 3.345 3.234 3.314 3.481 
37 3.204 3.126 3.186 3.366 
0 2.980 2.598 2.979 3.098 

 
 
 
 
 

TABLE 7. Num,T Variations of Different Geometries. 
 

Gx Square Triangular Trapezoidal Pentagonal 
100 7.186 6.841 7.005 7.009 
75 6.386 6.072 6.232 6.266 
60 5.842 5.555 5.706 5.761 
50 5.441 5.178 5.320 5.391 
43 5.129 4.889 5.022 5.105 
37 4.878 4.659 4.783 4.877 
0 2.980 2.598 2.972 3.098 
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tl inlet temperature 
tw wall temperature 
u, v, w velocity components in the Cartesian system 
U, V, W contravariant velocity components 
[v] average axial velocity coefficients 
v velocity field 

w  mean axial velocity 
x, y, z Cartesian coordinate system 
X dimensionless axial distance 

Z** dimensionless axial-distance, Z** = 
e

h

P
Dz

 

  
 

Figure 9. (a, b) Development of the temperature profile, (square, triangular). 
 
 
 
 
 
 
 

  
 

Figure 10. (a, b) Development of the temperature profile, (trapezoidal, pentagonal). 
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Greek Letters 
 

γβα ,,  transformation coefficients 
σηξ ,,  axes of curvilinear coordinate 

µ  viscosity 
ρ  density 

aρ  arithmetic mean density 

vφ  viscous dissipation function 

ijτ  stress-tensor 

ij∆  rate of deformation tensor 

θ  dimensionless temperature, 
wl

w

tt
tt

−
−

=θ  

φ a general dependent variable 

Subscripts 
 
nb general neighbor grid point 

Superscripts 
 
^ refers to the transformed quantity 

7. APPENDIX 

Derivation of Local and Mean Nusselt Number 
 
From Bird [11] (Page 423): 

( ) ( )
( )bwloc

boloc

TTPdzhdQ
TTDdzhdQ

−=→
−= π

 

 (34) 
 
in which P: perimeter, To = Tw = Twall 

[ ]

bPc

bP

dTwCAdQ

dTvCDdQ

ρ

ρπ

=→







=

4

2

 

 (35) 

in which Ac cross-sectional area 

( ) ( )dzTT
dTwC

P
Ah

bw

b
P

c
loc −





=

µ
ρµ  (36) 

( )

( )
( )dzTT

dTDEw
k

C
P
A

k
DEhNu

bw

bPc

loc
loc

−










=

=

µ
ρµ

 

 (37) 

( ) ( ) ( ) dzTT
dT

P
A

Nu
bw

bc
loc −

= RePr  (38) 

( )
( )
( ) ( )PrReDE

dz
1

TT
TT
TT

dT

PDE
A

Nu

lw

bw

lw

b

c
loc

⋅⋅−
−
−

⋅
=  (39) 

( )
lw

bw

lw

b

TT
TTd

TT
dT

−
−

−=
−  

 
 

b
lw

bw d
TT
TTd θ−=





−
−

−=  

 (40) 
in which 

lw

bw
b TT

TT
−
−

=θ   (41) 
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also 

**dZ
PeDE

zd
PrReDE

dz =






⋅
=

⋅⋅
 (42) 

and from the definition DE = 4
P
A

 

one can write 
4
1

PDE
Ac =

⋅
 

therefore 

**
b

b
loc dZ

d
4

1Nu
θ

θ
−=   (43) 

∫∫
θ

θ
θ

−=⋅ b
**

1
b

b**Z

0 loc
d

4
1ZdNu  (44) 

b
**

T,m ln
4
1ZNu θ−=⋅  (45) 
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