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Abstract   A functional relationship between two variables, applied mass to a weighing platform 
and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a 
linear function. Linear relationships and correlation rates are obtained which quantitatively verify that 
the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through 
recalling the trained Artificial Neural Network model on a set of waveforms resulting from applied 
masses over the operating range of the weighing platform. In this work the Least-Squares Fit (LSF) 
method for straight line and correlation rate R between the applied and estimated masses are used to 
investigate the accuracy of the estimated masses. The slope of the linear functions together with 
correlation rates R are computed for both simulation and experimental data. The numerical results 
confirm the correctness of neural network technique in estimating the applied mass m(t).  
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 MLPكميت متغير، جرم اعمال شده به ترازو و جرم تخميني بوسيله مدل شبكه عصبي                رابطه بين دو   چكيده    
 بطور كمي نشانگر عملكرد رضايت بخش مدل        Rروابط خطي و ميزان همبستگي      . با تابع خطي تقريبن شده اند     

سخ حاصله از اعمال جرم شبكه عصبي آموزش ديده ، بر اساس پا .  در تخمين جرم مي باشد     MLPشبكه عصبي   
بر روي سكوي ترازو در محدوده ظرفيت ديناميكي آن و در حالت گذراي پاسخ، مقدار جرم تخميني را                          

، دقت  Rو ميزان همبستگي    ) LSF(در اين مقاله تابع خطي ناشي از نظريه حداقل مربعات             . مشخص مي كند  
هاي شبيه سازي و تجربي شيب توابع خطي و         در بخش   . مقادير وزن هاي تخمين زده شده را بررسي مي نمايد         

 ها درستي استفاده از تكنيك      Rنتايج حاصله از شيب توابع خطي و مقادير          . مقادير همبستگي محاسبه شده اند    
 .شبكه عصبي را در تخمين جرم تاييد مي كنند

1. INTRODUCTION 

The application of an object to weighing platform 
results in a transient output waveform that can take 
a considerable time to settle sufficiently to accurately 
indicate the weight of the object. Accurate and fast 
weighing is a widespread requirement in industrial 
and other applications [1-4]. 
     Various approaches have been proposed to improve 
the speed and accuracy of weighing platforms. These 
include adaptive filtering [5], dynamic weight under 
non-zero initial conditions [6], non-linear regression 
method [7,8], and dynamic weight estimation using 
an Artificial Neural Network [9]. The Multi-Layer 
Perceptron (MLP) Artificial Neural Network (ANN) 
is used with back propagation training for the analysis 

of time series data to estimate the applied mass 
[10–13].  
     In this paper use of the Least-Squares Fit (LSF) 
method for a straight line is used for verification 
purposes between a pair of applied and estimated 
ANN output masses. For justification of the straight 
line fitting approach, a linear correlation rate is 
presented [14,15].  
     The Least-Squares Fit (LSF) and the correlation 
Rate (R) of simulated results show the potential 
low sensitivity of the ANN method to simulated 
measurement noise. Results for LSF and correlation 
rate R on experimental data that are obtained from 
an actual industrial weighing platform, confirm the 
achievement of accurate mass prediction even 
when several modes of vibration are present. 
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2. WEIGHING SYSTEM MODEL 

An ideal weighing platform can be modelled by a 
mass-spring-damping structure shown in Figure 1. 
It has a typical underdamped ideal step response as 
illustrated in Figure 2. It is governed by the 
solution of the following second order differential 
equation; 

( ) m(t)gKy(t)(t)yC(t)ympm(t) =+′+′′+  (1) 

where y(t), is the deflection signal obtained from 
the strain gauge on the weighing machine; m(t) 
and mp are the applied mass and the platform mass 
respectively; C is the damping factor; K is the 
spring constant and g is the gravitational constant. 
     For a general applied mass function m(t), this is 
a non-linear differential equation. However, for 
commonly encountered situations m(t) is a step 
function, which is assumed here. In this case the 
differential Equation 1 is linear, for which the 
explicit solution is modelled by a constant term 
plus a transient term which can be underdamped 
(u), critically damped (c), or over damped 
(o).Thus, 

 ,t)}0(q0,t)  or  Fc(qc,t),Fu(qu{F0qy(t) +=  

 (2) 

and the transient terms for underdamped, 
critically damped and overdamped cases are, 

)4uqt3u(qsin2uq
t1uq

e,t)u(quF +
−

= , 

t)3cq2c(q
t1cq

e,t)c(qcF +
−

= , and 

4oq
t3oq

e2oq
t1oq

e,t)o(qoF
−

+
−

= , respectively, 

where the various q parameters are related to the 
initial platform displacement, b0, initial velocity b1, 
the platform parameters K, C, mp and the applied 
mass m(t) by the expressions given in the Appendix I, 
see [7,8]. These expressions have been used 
to generate data in the simulation study that is 
described below. 
     Sampled data signals are assumed for which 
t=nT, where T is the sample interval. Thus, y(t) is 
written as y(n). 

3. ARTIFICIAL NEURAL NETWORK  

An input-output model describes a dynamic system 
based on input and output data. An input-output 
model assumes that the new system output can be 
predicted by the past inputs of the system. Further, 
if the system is supposed to be deterministic, time 
invariant, multiple-input-single-output, the input-
output model becomes: 

m(t)

K C

mp

 
Figure 1. A model of weighing paltform. 
 
 
 
 

Sample, n
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Figure 2. A typical step response of weighing platform. 
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))1Ny(n,),1y(n(y(n),fw(n) +−−= L   (3) 

where y(n), w(n) represent the input-output pair of 
the system at time n, positive integer N-1 is the 
number of past input samples (called the order of 
the system) and f is a static non-linear function 
which maps the past inputs to a new output as 
shown in Figure 3. The diagram illustrated in 
Figure 3, where the Artificial Neural Network 
model is defined by function f and symbol z-1 
denotes the time delay between two successive 
samples, can implement Equation 3 [9-12].  
     Figure 4 indicates a Multi-Layer Perceptron 
(MLP) Artificial Neural Network (ANN) block 
diagram with back propagation training or learning 
method. In back propagation, training is performed 
by forward and backward operations; in the 
forward operation the network produces its actual 
outputs for a certain input pattern using the current 
connection coefficients. Subsequently, the backward 
operation is carried out to alter the coefficients to 
decrease the mean square error between the actual 
and desired outputs see [10-13] for example. Steps 
of the algorithm that are involved in constructing 
and training a MLP network are given in 
Appendix II. 

4. LEAST-SQUARES FIT TO A STRAIGHT 
LINE 

In this work the Least-Squares Fit (LSF) method 
for straight line is used for verification purposes 
between a pair of applied mass m(t) and estimated 
output mass w(n). The functional relationship 
between two variables, desired applied mass m(t) 
and actual estimated mass w(n) can be approximated 
by the linear function : 

bm(t)aw(n) +=   (4) 

     There is no unique method for optimising the 
coefficients in Equation 4, a and b which is valid 
for all cases. The method of maximum likelihood 
consists of making the assumption that the 
observed set of measurements is more likely to 
have come from the actual parent distribution of 

Equation 4 than from any other similar distribution 
with different coefficients [14]. For any pair of applied 
and estimated masses the mathematical expressions 
to the coefficients a and b are given in Appendix III. 
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Figure 3. Input-output Artificial Neural Network Architecture. 
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Figure 4. Artificial Neural Network Back propagation training 
model. 
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5. LINEAR CORRELATION RATE 

For justification of the straight line fitting procedure 
described in the previous section a linear correlation 
rate R is defined [14], which indicates the rate of 
correlation between two variable quantities; i.e. 
object weight m(t) and estimated mass w(n). The 
analytical solution developed for the coefficient b, 
which represents the slope of the fitted line given 
in Appendix III, is, 

( )∑ ∑ ∑−= iyixiyixM
∆
1b   (5) 

Since the linear interrelation between the variables 
m(t), w(n) is being discussed, the data corresponds 
to a straight line, it has the form: 

)n(wba)t(m ′+′=  (6) 

The analytical solution for the slope b′  is similar 
to that for b in Appendix III, hence, 

( )∑ ∑−

∑ ∑ ∑−
=′

2
iy2

iyM
iyixiyixM

b  (7) 

If there is complete correlation between m(t) and 
w(n), then the existence relationship between the 
coefficients a, b and a′ , b′  is: 

)m(t
b
1

b
aw(n)=-

′
+

′
′

 (8) 

bm(t)aw(n) +=  (9) 

and equate slopes coefficients in Equation 8 and 9 
then, 

b
1b

′
=  (10) 

Here the experimental linear correlation coefficient 
is defined as: 

bbR ′=  (11) 

Referring to Equations 10 and 11, the absolute 
magnitude of R ranges from 1 to 0 when there is 
no complete correlation between the desired and 
actual values. The application of the Least-Squares 
Fit (LSF) to a straight line and linear correlation 
rate R are found to be suitable criteria in this work 
for justification purposes between the desired and 
actual output values. 

6. SIMULATION PERFORMANCE 

The Artificial Neural Network architecture shown 
in Figure 3 is used for simulation purposes. ANN 
was trained to emulate the dynamic behaviour of 
the weighing system, so that output w(n) is an 
estimate of the applied mass m(t). Suitable 
specifications for the ANN model as illustrated in 
Figure 3 were found to be, 
• Number of input samples y(n), ... y(n-N+1), is 

taken as N=200. 
• Number of output samples w(n), is 1. 
• Number of layers is 3, an input layer, a hidden 

layer and an output layer. 
• Total number of neurones is 301: 200 

neurones in the input layer, 100 neurones in 
the hidden layer, and single neurones in the 
output layer. 

• Momentum rate is, 0.95.   
• Learning rate is, 0.50. 
     A set of 100 patterns is used for ANN training 
and recalling. Each input pattern is composed of 
the first 200 samples, y(n), ..., y(n-199), following 
the application of the mass to the platform. The 
input patterns for training and recalling were 
generated by C++ programming language to 
simulate the Equation 2. The weighing platform 
parameters in all simulations are K=1000 N/mm, 
C=50 Ns/mm, mp=0 kg, g=10 m/ s2 , sampling 

interval st =0.02 ms, initial platform displacement 
b0 =0 mm, and initial velocity b1 =0 mm/s. Applied 
masses were uniformly chosen to cover the range 
m(t)=1,2, ..., 100 kg. For the platform parameters 
given, only the underdamped expression t),u(quF  

in Equation 2 was required. 
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     The Artificial Neural Network model in Figure 3 
is trained by applying the noise free patterns, 
where the training procedure is as explained in the 
previous section. The simulation performance of 
the trained ANN is illustrated in Figure 5. Where 
in Figure 5 the square root of R2 assigns correlation 
rate of R=1 and linear relationship between applied 
mass m(t) and estimated output mass w(n) denotes 
a slope of 1.0004. For conclusion aims the numerical 
results together with rms error and relative average 
error are given in Table 1. 
     For recalled Artificial Neural Network purposes, 

the seen and unseen input patterns were contaminated 
by uniformly distributed random simulated 
measurement noise with an amplitude of 2% of the 
steady state mass. Then the patterns are applied to 
the aforementioned trained ANN to obtain the 
estimated output mass, w(n). The simulated 
recalling results for the seen and unseen input 
patterns ranging from 5 -100 in a step of 5 kg are 
shown in Figures 6 and 7 respectively. Table 1 
provides the overall rms and relative average errors 
for training and recalling performances. The effect of 
the contaminated noise with amplitude of 2%, results 

TABLE 1. Simulated Training and Recalling Performances. 
 
 

Patterns RMS Error 
(kg) 

Relative 
Average 

Error 

Correlation 
Rate, R 

Training 0.02327  0.040% 1.0000 
Recalling (seen with 2% noise) 0.02327 0.040% 0.99989 

Recalling (unseen with 2% noise) 0.36673 0.66% 0.99989 
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Figure 5. Simulated recalling results of noise free seen 
patterns. 
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Figure 6. Simulated recalling results of seen patterns with 2% 
random noise. 
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estimated seen masses, see Table 1. Manipulations 
Figures 5, 6 and 7 give the magnitudes for the rms 
error, relative average error and correlation rate R, 
as tabulated in Table 1. 

7. EXPERIMENTAL PERFORMANCE 

In the present section training and recalling processes 
of the Artificial Neural Network are reported using 
experimental data, which were obtained from an 
industrial weighing platform. The weighing platform 
has dimensions of 55.50 cm, 50.50 cm, 16.50 cm for 
length, width and height, respectively with a 
nominal full scale taken to be about 100 kg. 

     An Artificial Neural Network was trained with 
experimental time series patterns. A typical 
weighing platform response for an applied mass, 
m(t)=40 kg is shown in Figure (8), where the 
response is composed of two distinctly different 
regions, initial displacement and transient response 
region. For each of sequences of applied masses, 
200 samples were taken in the transient region 
immediately following the application of the mass 
to the platform with uniform sampling intervals of 
2 ms. Thus, the overall time to produce an 
estimated output for each applied mass is 400 ms. 
Here the sequence of applied masses was taken to 
be 5-80 kg in steps of 5 kg, except the masses used 
for recall purposes. The resulting performance of 

TABLE 2. Experimental Training and Recalling Performances. 
 
 

Patterns RMS Error (kg) Relative 
Average Error 

Correlation Rate, 
 R 

Training 0.04456 0.11% 0.99994 
Recalling 0.72436 1.86% 0.99894 

 

y = 1.0066x - 0.1637
R2 = 0.9998

0

20

40

60

80

100

120

0 20 40 60 80 100 120
Desired value x /kg

Ac
tu

al
 v

al
ue

 y

 
 
Figure 7. Simulated recalling results of unseen patterns with 
2% random noise. 
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Figure 8. Experimental weighing platform displacement for 
applied mass, m(t)=40 kg. 
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the trained ANN in a laboratory environmental for 
various masses is illustrated in Figure 9. Sources 
of noise may include signal interference and any 
higher modes of platform vibration. 
     At recalling process, the trained Artificial Neural 
Network is examined using unseen time series 
experimental patterns, which are not used at the 
training of the ANN. To conform to a more real use 
of a weighing platform the unseen masses, 10-60 
in step of 10 kg were applied less carefully than 
for the training data. That is the masses were 
dropped onto the platform from a height of 
typically 2 cm. The results of the recalling 
performance of the trained ANN for unseen 
masses is shown in Figure 10. Table 2 shows the 
overall errors for both the experimental training 
data and recalling data. However, the recall data 
errors as illustrated in Table 2, are higher because 
the masses were applied in a more realistic 
fashion. Even so, the errors are relatively small 
considering that the weights are estimated 
dynamically, long before the waveforms have 
settled to steady state. 

8. DISCUSSIONS AND FURTHER WORK 

Illustrations in Figures 5, 6, 7, 9 and 10, indicate 
the existence of linear relationships between actual 
and desired masses with slopes of 1.0004, 1.0004, 
1.0066, 0.9989 and 0.9814 respectively. The square 
roots of R 2 in Figures 5, 6, 7, 9 and 10 allocate 
correlation rates of 1.00000, 0.99989, 0.99989, 
0.99994 and 0.99894 for each performances 
respectively. These numerical results which indicate 
roughly unity magnitudes for both, slops and 
correlation rates, confirm the correctness of using 
neural network technique in estimating the applied 
mass m(t), with in the transient region as shown in 
Figure 8. 
     The constant terms -0.1637, 0.0035, 0.0152, -
0.0001 and 0.0053 in the linear equations in 
Figures 5, 6, 7, 9 and 10, are considered as a mean 
initial displacement of the weighing platform. To 
acquire a knowledge from the nature of the responses, 
a typical experimental fluctuation and initial 
displacement of the weighing machine to applied 
mass m(t)=40kg is shown in Figure 8. Obviously 
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Figure 9. Experimental ANN trained performance to environmental 
noisy seen patterns.  
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Figure 10. Experimental recalling performance to practical 
noisy unseen patterns. 
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the waveform in Figure 8 will be settled down to 
the steady state value, m(t)=40 kg. The constant 
terms -0.0001 and +0.0053 in Figures 9 and 10 
could be considered as initial system displacements 
respectively. This implies that if there is any variation 
during the training and recalling processes, this 
would cause an error in the overall recalling 
performance. However, in the cases of a systematic 
noise, constant environmental noise and multiple 
displacements, the constant term in the linear 
equation may have a significant benefit, for 
example to identify initial system displacement, which 
it would be considered as a future work. 
     Further more, pointing out to one of the famous 
features of the Artificial Neural Network, where 
during training, ANN is learning the characteristics 
of a defined system. Hence, any initial displacement 
caused by systematic or constant environment noise 
will not have any serious effect on the accuracy of 
the output response. This is because the measure 
of the error criteria is a deviation of the slopes 
from unity; see linear equations shown in Figures 
5, 6, 7, 9 and 10. Thus, the precision at the output 
response depends upon the accuracy of the training 
process rather than the initial system displacements. 

9. CONCLUSION 

The aim of the current work is solely to employ a 
Least-Squares Fit to a straight line together with 
correlation rate to investigate the accuracy of the 
application of an Artificial Neural Network technique 
to estimate an applied mass. This is achieved in a 
noisy environment while the weighing platform is 
still in the transient mode. Application of correlation 
between Artificial Neural Network based on dynamic 
weight estimation and applied mass, has been 
successfully carried out for both simulation and 
experimental time series data. The numerical results 
which roughly indicate unity magnitudes for both, 
slops and correlation rates, confirm the correctness 
of using Neural Network technique in estimating 
the applied mass m(t). 
     By concentrating on initial displacement in 
Figure 8, an interesting research topic rises for the 
discussion and further work that is to identify the 
initial system displacement, which is suggested to 
be considered as a future work. 
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11. APPENDICES 

I - Here the model parameters are defined for the 
weighing system platform constants K, C; the applied 
mass m(t), the platform mass mp, the initial 
platform displacement 0b  and initial velocity 1b . 
This is done for the case of underdamped (u), 
critically damped (c) and overdamped (o) respectively. 

Underdamped (u) Case 
mp)g/K(m(t)0q += , mp)0.5C/(m(t)1q += , 

2
2B2

1B2q += ,

2
1q1mp)K(m(t)d3q −−+=ω= ,

)2/B1(B1tan4q −= , 

where, 

0b0q1B −= , 3/q1q1B1b2B += , 

and dω  is the natural damped frequency. 

Critically Damped (c) Case 
mp)g/K(m(t)0q += , mp)0.5C/(m(t)1q += , 

0b0q2q −= , 1b2q1q3q −= . 

Overdamped (o) Case 
mp)g/K(m(t)0q += , 

dmp)0.5C/(m(t)1q ω++−= ,

d2
1b3)q0b0(q

2q
ω

+−
−= , 
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dmp)0.5C/(m(t)3q ω−+−= , 

d2
1b1)q0b0(q

4q
ω

+−
−= .  

II - The following steps are involved in constructing 
and training a MLP network. 

(a) Defining the structure of the network (the 
number of layers and the number of neurones in 
each layer); 

(b) Selecting the learning parameters (learning  
rate  and momentum rate); 

(c) Initialising the connection coefficients; 
(d) Selecting an input-output pair from the 
training examples set and presenting it to the 
network; 

(e) Calculating the output values of the 
neurones in the hidden and output layers; 

(f) Comparing the output values of the 
network with the desired output values and 
calculating the output errors; 

(g) Adjusting the connection coefficients of 
the network in order to decrease the output 
errors; 

(h) Repeating steps (d) to (g) until the error is 
acceptable or a predefined number of iterations 
is completed. 

III - For the clarification of the mathematical 
expressions, we assume that estimated mass, w(n) 
and applied mass, m(t) are xi  and y(xi) respectively. 
So, for any given desired value ix , the probability 

iP  for making the observed value iy , assuming a 

Gaussian distribution with a standard deviation 
σ i  for the observations of the actual value )x(y i  
is: 





















σ

−−
πσ

=
2

i

ii

i
i

)x(yy
2
1exp

2
1P  

The probability for making the set of M values of 
iy  is the product of these probabilities. Similarly, 

for any estimated values of the coefficients a and 
b, the probability that we should make the observed 

set of measurements is: 

ip)b,a(p Π=  

∏ ∑

















σ

∆
−















πσ
=

2

i

iy
2
1exp

2
1)b,a(p

ii

 

     Applying the method of maximum likelihood, 
the best estimation for a and b are those values 
that maximise the probability, )b,a(p . Hence, 
this can be achieved by maximising the sum in 
the exponential. Let us define χ 2  to indicate 
the sum: 

( )∑ 







−−

σ
≡χ 2

ii2
i

2 bxay1
 

The minimum value of the function χ 2 of 
Equation 8 is one, which yields a value of zero for 
both the partial derivatives with respect to each of 
the coefficients, 

0
a

2 =χ
∂
∂

 0
b

2 =χ
∂
∂

 

     The solution of the concluding equations with 
respect to the coefficient a and b is, 

( )∑ ∑∑∑ −
∆

= iiiii yxxyx1a  

( )∑ ∑ ∑−
∆

= iiii yxyxM1b  

( )2

i
2

i xxM ∑ ∑−=∆  
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