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Abstract The non-orthogonal boundary-fitted coordinate transformation method is applied to the
solution of steady three-dimensional momentum and energy equations in laminar flow to obtain
temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross-
sectional geometries. The conservation equations originaly written in Cartesian coordinates are
parabolized in the axia direction and then transformed to the non-orthogonal curvilinear coordinate
system to handle arbitrary duct geometries. The transformed equations are discretized using the
control-volume finite-difference approach in which the convective and diffusive terms are discretized
by the upwind and central difference schemes respectively. The discretization equations are solved by
a line-by-line TDMA agorithm. Numerical results of Nusselt numbers and temperature profiles are
obtained for constant wall temperature boundary condition and Pr = 6.78.
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1. INTRODUCTION

A review of literature reveals that the mgjority of
the studies in this area were related to rectangular
and square ducts. Clark and Kays [1] obtained the
fully devel oped theoretical and experimental Nusselt
numbers and temperature profiles for laminar flow
constant temperature and constant heat flux boundary
conditions in rectangular ducts. Han [2] obtained
an analytical solution for fully devel oped temperature
profiles in laminar flow for rectangular ducts with
two opposite walls treated as extended surfaces.
Sparrow and Siegel [3] obtained the fully developed
temperature profiles for constant peripheral heat
flux using a variational method. Dennis et al. [4]
considered the thermal entrance region problem
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and obtained the analytical solution of heat transfer
to the wall of a rectangular duct through which a
hot viscous fluid passes in steady laminar motion.
Savino and Siegel [5] analyzed the effect of
unequal heat flux at adjacent walls of rectangular
ducts for fully developed laminar heat transfer.
Montgornery and Wibulswas [6] obtained the
therma entrance region Nussdlt numbers for constant
flux boundary condition in rectangular ducts with
infinite wall conduction by finite difference method.
Shah and London [7] collected up to 1978 of a
review of the laminar flow heat transfer literature
for rectangular ducts. Lyczkowski. Solbrig and
Gidaspow [8] obtained a finite difference solution
for laminar flow heat transfer of aflowing gasin a
rectangular duct for different boundary conditions.
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Figure 1. Arhitrary cross-sectiond duct in Cartesian coordinates.

Results have been obtained for several duct aspect
ratiosin the thermd entrance and in the fully developed
regions. Neti and Eichhorn [9] presented results of a
finite difference study of combined entrance region
development (hydrodynamic plus thermal) in square
ducts. Temperature profiles and Nusselt number
vaidions are presented for the congtant wal temperature
case and Pr = 6.0. They have shown that Nusselt
number values are smallest near the corners and largest
on the central planes.

The objective of the present study is to develop
a numerical method by non-orthogoanl boundary-
fitted transformation to analyze the thermal entry
region of ducts of complex geometry cross-sections
[10]. Results are presented for square, triangular,
trapezoidal and pentagonal ducts.

2. THEMATHEMATICAL MODELLING

The basic equations, boundary conditions and
simplifying arrangements used in this study
are illustrated in the following sections and
Figures1to 6.

The Governing Equations  The strongly
conservative form [11] of the steady overal continuity,
momentum and energy equations are expressed as
follows:

The Overall Continuity Equation

(Ompv)=0 1
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Figure 2. Grid arrangement adopted at each axid section.

The Momentum Equation
-([@pw)-0P-(0G)+pg=0 @
The Energy Equation

(O, Tv)+ ([Ca)+ ([ov)=0 ®)

The conservative form enhances the subsequent
treatment of the equations for numerical solution.
The body forcei.e. the gravitational field is applied
only in the “y” direction for the coordinate system
selected in Figure 1. For the case where thereis a
variation of density with temperature in the flow
field, the body force term can be modified to a
buoyancy force term along with a modified
definition of the pressure [12,13]. The buoyant
force is the cause of a natural convection flow in
the transverse direction.

The Parabolized Governing Equations in
Cartesian Coordinates

The Overall Continuity Equation
o(pu) , a(pv) , Apw) _

4
0x ay 0z @
The Momentum Equations
x-component
0 0 0
——(pu?) + —(pvu) + —(pwu) =
0x oy 0z )

_a_P_(aTxx + aTyX)
0x 0x oy
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Figure 3. .Physicd vedodities over the completdy computationa
domain.

y-component

0 0 2 0
—(puv)+—(pv°) +—(pwv) =
aX(lo ) ay(|o ) az(|o )
_a_P_(_aTXV
oy 0Xx

0T,y (6)
+ W) (P-Pa)g

Zz-component

0 0 d 2
—(puw ) + —(pvw ) + —(pw?) =
I (puw) ay(IO ) aZ(IO )

dP ot 0T, 0
- - (_XZ + _)
dz 0X oy

The Energy Equation

0 0 0
—(PC,Tu) + — (PC,TV) + —(pC,Tw) =
oy (PCeTU) ay(p pTV)+ 55 (PCeTW)
g , 0T, o0, 0T
—(kK—)+—(k—) +n.@
Ko ay( ay) @,

(8)
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The pressure, P in the above equations is dynamic
pressure due to the introduction of buoyancy terms
in the “y” momentum equation. In cases of negligible
buoyancy effect, P would be the total pressure
defined as hydrostatic plus dynamic pressures.

The Boundary Conditions

Inlet (@, = 0)

1. Axial Velocity A uniform entrance velocity
profileis specified at inlet:

W =W;a 9)

2. Transverse Velocities It is assumed that
there is no secondary flow at inlet:

u=0,v=0 (20)

3. Temperature A uniform temperature profile
isassumed at inlet:

T=T,a (11)

Walls of the Duct

1. Axial Velocity No dlip-condition is assumed
on the walls of the duct:

w=0 (12)
2. Transverse Velocities

u=0,v=0 (13)

3. Temperature Foracongtant wall temperature:

T = Twall (14)

Outflow Conditions For the parabolized governing
equations used here no downstream boundary
conditions are required.
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Figure 4. Three-dimensional control volume in transformed-plane.

3. THE NUMERICAL METHOD OF
SOLUTION

The Boundary-Fitted Method The development
of the boundary-fitted method brought about the
coordinate transformation of the physical domain,
such as Cartesian coordinates to the curvilinear
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coordinates so that all the boundaries match the
coordinate lines in the new system and the need to
interpolate the boundary conditions as practiced
before is diminated [14,15]. The curvilinear
coordinate system may be either orthogonal or non-
orthogond in the sense of the mesh generated over
the physical-domain. In this study the non-orthogona
method is applied to the solution of the present three-
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dimensional problem arbitrary cross-sectional ducts.

Numerical Grid Generation Thisisnecessary
to determine the location of the coordinate linesin
the interior of the physical domain. A coordinate
line is specified as being coincident with each
boundary line segment while the other coordinate
varies monotonically along that line. A method of
generating the general boundary-fitted coordinate
systemisto let the curvilinear coordinates to be the
solutions of an elliptic partial differential systemin
the physical plane, with Dirichlet boundary conditions
on al the boundaries.

Transformation of Governing PDE’s It is
necessary to transform the partia-differential equations
under consideration into the new coordinate variables
before being discretized. In generd, the transformation
operation generates additional terms in the governing
equations so that these equations become more
complicated upon transformation. The physical
Cartesian velocities tire retained as the dependent
variables in transformation, however, contravariant
velocity components also take part in the structure
of the transformed equations. The transformed
equations and boundary conditions are as follows:

The Overall Continuity Equation

o(pu) , o(pv) , olpW) _ (15)
0¢ on 00

The Momentum Equations

X-component

0 0 0

—(puU ) + —(puwVvV ) + —(puWw ) =
aa(p ) ar](p ) ao(p )
0 . A

_E[yn(-[xx)_xn(-[yxj

- %[Xz(fyx )_ yi(fxx )]_ [ynPE - yEPn]
(16)
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y-component

0 0 0

—(pvU )+ —(pvwW )+ —(pVW) =
az(p ) ar](p ) ao(p )
0 A A

_E[yn(Txy)_xn(Tyy)]

_%[Xz(fyy)_ yi(fxyj_ [XZPn - XnPE]

- Jp-p.)

(17
z-component
9 9 9 )
E(DWU )+ a(pWV )+ E(DWW ) =
0 . A
- g[yn(-[xz)_ Xn(Tyz)]

- %[Xa(fyz)— v (. )- Jj—g

-3 -p.)o

(18)
The Energy Equation
2 (00, U+ (pC,TV) +-2 (oC, TW) =
0¢ on 0z
0 [ B, -0 0Ly B, -0 4
— - KT, ==KT_ 7+ — kT —=KT, 7+ J1d
&I NE B TR
(19)
The Boundary Conditions
Inlet (@, = 0)
1. Axial Veocity
W(E’ r]) = Winet (20)
2. Transverse Velocities
u(&,n)=0,v(En)=0 (21)
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3. Temperature

T(E,, r]) = T (22)

Walls of the Duct

1. Axial Velocity

1l<¢<L,forn=1..,M
W(E’r]):Winla 1< ; _ ' (23
<n<sM,foré=1..,L,

2. Transverse Velocities

1<&<L,forn=1..,M,
l<n<M,forg=1..L,
(24)

u(€,n)=0, v(&n)=0

3. Temperature

1<&¢<L,forn=1..,M,

TEN)= T 1<n<M, for€ =1..,L, @)

Note:transformation parameters:

a=x2+y?
B=x xn+yn U=yu=x,v

T yiy” V =xv-y;u (26)
yEXeTY, WERY
sziyn_xnyi

Discretization of Transformed Equations
For a non-orthogonal grid system, the best grid
configuration is a modified classical staggered-grid
in which both components of “if and “v” velocities
are used coincidentally at the same location with
the contravariant-velocities normal and parallel to
the faces of the cell (Figure 2). Physical velocities
over the whole computational domain is shown in
Figure 3. A three-dimensional control volume is
shown in Figure 4.

Thetransformed governing equations are discretized
using the method known as the “control-volume”
approach [16,17]. The upwind difference schemeis
used for discretization of convective terms and the
central difference scheme is used for discretization
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of diffusion terms. The discretization eguations are
algebraic equations and are solved by a line-by-
line tridiagonal matrix (TDMA) algorithm. For the
proper location of the control-volume faces, the B-
type grid [17] is employed here. The pressure-
velocity coupling in the transverse direction is
handled by the SIMPLER algorithm [17] after
being modified for the non-orthogonal coordinate
system. The method adopted in this work to handle
the pressure-velocity coupling in the axial direction
isthat of Raithby and Schneider [18].

Solution Procedure  Thiswork demonstrates the
suitability of the numerical model and the solution
procedure applied to 3D parabolized momentum
and energy eguations in straight ducts of arbitrary
but uniform cross-sections. A review of some of
the related developments in the numerical methods
for the solution of conservation equations reveals
the elegant features of the numerical procedure
applied to this work. In general, coupling between
the momentum and mass conservation equations is
often the major cause of the slow convergence of
the iterative solution methods. Caretto et a. [19]
applied a numerical method to the solution of the
momentum equations, which involved an implicit
smultaneous solution of coupled nonlinear difference
eguations without linearization or decoupling. The
solution procedure was, however, a point-by-point
iterative method due to which slow convergence is
inevitable. The method of Patankar and Spalding
[16] involved linearization and decoupling of the
equations. In their method, the non-linear terms
(the product terms) of the momentum equations are
handled by setting the value of velocities in these
terms the same as their values at the previous axial
step.

The axial momentum equation is treated
separately from the transverse momentum
equations, which are decoupled by assuming a
pressure-field in the transverse direction. In the
computations of transverse velocities, corrections
are made for the tentative transverse velocities and
pressure field by iteratively solving a Poisson like
eguation for the pressure-correction. The method
proposed by Briley [20] requires two Poisson like
equations to be solved, one for a velocity potential
for velocity corrections and the other for the
pressure field. The method of Patankar and
Spalding [16] developed later brought about the
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Figure5. The selected geometriesin the physical domain.
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Figure 6. The selected geometriesin the physical domain.

SIMPLE and SIMPLER algorithms [17]. The orthogona boundary fitted coordinate transformation
SIMPLE and SIMPLER algorithms have been system. Some of these works are worthy to
already applied to solve problems using the non- mention here. Hadjisophocleous et al. [21], Shyy et
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a. [22] and Braaten et a. [23] employed the
SIMPLE agorithm in their analysis for non-
orthogonal systems. Maliska [24] applied a mixed
scheme comprising of SIMPLE and SIMPLER
algorithms.

The use of nonorthogonal coordinates versus
orthogonal system has the advantage of getting rid
of the generation of orthogonal grids at certain
locations, which are difficult or impossible to
make. The staggered grid employed in this work
uses both of the u and v velocity components at
each velocity locations. This grid arrangement
together with the numerical scheme in which both
of the physical Cartesian and contravariant velocities
are involved, have led the finite difference
equations to converge faster without numerical
instabilities. Besides, a combination of upwind
difference scheme for the convective terms and
central difference scheme for the diffusive terms,
which is employed in thiswork, provided satisfactory
results.

4. RESULTSAND DISCUSSION

The numerical results of heat transfer analysis for
constant wall temperature and P, - 6.78 are shown
in Figures 7 to 8 and Tables 6 and 7. A genera-
purpose computer program in Fortran developed
by the author was employed to obtain the present
results. The specific geometries selected for the
present analysis are as flows:

e sguareduct,
e equilateral triangular duct,

» trapezoida duct (acute-angle = 60°, one side
twice the other),

* pentagona duct (each angle = 108°). These
geometries are shown in Figure 5.

The grids are shown in Figure 6. All the above
ducts were selected on the basis of the same
equivalent diameter. Consequently, the same value
of relaxation factor was applied to all geometries
corresponding to each discretization equation. It is
believed that this scheme is valid if the geometries
selected do not involve oddity. For a pictoria
representation of this concept, one may refer to
Bejan [25] for a scale drawing of the duct sizes for
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some geometry. Other than the ducts mentioned
above, circular and rectangular ducts (of two
aspect ratios: 2/1 and 3/2) were also examined for
validation of the model and the computer code.
The problem was solved for an axia step size of
0.276 m for which 250 marching stations were
required in the axial direction to reach to the
converged solution. For the sake of numerical
accuracy and computational economy the mesh
size selected was 21 x 21 over the transversed
plane. The memory requirement for computations
was 2720 K and the typical CPU time was about
26 minutes for one run on IBM ESA9000 machine
(mainframe). The computations were performed
for fully developed velocity and developing
temperature profiles. Referring to Kays et al. [26]
the results obtained in this analysis are well suited
for the simultaneously developing velocity and
temperature profiles for the respective Prandtl
number. The buoyancy effect in this study is
negligible due to the close temperatures selected
for the fluid at inlet and at wall. About 5 iterations
were required to obtain converged solution over
each transversed plane. The convergence criteria
were set on the residual values defined as follows:

i. theresidual of the energy equation, that is, the
remainder of this equation when the results are
substituted for the enthalpy into this equation.

In general R = zaan)nb +b-a,$, and R

will be zero when the discretization equation
issatisfied [17].

ii. the residua of enthalpy values, that is, the
difference in enthalpy values between two
successive iterations.

Table 1 shows the resdud vaues of energy equation
and enthal py values at the converged solution.

The local Nussdt number for constant temperature
wall boundary conditions, is expressed in terms of
the fluid bulk-temperature-gradient along the flow
path length by

_ 1 de,
40, dz

(27)

Refer to the Appendix for derivation.
The logarithmic mean Nusselt number for constant
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TABLE 1. Residual Values.

wall temperature boundary condition is expressed
by:

Geometry Energy- Enthalpy
equation Residual L L
Residual | - Nu, . =—=In (28)
Square 0.303x10 -0.275x%10 ’ 47 0,
Triangular 0.160x10° | -0.270x10*
Trapezoidal 0533x 107 -0.270x10* which is obtained from Equation 27 by integration.
4 " The thermal entry length is analyzed in terms of
Pentagonal 0.694x10 -0.385%10 the dimensionless bulk and centerline temperatures
Rectangular 0.224x 10" -0.357x10™* in Figure 7(a, b) and Figure 8(a, b) for sguare,
(2/1) triangular, trapezoidal and pentagonal ducts. Bulk
Rectangular 0.262x 10" -0.315x10* temperature is the mean temperature over the
3/2) section and centerline temperate is the mean
: % 10/ ) <1074 temperature over the centerline. The thermal entry
Circulare 0-105x10 050110 length obtained in this study for square ductsis
TABLE 2. Thermal Entry Length and Limiting Nu; Results.
» RT1= RT2=
Geometry Z =thermal entry Limiting Nut Tunit ~ Tinlet TCL ~Tiniet
length
Twall ~ Tinlet Twall ~ Tinlet
Square 0.381 2.980 0.993 0.986
Triangular 0.397 2.598 0.993 0.986
Trapezoidal 0.382 2972 0.993 0.986
Pentagonal 0.339 3.098 0.993 0.986
for comparison:
Rectangular (2/1) 0.341 3.363 0.993 0.986
Rectangular (3/2) 0.366 3.118 0.993 0.986
Circulare 0.317 3.603 0.993 0.986
TABLE 3. Comparison of Limiting Nusselt Numbers.
Rectangular | Rectangular | Equilateral .
Square 2/) 312) Triangular | Crevlar
Clark and Kays 2.890 3.390 - - -
Denniset al. 2.980 3.390 3.120 - -
Shah and London 2.976 3.391 3.117 - -
Schmidt 2.970 3.383 3121 - -
Javeri 2.981 3.393 - - -
Lyczkowski et al. 2.975 3.395 3.117 - -
Kays and Crawford 2.980 3.390 - 2.350 3.658
Wibulswas - - - 2.570 -
This Study 2.980 3.363 3.118 2.598 3.603

IJE Transactions A:
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TABLE 4. Comparison of Nusselt Number: Nu,

Variation for Square Ducts.

TABLE 5. Comparison of Nusselt Number: Nu,

Variation for Square Ducts.

Chandrupatla Present Analysis Chandrupatla Present Analysis
GZ N U, Gz N U, 1 Gz N U, 1 GZ N U,
0 2.975 0 2.980 0 2.975 0 2.980
40 3.432 37 3.204 40 4.841 37 4.878
50 3.611 50 3.527 50 5.173 50 5.441
80 4.084 75 4.104 80 5.989 75 6.386
100 4.357 100 4.635 100 6.435 100 7.186
133.3 4.755 127 4.845 133.3 7.068 127 8.084
200 5412 190 5.808 200 8.084 190 9.612

Z" =0.381 which is close to the value obtained by
Neti et al. [9], Z~ = 0.352. The value in this study
is corresponding, however, to the dimensionless
bulk and centerline temperatures of 0.993 and
0.986 respectively while the values obtained by
Neti et al. [9] are that of 0.988 and 0.979
respectively. The temperatureis nondimensionalized
here with the difference between the fluid wall
temperature and the fluid temperature at the duct
entrance. The results for the limiting Nusselt
numbers are indicated in Table 2 for all geometries
under consideration. The limiting Nusselt numbers

(Nu;) for square, rectangular, triangular and

circular ducts obtained in this study are compared
with the analytical and numerical results of other
investigators in Table 3. These results confirm the
validity of the model and computer code in this
study.

The results of centrd plane therma devel opment
are shown in Figures 9(a, b) and 10(a, b) for
square, triangular, trapezoidal and pentagonal
ducts in terms of the dimensionless temperature
profiles. The temperature is nondimensionalized
here with the difference between the uniform wall
temperature and the bulk fluid temperature.
Temperature profiles are shown at three different
axial positions. The peak value of RT for triangular
and pentagona ducts tends towards the corner of
the ducts on the central plane. This is due to zero
friction at corners due to which the peak value of
velocity profile on the central plane tends closer to
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the corner and induces temperature accordingly.

The results obtained for sguare ducts for
Newtonian fluids (Nu,;, Nu_ ;) are compared
with the numerical solutions of Chandrupatla &

Sastri [27] in Tables 4 and 5. There is a close
agreement between their solutions and the present

results for Nu,; but there are some differences

between Nu, . values. The results obtained by

Chandrupatla and Sastri [27] are with no secondary
flow and no viscous dissipation effects. Also, the
effect t of variation of Prandtl number isignored in
their analysis and no value is mentioned for the
Prandtl number corresponding to their results. It is
believed that, the differences existing in the results

of Nu,, ; asobservedin Table 5 are mainly dueto

the difference in the values of Prandtl numbers.
Chandrupatla and Sastri [27] ignores the effect of

Prandtl number on Nu ; by reasoning that it is
included in the relevant l term. However,
(x/4)

Nu,,; is affected by Pr through the effect 6,
according to the following relations:

IJE Transactions A: Basics
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or
Nu,, ; =EGZ In%%
] 4 b
but
0, =f(Pr)
therefore
NU,, =G, g(Pr)
‘ 4
or

I\Ium,T = h(Gz ’ Pr)
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(30)

(31)

(32)

(33)

The results of local and mean Nusselt numbers
for ducts of different cross-sectional geometries are
presented in Tables6 and 7.

5. CONCLUSIONS

This paper shows the application of a non-
orthogonal boundary fitted coordinate (BFC)
procedure in the solution of 3D parabolized
momentum and energy equations for various non-
circular cross-sectiona ducts. The thermal entrance
region temperature profiles, thermal entry lengths,
Nusselt number variations and limiting Nusselt
number values are obtained for square, triangular,
trapezoidal and pentagona ducts. Experimental
work is required in the entrance region of
noncircular ducts to verify some of the results.
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TABLE 6. Nu,T, Variations of Different Geometries.

Gy Square Triangular Trapezoidal Pentagonal
100 4.635 4.373 4.564 4.689
75 4.104 3.871 4.025 4.157
60 3.767 3.575 3.701 3.844
50 3.527 3.377 3.479 3.633
43 3.345 3.234 3.314 3.481
37 3.204 3.126 3.186 3.366
0 2.980 2.598 2.979 3.098
TABLE 7. Nuy, t Variations of Different Geometries.
Gy Square Triangular Trapezoidal Pentagonal
100 7.186 6.841 7.005 7.009
75 6.386 6.072 6.232 6.266
60 5.842 5.555 5.706 5.761
50 5.441 5.178 5.320 5.391
43 5.129 4.889 5.022 5.105
37 4.878 4.659 4.783 4.877
0 2.980 2.598 2.972 3.098
6. NOMENCLATURE L1 maximum value of “I” index (on*“ & " axis)
M1 maximum value of “J’ index (on*“ " axis)
a coefficient in the discretization equations Nu, 1 local Nussalt number
AR aspect ratio ’
b constant term in the discretization equations Nupr - mean Nussalt number
C specific heat Nur [imiting Nusselt numt_)er _
DF.) L dimensionless P total pressure (dynamic + hydrostatic)
Dy, DE  hydraulic diameter (or equivalent diameter) P dynamic pressure
4xflow area P mean Viscous pressure
DE =4r, = ; C V]
wetted perimeter Pr Prandtl number (Pr = —F-)
g acceleration due to gravity k
G, Greatz number (G, :Z_]:*) Pe Peclet number (Pe=Re. Pr= W)
h enthalpy (h = CpT) q heat flux
| index of “ E " axisin transformed pl ane R residual of discretization equatl on
J index of “n” axisin transformed plane R, Reynolds number (Re = p(Dh )W )
J Jacobian of transformation Vi
k thermal conductivity T temperature
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Figure 9. (a, b) Development of the temperature profile, (square, triangular).
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Figure 10. (g, b) Development of the temperature profile, (trapezoidal, pentagonal).
t inlet temperature w mean axial velocity
tw wall temperature X, ¥,z Cartesian coordinate system
u, v, w veocity componentsinthe Cartesan sysem X dimensionless axial distance
U, V, W contravariant velocity components
[V] average axial velocity coefficients 7 dimensionless axial-distance. 7™ = z/D,,
v velocity field A
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Greek Letters

a,B,y transformation coefficients
&,n,0 axesof curvilinear coordinate
! viscosity

p density

P, arithmetic mean density

o, viscous dissipation function
T, stress-tensor

rate of deformation tensor

0 dimensionless temperature, 6 = tt __ttW
(0] ageneral dependent variable o
Subscripts

nb general neighbor grid point

Super scripts

A refers to the transformed quantity

7. APPENDI X
Derivation of Local and M ean Nussdt Number

From Bird [11] (Page 423):

dQ=h_(mDdz) (T, -T,)
- dQ=h,Pdz(T,-T,)

(34)

loc

in which P: perimeter, T, = Ty, = Tya

dQ = E%Ep ¢,

- dQ = A pC,WdT,
(35)
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in which A cross-sectional area

A, l:lpW daT, 36
e =5 Gy E(TW - T, )z %
Nuloc - hloc (DE)

k
_ A [Coufew(DE)q 4T,
P Epk EE H E(Tw_Tb)dZ
(37)
_A dr,
NuIoc - P (Pr) (Re) (TW _Tb) dz (38)
dT,

Ac (Tw _TI) 1

NUyg: = pDEP (T, -T,) dz (39)
(T, -T,) (DERelPr)
dTb — d(TW _Tb)
TW _TI TW _TI
——dguTe E:—deb
w T,
(40)
in which
T, -T
g, = b 41
e (41)

w
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dz  _ d@D z E= 4z @)

DERePr [DEPe[

and from the definition DE = 4%

. Ac 1
one can write —— = —
DE [P 4
therefore
uIoc == 1 de*b* (43)
49b dz
ZH * % 1 eb de
Nu,  HzZ" =-= b
IO u loc 4 1 eb (44)
* % 1
Nu,; [Z :—Zlneb (45)
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