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Abstract This paper proposes a new approach for caibration of dead reckoning process. Using the
well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable
caibration of dead reckoning. Besides, existing calibration methods usually require explicit
measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long
range finder sensors such as ultrasonic or laser range finders for automatic calibration. Manua
measurement is necessary in the case of the robots that are not equipped with long-range detectors or
such smart encoder trailer. Our proposed approach uses an environment map that is created by fusion
of proximity data, in order to calibrate the odometry error automatically. In the new approach, the
systematic part of the error is adaptively estimated and compensated by an efficient and incremental
maximum likelihood agorithm. Actualy, environment map data are fused with the odometry and
current sensory data in order to acquire the maximum likelihood estimation. The advantages of the
proposed approach are demonstrated in some experiments with Khepera robot. It is shown that the
amount of pose estimation error is reduced by a percentage of more than 80%.

Key Words Sensor Data Fusion, Pose Estimation, Dead Reckoning Calibration, Occupancy Grids,
Maximum Likelihood, Map Building
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1. INTRODUCTION

Almost, sufficient knowledge about the robot's
pose (consisting of its position and the direction
angle of its motion) is essential in every mobile
robotic application. Usually the wheels of the robot
are equipped with some motion encoders and a
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pose estimation is achieved by the data, provided
by these encoders. But this estimation requires
some calibration because there are several sources
of errors in the robot's pose, estimated by wheel
encoders. For example, wear and tear can change
the diameter of wheels or loosen belts may cause
odometry error and so on. Such effects can introduce
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significant systematic errors into the robot's
odometry. The requirement for such calibration is
as old as the field of robotics itself and the
literature of methods for calibrating robots (for
example see [1-5]). Well-nigh, al of the exiting
calibration methods have certain disadvantages.
Many existing calibration methods call for human
intercession i.e. in order to calibrate a mobile
robot's odometry, a person (or some external agent
or device) has to measure the exact position and
direction angle of the robot, and deduce the physical
modd from these measurements. Because of two
reasons, such approaches are unsuitable. Firstly a
considerable amount of endeavor is involved in
calibration process of the robot that normally cuts
it off from its continuous operation. Secondly and
more importantly, the physical characteristics of
the mobile robot and the environment around it
changes. For robot arms, robotic platforms and
many other stationary devices, the environment is
mainly static. In addition, the odometry error of the
robot arm joint is strictly internal to the joint and is
not deviated due to most changes of the environment.

On the other side, a mobile robot's odometry
depends on the kind of surface that the robot is
traveling on it. If the surface varies (e.g. from
carpet to tile), then the calibration parameters
change. Therefore, calibration process for such a
robot, must be adaptive and in addition to pose
estimation by dead-reckoning, mobile robot must
fuse odometry data with a feedback from the
environment. Normdly, such a feedback is generated
by sensory data. Existence of arich chronicle of
using multi sensor data fusion methods in mobile
robotic applications (see [6,7,8,9] as some exampl es)
enthuses us to fuse the sensory data with odometry
data in order to compensate the errors and predict
parameter variations. In such a localization process,
robot's pose is estimated by utilizing both uncalibrated
odometry and sensory data e.g. from a laser range
finder sensor. Thus, the demand for a model of the
odometry error is extinguished [10]. Thrun, has
done a wide research in this area [11,12]. In his
recent work [5], he implemented his algorithm on a
mobile robot, that was equipped with long range
finder sensors. He used a mathematical sensor
model in his agorithm, that was based on ray
tracing. In this method, the likelihood of a "hit"
depends on the occupancy probability of the grid
cell that is being traced [13].
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In our map building and navigation experiments,
we used a simple Khepera robot. This robot is
equipped only with infra-red proximity detectors
[14]. The data, provided with such sensors, are
appropriate for short distances only. Besides, there
is no exact model to convert the proximity values
to distance values and applying the ray tracing
approach. In this paper, anew approach isintroduced
for compensation of the systematic part of the error
that exists in odometry data. In our approach, a
new maximum likelihood method is applied to
estimate the parameters. In the process of
approximating the likelihood ratio, the local maps
that are extracted from a previously created global
map, are compared with the local map that is
developed by the current values of the infra-red
sensors of the robot. Actually, the extracted local
map, depends on both the global map data and the
estimation of the robot's pose. Thus, corresponding
to each dead reckoning parameter values, thereisa
different extracted map. In our method, we seek for
the parameter values, corresponding to an extracted
local map, that is best fitted with the local map,
generated from current sensory data.

In the second section, probabilistic formulation
of pose estimation by dead reckoning (using
odometry data) is briefly reviewed. Then, the new
method for maximum likelihood estimation, is
introduced in the third section. Experimenta results
will be given in the fourth section. Finally, we will
give conclusionsin the last section.

2. ODOMETRY PARAMETERS:
A BRIEF REVIEW

Robot motion is probabilistically modeled in our
calibration method. More distinctly, let

1= (X,Y,0)" denotes the robot's pose in a two

dimensional space (0 is the robot's heading
direction). Robot motion is modeled by the

conditional probability distribution P(Tt| T7d)
where TT is the robot's pose before executing an
action, d is the displacement measured by the

robot's odometry, and TU is the pose after
executing the action. Assume that d,, (k) and

d. (k) are the estimated values of trandational
and rotational displacements in k™ iteration and
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D,.c(K) and D, (k) are their real values

respectively. If || | is the distance, traveled between
the two iterations, then our probabilistic model will
be expressed as below:

Dtrans(k) = dtrans(k) + atransx | I | +etrans (1)
DI’Ot (k) = drot (k) + aI’Otx | I | +eI’Ot

where the terms O,.(K)X[l| and o, (K)x|l]

stand for the systematic error and €., and €

are zero-mean random variables and stand for the
non-systematic error (refer to [3] for more details
on systematic and non-systematic errors of
odometry data). Calibration of the robot's pose

estimation is defined by estimating O, and O ;.

As (1) indicates, our model presumes that
both errors increase linearly with the distance

Figure 1. Robot’s kinematics, based on the values of
rotational and trandlational displacements, estimated by dead
reckoning.
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traveled. In practice, it has been found that this
model is superior over other various choices,
including models with more parameters [5].
Figure 1 shows a typical robot's kinematics. As it
is demonstrated in the figure, robot's pose state
transition can be expressed by the following
eguation:

[B(k +1) = 6(k) + D,y (k)

(K +1) = X(K) + Dy (K) X COS(B(K) + D o, (K))
Hr(k +2) = y(K) + D s (k) xSiN(B(K) + D, (K))
)

3. PARAMETER ESTIMATION

We estimate the parameters O, and O, by

using the sensory data and odometry data that have
been gathered during robot motion, gradually.
Actualy, it is a maximum likelihood estimation
problem and we search for the parameters that
appear most plausible under the existing sensory
and odometry data. This estimation is formulated
as below:

(a:rany G:OI)T = arg maX P(a trans? a rot | Qk 73("’1)
©)

where S,,; means the sensory data (e.g. infra-red

proximity or laser or ultrasonic range finder sensors or
any other source of information related to

environment perception) in the k™ iteration and
Q, is the collection of the whole odometry and

Aitrans O rot

sensory information that is gathered in k™
iteration or was stored before. More specificaly, it
can be defined by:

Q. ={S.0..5,.0,,-,5.,0}

where O; is the odometry data that iswas gathered

in i™ iteration i.e. the erroneous measured values
of translational and rotational displacements

d,..(1) and d,. (i) .
If the data set is large, then the maximum

likelihood estimation problem is mathematically
intractable (see [5]). We have made the whole
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algorithm ssimpler and adaptive. In order to congder
the variations of parameters and contribute
adaptation to the estimation agorithm, a loca
maximum likelihood estimator as below estimates
parameter values in each iteration:

(a*(i) a*(i))T =argmax P(atrans’urot |QI ’Sﬂ) (4)

trans? rot
X trans Orot

and then, they are adapted by the following rule:

VX s 0o) "+ QY X (O, 0) ~
* * T
(Gtrans'urot )

Here y<1 is an exponential forgetting factor,

which decays the weight of measurements over
time. It isusually selected near to 1 and was 0.9 in
our experiments.

4. LIKELIHOOD FUNCTION

The only thing that is remained to be computed or
approximated is the parameter likelihood function

PO o O e | Qi3S,;) in (4). According to

Bayesian rule, this value can be expressed as
follows:

P(atrans’arot | Qi ’S+1) = (6)
CX P(Sﬂ | Qi ’atrans’arot) X P(atrans’arot | QI)

where ¢=P(S,,|Q,)™" is a normalizing factor
and can be ignored during the maximization process.
The knowledge in O, without knowing about S .,
contains no information related to o;")  and a’® .

trans rot
So P(0 ., 0, | Q) =P(0,,..0,) andthisisa

priori probability that may aso be discarded while
maximization. It remains to caculate or

approximate the term P(S,; Q)0 s X 1or) -
We call this term sensation likelihood.

5.ESTIMATION OF THE SENSATION
LIKELIHOOD

Assume that Wis the world and AT isthe relative
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displacement between the robot's poses 11,,; and
1T, . According to the theorem of total probability,
sensation likelihood can be calculated by:

I:)(S|+l | Qi ’ atrans’ arot) =

J‘I I:)(SI+1 |W’AT[’ Qi’atrans’arot)x (7)
P(W,ATT| Q,, 056, O 1 ) AW dATT

Since the sensor data S ,, is independent from Q,

and o a and the world W and the

displacement data AT are independent from each
other, (7) can be expressed by:

trans ? rot

P(S+l | Qi ’ atrans’ arot) =
II P(S+1 |W! AT[) X P(W | Qi !atrans' cxrot) (8)
X P(AT[' Qi ’atrans’ arot) deAT[

Besides, we know that W is independent of the
motion data and parameters. Also AT depends
only on the recent motion data O, and the a

parameters. Thus (8) can be more simplified as
follows:

P(S+1 | Qi ' cxtrans' cxrot) =

[J PS4 IW.AXPAW|S,S,,.8)  (9)
X P(AT[l Qi ’atrans’ arot) deAT[

Of coursg, integrating over al possible worlds
W and all displacements ATt isinfeasible. We can
approximate the sensation likelihood by
substituting the integrals in (9) with their expected
values. They are much easier to calculate. Finally
the following expression, is proposed as a close
approximation for the sensation likelihood:

P(S+1 | Qi ’atrans’ Cxrot) D

PS.IW=EWI|S S,..S]0am= (0
E[AT[l Oi ’ atrans’ arot])

IJE Transactions B: Applications



where E[.] is an indication of the conditional
expected quantity of arandom variable.

6. CALCULATION OF THE EXPECTATIONS
AND THE APPROXIMATED LIKELIHOOD

In this subsection, it is explained that how the
two expected values and the approximated
likelihood in (10) are calculated in our approach.
The first term, E[W |S,,S,...., S,] is considered
as agloba occupancy grids map of the environment,
that has been generated up to the i" iteration.
Thereis alarge set of methods for creation of such
a map. It can be generated by Bayesian fusion of
sensory data [15,16] or by a more intelligent
neural-Bayesian approach [9] or by our new
method, called pseudo information fusion
[17,18]. Although there are several approaches
for environment mapping in mobile robotics,
occupancy grids has been selected (See [11] for
more information about mapping methods and map
learning). That is because a grid-based map can be
eadly created, handled and applied to the likelihood
estimation, as it will be shown later in this
subsection. The second expectation term

E[AT[|Qi , Oy O rOt] is an expected displacement
vedtor, denoted by

EI_(AX’ Ay’ Ae)T | Qi ' cxtrans' cxrotJ

where O =(d, 0|17 is the recent

movement information that is obtained by using
the wheel encoders data. Equations 1 and 2 can be
utilized to calculate the expected value of ATT,
knowing the above information. But the non-
systematic error term in (1) must be ignored
because there exist no information about its value.

The final term that is remained to be
calculated is the sensation likelihood itself, i.e.

RS, |W,Am). This is the likelihood of the

scan, recorded in the final position. If the
sensors are long distance range finders (e.g.
laser or ultrasonic sensors), then the likelihood
value may be obtained by a simple ray tracing.
In that case, the likelihood of a “hit” depends
on the occupancy of the grid cell that is being
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traced. Consequently, sensor measurements that
are more fitted to the occupancy grids map will get
a higher likelihood value, while measurements that
contradict the map, will be assigned a lower
likelihood. See[5,13] for more details.

If the robot is not equipped with long range
finder sensors, but only with some proximity
range detectors (e.g. infra-red proximity
detectors in the case of a Khepera miniature
robot), then ray tracing cannot be applied to the
likelihood estimation problem. In such a case,
we may use the idea of local map matching. It
is based on the fact that any sensor scan is
uniquely corresponded to a local map around
the robot. More specifically, there is a
transformation T that transforms a sensor scan

Sy toalocal map I, i.e. T =T(S,;). Inour

experiments with Khepera, this transformation
has been implemented by using a feed forward
neural network (multi-layered perceptron). We
will discussit in the next section. It is assumed
that this transformation is a one-to-one
correspondence (i.e. two different sensor
measurements are transformed to two different
local maps around the robot). This assumption
is practically valid. So, the sensation likelihood
may be expressed as bel ow:

PS.. [W,A1) =K xH(T" |W,Am) (11)

where K is a factor that can be ignored during
maximization. Knowing a global map of the
environment (or the world model W) and an
estimated location of the robot in this map
(calculated by the information in ATt), one can
easily extract a previously known local map

around the robot called [''. We interpret the
conditional probability P(T|W,Am) as a
judgment about the existing fitness between

these two local maps. Thisfitnessis formulated
by the following equation:

Ir-ri

f(r,ry=1-
(T [r=172|+|r=1/2]

(12)

where | is a matrix of the samesizeas " and "
with all elements equal to 1 and || . || is matrix
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Figure 2. A local map extracted from a global occupancy
grids map. No calibration has been applied to the robot's pose
estimation processin this case.

norm, defined by:
IAIED > 18l (13)
P

This fitness measure is normalized to [0,1]
interval. In an ideal case, where ' and I are

absolutely matched, this factor becomes 1. In the
worst case, where the two maps are contradicting

completely i.e. Y; +Y; =1 the fraction part of the

expression will have a numerator equa to its
denominator and so, this factor will be zero.
Actually, only if there is sufficient occupied
area around the rabot, then (12) is avalid measure
for the fitness between the two local maps. A

threshold, U™, is introduced for the totd existing

occupancy in both of the local maps. Parameter
calibration by maximum likelihood will take place
if the following occupancy condition istrue:

RN R (14

As a simple example, two typical local maps
around the robot are shown in Figures 2 and 3.
They have been extracted from a global map,
corresponding with the same location of the robot
while it acquires a sensor scan. The difference is
that no calibration has been applied to pose
estimation in Figure 2 while utilization of the
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Figure 3. A local map extracted from a global occupancy
grids map. Cdlibration of pose estimation, has led to some
rotational and translational displacement in the extracted map.

adapted values of o, and a,, in calibration of

dead reckoning in (1) has led to some rotational
and translational displacements AB and AL inthe
extracted local map in Figure 3. By the way, any of
the two maps, can play therole of I ' in (12) and

be compared to the local map, generated from the
recent sensor scan.

trans

7. STEP-BY-STEP ALGORITHM

Figure 4 demonstrates a step-by-step algorithm of
our calibrated pose estimation method while the
robot is exploring and mapping the environment
around itself. It acquiresasensor scan S atthe i"
iteration. By using the recently obtained sensory
data it updates a global occupancy grids map, that
has been gradually created by employing a map
building method e.g. Bayesian method [15,16],
Dempster-Shafer reasoning [19] method or pseudo
information method [17,18]. The robot moves to

anew location in the next step (i +1™iteration). It
acquires the odometry data O, and gets a new

sensor scan S ,;. Therobot is able to create alocal

map, merely by the new sensory data (without
requiring any positional information). On the other
hand, it estimates its new location, by making use
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of the odometry data and calibrating its estimate by
the current dead reckoning parameters o and

trans

a,, . It uses Equation 1 without the non-systematic

error terms and Equation 2 in this step. Now a
local map can be extracted from the occupancy
grids that are centered at the estimated position of
the robot. This map is calculated in the same size
of the local map that is generated from sensory
data. In the next step, the two maps are checked if
they satisfy the sufficient occupancy criterion. If
they do not, algorithm skips to the next iteration by

setting S =S,; and updating the map etc.

trans? rot
the new robot's pose is re-estimated and the
corresponding local map is re-extracted and the

fitness measure f (I', I") is caculated by (12). The

parameter values, which lead to maximum fitness

and hence to maximum likelihood, are chosen as
a o'l and applied to Equation 5 to adapt o

trans? ™" rot

and a

iteration is started by replacing S with S,, and
updating the map etc.

Otherwise, for each possible (0(*(‘) a*(i’)T value,

trans

values in the next step. Finaly, the next

rot

8. EXPERIMENTS

Khepera miniature mobile robot has been applied
to exploration, localization and map building
experiments. In these experiments, the data provided
by 8 infrared sensors around Khepera, were the
only sources of information (See [14] or [20] for
more details on Khepera sensors and structure).
There is no accurate inverse model for the infrared
proximity detectors, like the model for ultrasonic
range finders [21]. We trained a feed-forward
multi-layered perceptron to implement an inverse
model for the sensors. The inputs of the network
are the eight proximity values, and the loca
coordinates of a cell in the occupancy grids map
around the robot. The output of the network is the
occupancy probability value of the cell.

The architecture of the neural network is shown
in Figure 5. This output value is fused with the
associated occupancy probability value of the same
cell in a globa map of the environment. This
global map has been calculated based upon
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Figure 4. Our proposed step-by-step algorithm of calibrated
pose estimation for a mobile robot, while it is exploring and
mapping the environment around itself.

resulting probability is applied to improve the
globa map. In other words, during exploration of
the environment by the reactive obstacle avoidance
method of Braitenberg [22], Khepera creates a
local occupancy grids map in every sensing
iteration. These local maps are integrated with an
initially blank global map and it improves
gradually. Another more intelligent alternative for
obstacle avoidance is our newly introduced method
of fuzzy rule-based command fusion [23].

Figure 6, showsthe typical environment in which
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Figure 5. The feed-forward perceptron that was trained for
local map building, by using proximity data, provided by
Kheperas infrared sensors.

Figure 6. A photo of khepera and the environment, in our
experiments.

our experiments have been done. The well-known
UMBmMark (University of Michigan Benchmark)
was tried in the first experiment. The robot travels
a square path with a perimeter of 200cm length, 16
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times in clockwise and 16 times in counterclockwise
direction.

Figure 7 shows the occupancy grids map, created
by pseudo information fusion, and the square path
insdeit. Practicaly, the robot does not travel the exact
square path in each round, because the motion
control commands are created based on the robot's
pose information, acquired from the erroneous
odometry data. It causes the robot not to return to
its initial starting point in each round. This
deviation of the location of the robot with respect
to the original point of motion starting was
manually measured. In thefirst trial of 32 rounds,

their mean values were AX =355mm and

A_y = 26.3mm, equivaent to a relative error of
2.21%. This relative error is computed by
100 9% x (Ax* + Ay J/(4L) where L =50mm is
the side length of the square path. The UMBmark
calibration parameters were calculated to be

E, =0.9991 and E, =0.9953. They are some

correction factors for wheel diameter and
wheelbase, respectively. They were computed,
based on the results that were obtained in the
first trial, in order to decrease the systematic
odometry error (Refer to [3] for more details on
UMBmMark basics and formulation). In the second
trial, the calibrated values of the wheel diameter
and base were applied to odometry and motion
command generation process. This calibration

caused a lower average deviation of Ax=153mm

and A_y =12.8mm, or in other words a relative

error of 0.99%. In the third trial, we applied our
proposed calibration method to the pose estimation
and motion commands generation. It was observed
that the robot traverses the square path more
accurately and the average position deviation was

measured as AX = 3.2 mm and Ay =1.6mm. This

is equivalent to a relative error of 0.178%. It is
seen that relative estimation error has decreased by
82%.

In the second experiment, the robot was moved
from a start point to an end point in a specific
route. Two routes are shown in Figure 8. The
actual path and the path that was estimated to be
traversed by the robot are depicted by solid and
dash line respectively. It is observed that the
estimated route deviates gradually. Finally, the end

IJE Transactions B: Applications
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el el i L]
Figure 7. The square path, traveled by the robot in our

UMBmMark experiment.

point that was actually reached by the robot is
located in afar digance from the estimated end point
and following errors were measured:

| AX |:| XEnd
[AY 5] Yea ~ Yesimaed pan = 168 MM

= X eimaed pan 1= 269 MM

At the same experiment, the same odometry data
were applied to our proposed calibrated version of
dead reckoning method and ancther estimation for
the path was obtained. Both the actual and the new
estimated paths are depicted in Figure 9. In
contrast with the previous case, it is observed that
the estimated path is much closer to the real one.
That is because of the efficient calibration of
systematic error of odometry data by using the

adapting parameters 0. and . Indeed, end
position estimation errors were measured as below:

| AX'|=] X gy = X esimeted pan = 25MM

[AY' |5 Y end = Y esimaed pan = 38 MM

Thus, estimation error has been reduced by:
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2010 4ic BhE ECK

Figure 8. Solid and dash lines show the real and the estimated
paths, traversed by the robot respectively.
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41003
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103

20 40 i h JCh
Figure 9. Solid and dash lines show the real and the estimated
paths, traversed by the robot respectively. In this case, our
proposed calibration method has been applied to the pose
estimation to generate the estimated path. That is why it is
much closer to the actual path.
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TABLE 1. Summary of the Experimental Results.

AX Av — _ [—2 —2
Experiment Title ' Ax _ _Ay Al = \AX” + Ay
Final Estimated Error | Final Estimated Error | Fingl Estimation Error of
of x-coordinate of y-coordinate travelled distance
Square Path Without
Calibration 35.5mm 26.3mm 44.18mm
Square Path With UMB
Calibration 15.3mm 12.8mm 19.95mm
Squared Path With the
Proposed Cal. Method 3.2mm 1.6mm 3.58mm
Comlex Cureved Path With
UMB Calibration 269mm 168mm 317.15mm
Comlex Cureved Path With
the proposed Cal. 25mm 38mm 45.49mm

2 o4 "2
E" |A><|2 IAyI2 Hxloo%:ss.es%
8 JIaxP +lay P g

Table 1 showsthe summary of the experimental results.

9. CONCLUSIONS

A new approach for calibration of dead reckoning
process in pose estimation of mobile robots was
proposed in this paper. We attempted to model
the systematic part of the error, existing in
odometry data, by introducing two calibration
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parameters and estimating them adaptively. It
was suggested to fuse the current sensory and
odometry information with the information that
had been obtained previously. The local map,
generated by current sensory data, is integrated
with alocal map that is extracted from a global
occupancy grids map of environment. Actually,
the most desired parameters are those, which
lead to a mostly fitted version of an extracted
local map. It was shown that the proposed
approach gives a maximum likelihood estimation
of the parameters. The most important advantages
of the method are its simplicity and its
applicability to the cases where the robot is
equipped with short-range distance sensors
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(proximity detectors). In our experiments,
Khepera robot was utilized to examine the
performance of the method for reduction of
pose estimation error. The proximity data,
provided by the infrared sensors of the robot
and the odometry data, provided by wheel
encoders, were the only sources of information in
these experiments. Results show that our approach
causes a reduction of more than 80% in pose
estimation error. Besides, the proposed approach
is applicable in an online case. It means that
the robot may calibrate its position by this
method, while it is exploring the environment
around itself and mapping it. In this case, the
important difference is the fact that there is
no previously created global map for extraction
of local maps. But it seems very probable
that a partially generated map can be useful
to be applied in our method.
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