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Abstract   We develop a method to obtain an optimal solution for a constrained distribution system 
with several items and multi-retailers. The objective is to determine the procurement frequency as 
well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed 
method is applicable to both nested and non-nested policies and ends up with an optimal solution. To 
solve this large nonlinear and integer problem, a two-level algorithm is proposed. In the first level, the 
functional constraints are relaxed and a solution is obtained by taking advantage of its special 
structure. Then, we apply separable programming technique for finding the optimal solution of the 
original problem. To decrease the size of the problem, some appropriate bounds on variables are 
introduced. We will show that under some conditions, the optimal solution of the original problem is 
proportional with the solution of its unconstrained problem. 
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 در اين شبكه   . يابد    در اين مقاله، روشي براي بدست آوردن جواب بهينه يك شبكه توزيع توسعه مي                  چكيده
 توزيع ) خرده فروشي (هاي فرعي     كه اقلام متعددي توسط يك انبار مركزي خريداري و سپس از طريق انبار              -

توانند غير قطعي    هاي مدل نيز مي    امترعلاوه بر اينها، پار   .  داراي محدوديتهاي كاركردي متعددي است     -شود   مي
هدف، تعيين تواتر خريد اقلام در انبار مركزي و همچنين فاصله زماني بين دو حمل متوالي از                 . باشند) احتمالي(

محموله مشترك  . ها حداقل گردد   انبار مركزي به هر كدام از انبارهاي فرعي است، بطوري كه مجموع هزينه               
روش پيشنهادي هم براي سياستهاي     . شود  انبارهاي فرعي شامل چند كالاي مختلف مي       كالاها از انبار مركزي به    

Nested      براي مدل رياضي حاصل كه به يك برنامه ريزي غير خطي، عدد صحيح       . وهم براي غير آن كاربرد دارد 
ر مرحله اول،   د. شود كه داراي دو مرحله است      اي طراحي مي   شود، الگوريتم ويژه   هاي بزرگ منتهي مي    با اندازه 

آنگاه، در . آيد گيري از ساختار ويژه آن يك جواب اوليه بدست مي با آزاد سازي محدوديتهاي كاركردي و با بهره
براي محدود كردن . شود ريزي تفكيك پذير، جواب بهينه مساله اصلي محاسبه مي    مرحله دوم با استفاده از برنامه     

ه دوم الگوريتم يك حد بالا و يك حد پايين مناسب براي هر كدام              اندازه مساله و قابل حل نمودن آن، در مرحل        
شود كه تحت شرايط خاص جواب بهينه مساله اصلي متناسب با            ضمنا نشان داده مي   . گردد ها تعيين مي   از متغير 

 .جواب بهينه مساله بدون محدوديت است
 
 
 

1. INTRODUCTION 
 

In supply chain or logistics approach, a major goal 
of all world-class companies is to reduce the total 
cost of the system altogether rather than to minimize 
inventory or transportation cost, separately. In this 
paper, we study a distribution system with a central 
as well as various local (or departmental) warehouses, 
in which different items are flowing from outside 

into the central warehouse and then shipped to the 
departmental warehouses for the final distribution. 
There are many constraints resulting from limited 
resources. The objective is to reduce the integrated 
cost of inventory and transportation altogether by 
determining the optimal shipment planning, i.e. the 
interval time between two successive shipments for 
each item. 
     The model developed for this problem can also 
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be applied to represent a company that produces 
several products and distributes them through many 
retailers. 
     Maxwell and Muckstadt [3] formulated a 
model for multi-echelon problems and developed 
a method on the basis of graphical structure of 
the model. Later, Muckstadt and Roundy [5] 
simplified the method for the case of multi-item, 
multi-retailer production-distribution system. 
However, they assumed nested policies hold, 
only. Modarres and Taimury[4] developed 
another method when this assumption is relaxed, 
although it may hold for some nodes. Jackson et 
al. [2] proposed a method for a constrained 
distribution system on the basis of Lagrangian 
relaxation. However, this method works only if 
the coefficients of constraints are proportional to 
the corresponding holding or setup costs. 
Furthermore, if there is more than one constraint, 
then the number of iterations will tend to 
infinity. Although they claim the method is 
convergent, it cannot be proved mathematically. 
Bertrand and Bookbinder [1] considered a two-
echelon periodic review inventory system 
consisting of a warehouse W and non-identical 
retailers R1, …, Rn. In their model, it is possible 
to redistribute among retailers, between 
replenishment of the overall system. Heijeden 
[6] developed an inventory control rule for a 
multi-echelon system with a stock central depot. 
The control rule determines a set of rationing 
fractions at the central depot as well as a set of 
order-up-to levels for retailers. 
     In this paper, we propose a method for a constrained 
distribution system, similar to the model of Jackson et 
al. [2], but with no restriction on the coefficients of 
the constraints. The resulting solution obtained from 
our method is optimal within any desired measure 
of accuracy. 
     The remainder of this paper is organized in the 
following way. In the next section, we present the 
definition of the problem along with the assumptions, 
as well as the graphical structure of the model 
according to our notation. In section 3, the framework 
of the method as well as its structure of the model, 
which consists of two levels, is presented. In 
sections 4, we illustrate how to obtain the optimal 
solution of the unconstrained problem in the first 
level, as well as mathematical developments 
regarding the properties of this optimal solution. In 

sections 5, we present the second level of the 
method and how to apply separable programming 
with less effort. The summary of the proposed 
algorithm is developed in section 6. 

 
 

2. THE PROBLEM 
 

Consider a multi-echelon inventory system 
carrying I type of items. This system consists of 
one central warehouse and M retailers (departmental 
warehouses). The purchased items are stocked in 
the (central) warehouse first and then shipped to 
the retailers. Shipments to each retailer may 
include different items. In other words, joint 
replenishment to retailers is assumed. In this 
system, one may consider various functional 
constraints, such as the amount of inventory 
(total or average) or the maximum number of 
orders from outside. 
     The objective is to determine the procurement 
frequency as well as the joint shipment interval for 
each retailer in order to minimize the total 
inventory costs, including setup and holding costs 
while different constraints are satisfied. 
     We do not restrict the policy to be nested only. 
However, it is assumed to be stationary. By 
stationary, we mean the reorder points for each 
warehouse is invariant with respect to time. We 
also assume the interval time between two successive 
orders for each item and in all warehouses is a 
power-of-two multiple of a base planning period. 
By our experience, the most practical base planning 
period is one week. 

 
Graphical Structure of the Model   The 
problem is represented by a directed graph 
consisting a set of nodes N(G) and a set of arcs  
A(G). The concept of nodes and arcs are described 
in Modarres and Taimury[4]. The nodes are divided 
into three groups of W, R, and J, as illustrated in 
Figure 1. Each node of the first set, W, represents 
the storage of one item in the central warehouse 
and each node of R set is related to the storage of 
one item in a retailer store. Any node of type J 
indicates the receipt of shipments to a retailer. This 
set is introduced in the graph to represent the act of 
joint shipment and makes it possible to consider 
the cost of joint shipment. Arcs represent nested 
relation, as we will discuss later. 
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     The system illustrated in figure 1 has three 
items. Nodes a, b and c represent the storage of 
these items in the central warehouse.  There are 
also three retailers. In this figure, nodes d, e and f 
represent the receipt of items a, b and c, 
respectively, at retailer 1. Similarly, nodes g, h, i as 
well as nodes j, k, l represent the receipt of the same 
items at retailers 2 and 3, respectively. On the other 
hand, nodes m, n and o indicate joint shipment of 
items to retailers 1,2 and 3, respectively. 

 
Assumptions and Notation   We use the following 
notation for node n, for n = 1, ...., N.  
dn : demand rate at node n; 
Sn : set up (or ordering) cost of node n. This cost is 
applicable for all nodes;  
hn : holding cost of an item at node n. This cost is 
proportional to the level of inventory, not 
applicable to J nodes; 
T(n) : the inter-shipment time (between two 
successive shipments) at node n; 
T*(n) : the optimal inter-shipment time at node n; 
τ (n) :  the optimal inter-shipment time at node n, 
when functional constraints are relaxed.  
     We assume H represents the set of functional 
constraints. Then, associated for constraint h ∈  H, 
the following notation is also introduced. 
bh :  maximum amount of hth resource; 
N(h): the set of nodes in constraint h; 
Aih: the consumption coefficient of node i in 
constraint h. 
     Clearly, a node may be in more than one 
constraint. In other words, for h1, h2 ∈  H, the 
intersection of N(h1) and N(h2) is not necessarily 

empty. 
 
Note   We assume demand rate at each node is 
constant. Although this assumption is justified 
for retailers, it may seem to be unrealistic 
especially for W type of nodes. However, we 
assume the demand at each retailer shifts to the 
central warehouse, immediately. Therefore, the 
demand for each node of W type is also assumed 
to be constant. On the other hand, since the 
number of retailers is usually very large, the 
inventory cost can be approximated with the cost 
function of a system with continuous demand, 
see Muckstadt and Roundy [5]. 
 
Nested and Non-Nested Policies   A policy 
is called nested if T(i) ≥  T(j), where i precedes 
j in the graph. By our notation, with the 
existence of nested relation between two 
successive nodes, they are connected by a 
directed arc. In other words, if no arc connects 
nodes, then nested relation does not hold at all 
and each node is independent of the rest of the 
system and can be optimized independently. 
However, since we assume replenishment to 
retailers includes several items jointly and 
power-of-two policy also holds, then at least 
nested property holds between R and J nodes. 
Some nested relations may also exist, due to 
technological or other restrictions. 
     Considering this concept and notation, the set of 
arcs, A(G) ,  represents the nested relations in the 
problem. Therefore, for any arc of the graph, the 
following relation holds. 

 
 
 
W nodes   a   b   c 
 
 
 
 
R nodes                 d         e       f  g h                i          j k  l          
 
 
 
J nodes    m   n   o 

 
 

Figure 1. A typical Distribution System with three items and three retailers. 
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Typical Constrained Models   Depending on 
the type of constraints, we define two constrained 
models. 
 
Model I 
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where, gn = (hn.dn)/2. In fact, gn represents the holding 
cost of one unit of item per period in node n. B 
denotes the base planning period. 
     It is obvious from the model that all functional 
constraints of (1) are linear and the objective 
function is convex as well as separable. 
 
Model II   In this model, Constraints 1 are replaced 
by the following constraints. 
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Constraints   Inequalities 1 or 4 represent 
functional constraints, (2) indicates nestedness 
relation while power-of-two constraints are 
represented by (3). In the remaining part of 
this paper by constraints, we mean functional 
constraints of (1) or (4) only and not nested of 
(2) or power-of-two of (3) constraints. 
     Many real-world restriction can be expressed 
by either constraints (1) or (4) of models I or II, 
such as the maximum allowable amount of 
inventory (capital tied up with stocks) or the 
maximum number of orders from outside are of 
special importance. The restriction for capital 
tied up with stocks can be applied either for the 
total system or for each retailer. The former case 
occurs when the inventory system is an integrated 
one and operated by a single organization. In the 

latter case, retailers are independent, such as in 
a supply chain system, in which retailers are 
restricted by a maximum amount they can 
invest for their stocks. The following examples 
fit in either model I, or model II. 
 
Example 1. Restriction on the Average 
Investment in Inventory   Suppose the 
policy is to keep the average amount of total 
inventory under a certain amount of B. This 
means the following constraint has to be 
satisfied. 
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where, Cj is the unit price and Qj is the ordering 
size of node j. Since Qj = dj T(j) and gj = (hjdj) /2 
and also by considering the fact that Cj/hj is the 
same for every j, then the above constraint changes 
to: 
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where, b=B(hj/Cj). 
     In this example, H= {1} and  ajh=gj  for j=1,.N. 
If Cj/hj is not the same for every j, then jjh ga ≠ , 
and the method by Jackson et.al.[1] is not applicable, 
any more. 
 
Example 2. Distribution System With Restricted 
Average Inventory for Retailers   Suppose the 
average amount of inventory for each retailer is 
restricted. Then, similar to example 1, for each 
retailer, a constraint such as (5) holds. In other 
words, we have, 
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Example 3. Distribution System With Restricted 
Number of Orders From Outside   In this 
system, the number of orders for item j is 1/T(j). 
Thus, the associated constraint with this assumption is 
as follows. 
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where, W is the set of  nodes in central warehouse 
and n is the maximum number of allowable orders. 
     This is a model of type II. To solve this model, 
we substitute 1/T(j) with T'(j) as mentioned before, 
and apply the proposed algorithm. 
 
 

3. FRAMEWORK OF THE METHOD 
 

In this section, we first present the main steps of 
the proposed method for Model I. To solve this 
problem, power-of-two constraints of (3) are relaxed 
and then a two-levels algorithm is applied, as 
follows: 
 
Level 1. The functional constraints of (1) are 
relaxed and then the optimal solution is obtained, 
by using the method developed by Modarres and 
Taimury [4].  
 
Level 2. The optimal solution of Model I is 
obtained by applying separable programming. In 
this level, upper and lower bounds of variables are 
determined by using the solution obtained in the 
first level. 
     It is necessary to explain why we do not apply 
separable programming directly to obtain the 
solution and go through a two levels algorithm. In 
separable programming, each variable is substituted 
with some bounded variables in order to linearize 
the functions. The number of substituted variables 
depends on the domain of the original variable. 
Thus, it is vital to shorten that domain. On the other 
hand, determining a reasonable upper and lower 
bound for variables is not an easy task. In other 
words, if the variation range of a variable is not 
known, then the number of substituted new 
variables increases indefinitely, or at least it will be 
so large that makes it out of control. 
     In our proposed method, the results of level 1 of 
the algorithm as well as some other technical 
properties are used to shorten the variation range 
and to decrease the number of new variables, and 
consequently the size of the linear problem. 
     After the optimal reorder intervals, T*(n), 
n∈N(G), corresponding to the problem with relaxed 

constraints of power-of-two is determined, then 
each reorder interval is changed into 2l B, where, l 
is the smallest integer such that the following 
relation for each n∈N(G), holds. 
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One should note that any model that includes 
power-of-two constraints is quite complicated to be 
solved by standard integer programming techniques. 
For more detail, the reader is referred to Maxwell 
and Muckstadt [3]. 
 
Transforming  Model II into Model I   To 
solve model II, in the first level and after relaxing 
constraints (4), T(n) is substituted with 1/T’(n).This 
transforms it into Model I, which enables us to use 
the same procedure as that model. In the second level, 
the optimal solution is used in model II directly, since 
constraint (4) is appropriate for applying separable 
programming. Therefore, in the remaining part of this 
paper we concentrate on how to solve Model I. 
 
 

4. LEVEL 1 - SOLUTION PROCEDURE 
 

According to the method developed by Muckstadt 
and Roundy [5] and also by Modarres and Taimury 
[4], in any solution (including optimal) nodes are 
divided into some sets called "clusters". 
 
Definition 1 
a) A cluster is a set of nodes with equal inter-arrival 
or inter-shipment time. If s is a cluster, then inter-
shipment of all nodes of this cluster is T(s). 
b) In any solution, the clusters of a constraint are 
defined as the set of clusters containing at least one 
node of that constraint. 
On the basis of definition 1, for any particular 
solution, the following notation is introduced.  
 
C:  set of clusters;  
Ch :       set of clusters of constraint h ∈ H;  
H(s): set of constraint containing at least one 
node of s ∈ C; 
A(s,h): sum of consumption coefficients of the 
nodes of cluster s in constraint h i.e. 
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Lemma 1. Suppose s and s' are two clusters in the 
optimal solution and T(s') < T(s). Then, the direction 
of any arc connecting a node of s to a node of s' is 
always from s to s'. 
 
Proof:   If not, then it contradicts the definition of arcs 
in our system. 
 
Marginal Costs 

Definition 2. Let T be the inter-shipment of all 
nodes of cluster s. Then, the marginal cost of this 
cluster called MT(s), is defined to be the derivative 
of its cost with respect to T(s). Therefore, 
 

)s(T
)s(S)s(G)s(M 2T −=  (7) 

 
Marginal cost represents the incremental rate of 
cost with respect to increasing inter-shipment of 
that cluster. 
 
Optimal Inter-Shipment of Unconstrained 
Problems   If no node of cluster s belongs to any 
constraint, then, the minimum value of this convex 
function occurs at MT (s) = 0. In other words, the 
optimal inter-shipment for this cluster is as follows: 
 

)s(G
)s(S)s( =τ  (8) 

 
Definition 3.   We define relative marginal cost 
of cluster s with respect to a constraint h, denoted 
by mT(s, h) as follows. 
 

)h,s(A
)s(M)h,s(m T

T =  

where, T is the inter shipment of this cluster. 
 
Theorem 1.   If no cluster of h ∈  H has any node 
in other constraints, then the optimal relative 
marginal cost of every cluster of this constraint is 
the same. 
 
Proof:   For clusters s ∈  C_h and s' ∈  Ch, let mT 
(s,h) < mT (s',h ). Then, increase T(s) by ∆T and 

decrease T(s') by 
)h,s(A
)h,s(AT

′
∆ . Clearly, constraint h 

is still satisfied but the total cost decreases. Thus, s 
and s' are not part of an optimal solution. 
 
Definition 4.   Relative Importance of cluster s in 
relation with constraint h is defined as follows: 
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Definition 5.   For each constraint say h ∈  H, 
we define overcapacity coefficient denoted by αh as 
follows: 
 

∑
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By this definition, the constraint is satisfied if the 
available resource is increased from bh to αh bh. 
Clearly, for any active constraint, αh  > 1. 
 
Theorem 2.   If no cluster of h ∈  H has any node 
in other constraints and for every node in N(h) the 
objective function has the form of Si /T(i) + gi T(i), 
then the value of the following term is constant for 
every cluster of this constraint. 
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Proof:   From theorem 1 and also by replacing MT 
(s) from (7) and also considering (8), the result is 
obtained. 
 
Corollary 1.   In theorem 2, if the relative 
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importance of all clusters of constraint h is the 
same, then the optimal solution is proportional 
with the optimal solution obtained from the first 
level. In other words, 
 

h

)s()s(*T
α
τ=  (11) 

 
Proof:   From (10). 
 
Note:  The result of Corollary 1 is a generalization 
of the main result of Maxwell and Muckstadt [3] 
for single constraint. They reached the same result 
by applying Lagrangian relaxation technique. 
 
Example 4.   Consider the example presented in 
Jackson et al. [2], illustrated by figure 1. Holding 
and set up costs associated with nodes are shown 
in the Table 1. We assume nested policies hold 

in this example, for every successive pair of 
nodes. However, the following constraint also has 
to be considered. 
 
8T(a) + T(b) + T (c) + T (d) + 3 T (e) + 5T(f) + 
T(g) + T(h) + T(i) +2T (j) +6  T (k) + T (l) ≤  25. 
 
Solution:   The optimal solution for this problem, 
τ(s), after relaxing its single constraint, is obtained 
by applying the method proposed by Modarres and 
Taimury[4] and is shown in the following table. On 
the other hand, since the consumption coefficient for 
each variable is equal to the corresponding gn, 
then, the relative importance of all clusters is the 
same. Therefore, the result of corollary 1 can be 
applied. By our definition, α1 = (27.9)/(25). The 
optimal inter-shipment for each cluster, T*(s), is 
also shown in the Table 2. 
 

Example 5.   Consider example 4, again. 
However, this time consider the following constraints. 
 
T(d) + 3T(e) + 5T(f) ≤  3, 
T(g) + T(h) + T(i) ≤  4, 
2T(j) + 6T(k) + T(l) ≤  4. 
 
As can be seen from Table 1, the clusters of the 3rd 
constraint, or nodes (j, k, l, o) are not in any other 
constraints. Furthermore, rs3 =1 for all clusters of this 
constraint. Therefore, in this case, T*(j) = τ (j)/ α1, 
where α3 = 1.65. Thus, T*(j) = 0.4 , T*(k) = 0.35, T*(l) 
= 1.05, T*(o) = 0.35. 
 
 

5. LEVEL II - FOUNDATION AND 
PROCEDURE 

 
In this level, the optimal solution is determined by 
separable programming, starting with the solution 
obtained from level I. To do that, we linearize the 
objective function, which is a separable function. 

TABLE 1. Set Up and Holding Cost of the Nodes of Example 1. 
 

Nodes a b c d e f g h i j k l m n o 
Sn 1 4 3 2 1 1 1 1 2 1 1 3 2 5 1 
gn 8 1 1 1 3 5 1 1 1 2 6 1 - - - 

 

TABLE 2. Optimal Inter-Shipment of Clusters. 
 

Cluster Nodes τ(s) T*(s) 

1 (k), (o) 

3
3

 
0.517 

2 (e), (f), 
(m), (j) 

2
2

 
0.634 

3 (a), (d), 
(g), (n) 

9.0  0.85 

4 (h) 1 0.896 

5 (i) 2  1.267 

6 (c), (l) 3  1.552 

7 (b) 2 1.792 
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On the other hand, since the constraints are also 
linear functions, then the resulting model is a linear 
programming problem and can be solved by 
simplex method with bounded variables. In fact, 
each variable is replaced with some new variables 
within an upper and a lower bound. The number of 
substituted variables for each original variable 
depends on the variation range of that variable and 
also on the desired accuracy of the solution. 
Naturally, this number can be increased tremendously. 
To avoid facing with a huge problem, two points 
should be considered. 

a. To have fewer variables, it is necessary to 
shorten the variation range of variables as much as 
possible. We recall that in a convex separable 
programming, when the optimal solution does not 
lie on the border of a specified variation range, 
then that solution is still optimal even if the range 
is enlarged. However, if the solution lies on the 
border, then enlarging the range may lead to a 
better solution. Therefore, finding an appropriate 
initial range for each variable is an important task 
in this method. 

b. Since the accuracy of the solution depends on the 
number of substituted variables, first we obtain an 
optimal solution with less accuracy and then 
increase the number of these variables in the 
neighborhood of the optimal solution for fine-
tuning. 
     As mentioned before, to determine a reasonable 
variation range for each variable, we obtain the 
optimal solution and identify the clusters, after 
relaxing the functional constraints. 
 
Notation:   Let )h,s(T  and )h,s(T  be the lower 
and upper bound of T*(s), respectively, if there is 
only one constraint, h ∈  H(s). 
     The following theorem is a guideline for 
selecting reasonable upper and lower bounds for 
variables. 
 
Theorem 3.   Consider a constraint h ∈  H, such 
that none of its clusters belongs to any other 
constraints, then the variation range of inter-shipment 
of clusters of this constraint is obtained as follows. 
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Similarly, r(h) = rvh results from (10) and also from 
the definition of cluster v. On the other hand, from 
(10), 
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Now, by substituting rvh with r(h) and considering 

)v(*T
)v(

h
τ≤α in (14) the proof for (13) is complete. 

The proof for (12) is similar. 
 
Variation Range of a Cluster Inter-Shipment   
Let, Tu(s) and Tl(s) denote the upper and lower 
bound of T*(s), respectively, when all constraints 
containing at least one node of s are considered. 
Then, 
 

)}s(Hh),h,s(Tmin{)s(Tl ∈=  
 
and, 
 

)}}s(Hh),h,s(Tmax{),s(min{)s(Tu ∈τ=  
 
One should note that Tu(s) cannot be higher than 
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τ(s), (the unconstrained optimal solution), therefore, 
τ(s) is considered as the ceiling for the upper 
bound of this variable, in (16). 
 
Enlarging Variation Range of Variables   For 
a cluster of s∈C, we assign a lower bound from 
(15) and an upper bound from (16). However, 
enlarging this range may results in a better 
solution if the optimal solution lies outside of 
this range. To make sure the variation range is 
large enough, we change the upper or lower 
bound of a variable if its value is exactly equal 
to either limits of the range. If the value of a 
variable is equal to the upper (or lower) limit of 
the border, then we set τ(.) (or 0) as the new 
upper (or lower) bound for this variable. 
     It is necessary to mention that only in very 
few cases out of many we examined, enlarging 
the variation range was required. 
 
 

6. THE ALGORITHM 
 

In this section, we summarize the results of the 
preceding section into an algorithm. Set δ as the 
measure of accuracy of each variable of the 
optimal solution. 
 
Step 1.   Relax functional as well as power-of-two 
constraints and apply the method proposed by 
Modarres and Taimary[4] to solve the problem. 
However, do not merge the clusters that have equal 
inter-shipments. Identify all clusters s∈C as well 
as H(s). (For model II, in this step the original 
problem is solved and then T(n) is substituted by 
1/T'(n)  from Step 2 on.) 
 
Step 2.   For each constraint h ∈  H, determine αh, 
R(h)  and  r(h) independently. If αh ≤ 1 for every h 
∈  H, then the constraints are satisfied and the 
solution is optimal. Go to Step 9. 
 
Step 3.   If there exits only one constraint, H= {h}, 
and all C is the same for every j ∈  N, then we 
have, 
 

h

)j()j(*T
α
τ=  

Go to Step 9. 
 
Step 4.   If no cluster of a constraint h ∈  H, 
belongs to any other constraint and also αh is the 
same for every cluster of this constraint, then 
divide τ(s) by αh for all clusters of this constraint.  
Delete all clusters s ∈  C h, from C. 
 
Step 5.   For each cluster s∈C, and for every 
constraint h ∈  H, determine upper and lower 
bounds, )h,s(T  and )h,s(T from (12) and (13), 
respectively. Then, calculate Tl(s) and Tu(s) 
from (15) and (16), respectively. If a cluster 
does not belong to any constraint, then the 
lower bound is set to the minimum of the lower 
bounds of all clusters that proceed this one. 
 
Step 6.   Replace each T(s) with some substituted 
variable within th.e variation range of that cluster 
such that the length of interval between two 
successive breaking points (B.P.) are within δ and 
10δ. Then, solve the resulting model by simplex 
method. (It is necessary to mention that although 
the breaking points of all nodes of a cluster are the 
same, the slope of substituted variables for different 
nodes of each cluster is not the same). 
 
Step 7.   For each node j∈  N, increase the 
number of variables in the neighborhood of the 
optimal value such that the length of each 
interval is at most δ. If no optimal value is 
exactly equal to either limits of that node, then 
go to Step 9. 
 
Step 8.   If T(j) is equal to the upper bound of this 
variable, then set Tu(j) equal to τ(j) and go back to 
Step 6. If it is equal to the lower bound of this 
variable then set Tl(j) equal to 0 and go back to 
Step 6. 
 
Step 9. Apply power-of-two relation of (6). 
 
Note: It is interesting to mention that although 
the optimal value of some nodes at the end of 
Step 6 is equal to either limit of that node, but 
after fine-tuning up in Step 7 it lies inside of 
the variation and implementing Step 8 will not 
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be required. 
 
Example 6.   Consider example 4 again, but this 
time assume the amount of inventory for each 
retailers is restricted and represented by the following 
constraint. 
 

T(d) + T(e) + T(f) ≤  2 

2T(g) + T(h) + T(i) ≤  3.5, 

T(j) + T(k) + 2T(l) ≤  4. 
 
Since the coefficients of the constraints are not 
proportional to corresponding gj or Sj, then the 
problem cannot be solved by the method developed 
by Jackson et al. [2]. To find the optimal solution, 
we follow our proposed algorithm, with δ =0.01. In 

Step 1, by relaxing the functional constraints the 
optimal solution (clusters and inter-shipments) is 
obtained which is the same as in example 1, in 
Table 2. H(s) is also determined in this step for 
each cluster s∈C. In Step 2, 
 
α1 =1.181,   α1 =1.232,   α3 =1.187,   r(1) =4,   
R(1)=10,   r(2) =1,   R(2)=5,   r(3) =5,   R(1)=6. 
 
Step 3 and Step 4 are not applicable. In Step 5, we 
first calculate )h,s(T  and )h,s(T  from (12) and 
(13) respectively and then Tl(s) and Tu(s) from 
(15) and (16). Only cluster # 4 which consists of 
nodes {a, d, g, n} belongs to more than one 
constraint. The other clusters have only one lower 
and upper bounds. Clusters # 8 and 9, i.e. nodes b, 
and c do not belong to any constraint and no other 

TABLE 3. Variation Range of the Clusters in Example 6. 
 

Cluster Nodes τ(s) H(s) rsh )h,s(T  )h,s(T  Tl(s) Tu(s) L.I N.I. 

1 K, o 
3
3

 3 0.6 0.486 0.568 0.48 0.57 0.03 3 

2 e, f, m 
3
3

 1 4 0.501 0.599 0.5 0.6 0.025 4 

3 J 
3
3

 3 2 0.474 0.673 0.47 0.67 0.05 4 

4 a, d, g, n 9.0  
1 
2 

4 
1 

0.803 
0.77 

0.881 
0.903 0.77 0.91 0.035 4 

5 H 1 2 1 0.528 0.812 0.53 0.81 0.045 4 

6 I 2  2 1 0.747 1.148 0.75 1.15 0.1 4 

7 L 3  3 0.5 0.712 1.459 0.7 1.5 0.1 8 

8 C 3  - - 3  3  3  3  - - 

9 B 2 - - 2 2 2 2 - - 
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clusters proceed. Thus, the constraints will not 
change the inter-shipment of these nodes. Now 
each variable is substituted with some new 
variable. Thus, in Step 6, we are dealing with each 
node individually, and not with the clusters. In 
Table 3, other than Tl(s), the lower limit of the 
variation range of every node of cluster s, "L.I", 
the length of each interval, (the distance 
between two successive breaking points), as 
well as the number of intervals in the variation 
range, "N. I", is shown. 
     Finally, in the objective function, the slope 
of all variables is calculated within their 
corresponding intervals. For example, T(a) is 
replaced with T(a1) + T(a2) + T(a3) + T(a4) 
and the objective function associated with this 
variable is changed into, 
 
6.39 T(a1) + 6.52 T(a2) + 6.64 T(a3) + 6.74 T(a4), 
 
where the coefficients of the objective function 
is the slope of the linearized function between 
two successive breaking points. Then, we solve 
this problem by separable programming. T(j), 
the inter-shipment value of node j obtained at 
the end of Step 6 is shown in table 4. Then, in 
Step 7, the problem is solved again by making 
the intervals between two successive breaking 
points, in the neighborhood of the optimal 
value, as small as δ = 0.01. The result of this 
stage for node j is T*(j) and is shown in table 3. 
Since no optimal value lies on the border of the 
variation range, then step 8 is not required to 
apply. 
     The total cost of the problem by relaxing the 
constraints is 55.8. However, the objective 

function of the constrained problem, which is 
obtained by separable programming, is 56.465 
and 56.452 at the end of Steps 6 and 7, 
respectively. 
 
 

7. CONCLUSION 
 
In this research, a method was developed to 
obtain an optimal solution for an inventory 
system of multi-echelon and multi-item with 
constraints. The extension of this model is to 
incorporate fuzzy information in the model in 
order to make it more realistic. It is also 
possible to consider the existence of stochastic 
parameters or constraints in the model. 
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