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Abstract An unsteady two-dimensional numerical investigation was performed on the viscous flow
passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was
linked to Van-Leer’s and Roe’s flux splitting schemes to evaluate inviscid flux terms. To prevent the
oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme
for Conservation Laws (MUSCL) was added to flux splitting schemes. The Baldwin-Lomax (BL)
turbulence model was implemented to solve the turbulent case studies. Implicit solution was also
provided using Lower and Upper (LU) decomposition technique to compare with explicit solutions.
To validate the numerical procedure, two test cases are prepared and flow over a NACA0012 airfoil
was investigated and the pressure coefficients were compared to the reference data. The numerical
solver was implemented to study the flow passing over a compressor cascade. The results of various
combinations of splitting schemes and the MUSCL limiter were compared with each other to find the
suitable methods in cascade problems. Finally, the convergence histories of implemented schemes
were compared to each other to show the behavior of the solver in using various methods before
implementation of them in flow instability studies.
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INTRODUCTION

Historically, the analysis of the flow field in the
close vicinity of the stability limit, especially in
Gas-Turbine engines, has been based mainly on
experimental observations and studies. Recently,
several computational fluid dynamics (CFD) codes
have been developed to give more powerful, low-
cost design tools. The, axial compressors with their
adverse pressure gradients in through flow direction,
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is the most critical component in Gas-Turbine
engines from the viewpoint of flow instability
phenomena. Several experimental observations on
flow characteristics in axial compressors have been
developed during recent years [1-3]. Some
approximated theoretical models, derived from
experimental observations are also defined. For
long-length-scale disturbances introduced by
Garnier et al. [4], two-dimensional linearized
stability analysis were implemented by Moor et al.
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[5] and Longely et al. [6].

Today, the use of CFD tools is a standard practice
in the study of the cascade flow within the stable
operating range of a compressor. In this regard, the
CFD approach still needs to be established as a sound
prediction method for operation in the unstable region.

To a lesser degree, rotating stall inception has
been numerically investigated [7-8]. Nishizawa et
al. [9] have studied propagating stall in isolated
linear cascade using vortex methods. Outa et al. [10]
have also reported on stall behavior in a two-
dimensional rotor-stator system. A numerical solution
for the inviscid flow in a one-stage axial compressor
are presented and compared with experimental
data for operation in the rotating stall region [11].

The scope of the work described in this paper
was to introduce a time-marching finite volume
solver for compressible multi-blades cascade
flows, and to evaluate the implementation of recent
finite-volume methods in turbomachinery studies.
The governing equations were solved using both
explicit and implicit techniques. The implicit LU
decomposition was employed as the implicit
solution technique [12].

GOVERNINIG EQUATIONS

For a given thermodynamic system having two
intensive degree of freedom, its fluid dynamic
behaviour can generally be described by means of
the system of conservation laws corresponding to
the conservation of total mass, momentum and
energy.

Let Q be an unknown vector defined for a two-
dimensional study as follows:

& T
Q=[p, pu, pv, pE]" =[9,,45, 4,9 (1)
Where E is the total energy (E = e+ (u* + vz)/2 )-
Let ¥ be any volume with bounding surface 6V and
outward unit normal n. Assuming that the volume

does not vary with time, Q satisfies the following
integral conservation law:

%L QdV=L§QdV
:—iV F.ndS )
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The equivalent differential form of Equation 2
in an inertial reference system reads:

0
—Q=-V.F 3
o ®)

This accounts for the inviscid (Fg) and viscous
(Fy) contributions, i.e.

F=Fg-Fy “4)
Where

Fz=[pu, puu+pl, puH]' (5-a)
Fy=[0,0,-(q-u.o)l" (5-b)
and

o B

o=wVu+Vu )—EuV.uI (6)
q=-AVT (7)

The governing equations are transformed to a
computaional space for the numerical solution.
Hence, they are as following:

OF _OE, , OF,

o B
on

ot o0& On
In which, 6 is the unknown vector, E , and F are
the inviscid flux vectors in & and n direction

(8)

respectively. Evis the vicous flux vector in &

direction, and F,is the viscous flux vector in 71

direction. They are related to physical vectors with
the following general relations:

Q= % (9-a)
E= } (&, Fy, +£,Fy) (9-b)
F= %(mFEx +1,Fp,) (9-<)
E, = -j—;(évax +¢,F,,) (9-d)
F, = %(mFm +n,F,) 9-¢)
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where
ot e Bl
‘xéyq_yﬁxr; 6(x3y)

(10)

Regarding to two-dimensional approach in
present work, the governing equations for relative
frame is the same as those in absolute frame,
because there is no Coriolis acceleration (no radial
component of velocity). Consequently, the only
treatment in stationary-cascade studies (if desired)
is the using of absolute velocities in place of
relative velocities in solver. As evident, the
absolute velocities are achieved by adding the
rotation speed to relative velocities, computed in
rotating frame.

NUMERICAL PROCEDURE

Finite Volume Formulation Reconsidering
Equation 8, the time derivative is approximated by a
first-order backward differencing quotient and the
remaining terms are evaluated at time level n+1. Thus:

—n+l e S =
Q B Q 4 (a_E)rHI + (a_F)m-.'
At o& an an
_ aE n+1 aii‘-: n+1
_(—ag ) +(—6W )

Integrating Equation 11 over square ABCD shown
in Figure 1, and using Green’s theorem provides:

— At = =. &= =

AQ+—(E; -Ei)+—(F.-Fs) =

Q Aé‘( 1) A??( +—Fs)
AL E . Fay DL T (12)
A& An

Since, in Eq. 12, the flux vectors are evaluated in
time step nt+1; they can be expressed in terms of
AQ. By using the Taylor expansion and a first
order approximation in time, the fux vectors
are evaluated as follows:

—n+l

gy 0E — —n =
E =E +—=AQ=E +AA 13-a
0 Q Q (13-2)
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P =F + L AQ=F" +BAQ (13-b)
5

Tl oon aﬁ PR N

E =E +=AQ=E, +AAQ (13-c)
Q

Tl oon af PR T P

S =F"+—=AQ=F," +B AQ (13-d)
AQ

The matrices A, B, A, and B, are the Jacobian
matrices given by Hoffman et al. [12].

Since, evaluation of inviscid flux vectors on cell
faces is the most important problem in numerical
solution of Euler and N-S equations, the flux
splitting methods are discussed in details in the
following section. The second-order derivatives are
evaluated by central difference approximation,
because these terms may not cause oscillations in
computational domain [12].

Flux Vector Splitting To avoid the addition of
artificial viscosity, the flux wvector splitting
schemes used to formulate the convective terms.
For a system of hyperbolic equations, the
Jacobian matrix A must possess real eigenvalues.
The eigenvalues of A represents the charactristic
direction of the hyperbolic system and thus provide
the direction of the propagation of information. If

Figure 1, Definition of a Cartesian finite-volume cell.
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matrix A has real eigenvalues and associated
eigenvectors, it may be diagonalized; ie., a
similarity transformation exists such that:

A=L"A_L (14)
For a Jacobian matrix like A, a large class of

flux decomposition can be obtained by defining A*
as follows:

ar=AZEA) (15)
2

and

E =A*Q (16)

where g(A) is:

g(A)=L"A L (17)

and A, is a diagonal matrix whose non-zero
coefficients are g;.

Following the current definition, the numerical
flux function associated with a flux vector splitting
is expressed as:

E,=E (6;,;) +E (6”1,;) (18)

Similar functions can be defined for other flux
vectors at all faces of the finite volume cell.

Two more advanced flux vector-splitting
methods are implemented in present study to

evaluate E . They are briefly discussed in the
following section.

Van Leer’s splitting In this method, the split
fluxes are represented by a polynomial in M that
gives the same functional values and slope of the
unsplit fluxes at M = £1. Moreover, the symmetry
properties of each split flux component should be
the same as those of the unsplit one .

An extension of the Van Leer-type splitting to
multidimensional flows is not quite trivial. The split
flux component can be constructed by retaining the
one-dimensional structure. The method conditions,
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and the matrix form of split flux vectors for two
dimentional studies in computational space is
reported by Hoffman [12].

Approximate Riemann solver (Roe splitting) The
idea of Roe consist of determining the solution by
solving a modified equation, where the flux E is
quasilinearized by introducing a matrix A and
adopting E = AQ .

Assuming that the discretized solution of the
system of conservation laws is piecewise constant
within each computational volume, the solution of
one-dimensional non-linear equation is equivalent
to solving approximately a Riemann-type problem
at cell interfaces. The total averaged flux function
at each cell, and the properties required for Roe
flux splitting method are reported by peyret et.
uk 15,

Construction of high-order methods High-order
methods can be constructed in many ways. Total
Variation Diminishing (TVD), and the Monotonic
Upstream Schemes for Conservation Laws (MUSCL)
are the most famous methods related to the design
of high-order schemes[13].

According to Van Leer’s point of view, upwind
methods can be interpreted as a projection phase
followed by an evolution phase. In the projection
(or reconstruction) phase the piecewise continuous
initial values are interpolated to yield a continuous
distribution within each computational cell, while
the evolution phase corresponds to the updating of
averaged unknown variable #exploiting the
reconstructed solution.

In this work the MUSCL limiter is used due to
its high accuracy.

For an unknown variable # the MUSCL can be
expressed as[13]:

=0, 0B )
ul=ul, _i[a—r)ﬁu;’” +(1+7)5"u"] (20)

A set of limiters are defined in Table 1 upon values
of r And §*,6 *are the limited slopes:

Su=08"u,08u,_,) ; 5 u=U5"u,08u,,) Q1)
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TABLE 1. Definition of Limiters Upon Values of r.

r Name of Limiter

1/3 | Third-order upwind biased scheme

1 | Three-point central difference scheme

-1 | Fully upwind scheme

0 Fromm scheme

where 1<0>(3-r)/(1-r), and £ is a limiter function
such as, Van Leer and Roe’s minmod limiter
functions. The simplified form of MUSCL using
Van Leer’s function becomes[13]:

3 28 udtu
[(87u) +(67u)*]
f=0-r-H0 u+1+r-£)é"u 22)
1

U, =u

r f+f,j_zf'€

Stability Criteria  To overcome the solution
instabilities in explicit techniques, MacCormack
stability criteria is employed to obtain the
appropriate time step [12]:

AT 2 Sf (Azf)mv (23)
I Re,
in which:
(@), < 1 (24)
IUT 7 a[ J
3 (N?)

and Re, is:

Re, = min(Re ¢>Re,) (25)

Also U and V are the contravariant velocity
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components and the cell Reynolds numbers are
defined as following:

Re, = __p[U[Aﬁ
i
(26)
Re, = LVJAT!
i
(27)

NUMERICAL BOUNDARY CONDITIONS

Inflow and Outflow Boundary Conditions
All inflow and outflow boundary conditions are
prescribed based on the sign of the eigenvalues.
These eigenvalues indicate how information is
propagated at the boundaries.

Our inflow is subsonic, so three of the four
eigenvalues are positive, i. e., coming from outside,
and one is negative, i. e., coming from inside.
Therefore, three analytical boundary conditions
should be specified from outside and the other
determined from inside.

If the outflow is subsonic, three of the four
eigenvalues are positive, i. e., outgoing, and one is
negative, i. e., and incoming from the outside.
Therefore, one analytical boundary condition may
be specified; and the others are determined from
the computational domain by extrapolation.

The triple variables from outside at the inlet can
be selected in the following ways:

1. Selecting P,,7, and inflow angle.
2. Selecting 7, ,uandv.
3. Selecting P.,uandv.

For subsonic outflow boundary conditions, P,
is fixed.

Figure 2 illustrates a schematic shape of
computational domain and the hatched cells are the
fictitious boundary cells which contains the
boundary values.

Solid Wall Boundary Condition For no slip
wall condition, the velocities at both sides of
the wall are given opposite in sign in order to
cancel out each other.
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Figure 2. Schemenc shape of computational domain.

Initial Guess  Due to the hyperbolic-parabolic
nature of the N-S equations in time marching methods,
only one set of initial condition is required. Pressure and
temperature are set equal to total thermodynamics
conditions of inflow and the velocity components are set
equal to zero.

The Neighborhood Block Boundary Condition
Each block shares one or more boundaries with its
surrounding blocks. The exchange of data among
the blocks takes place through their common
boundaries. The mechanism of implementing
above-mentioned boundary condition is described
in the following section.

The Multi-Blocks Algorithm In each time
step, the solver sweeps all cells from first to final
block in turn. In this regard, cell index is defined as
follows:

ind(i, j) =1+[(block-1)jmax—(j—1)jimax (28)

Figure 3 shows a schematic shape of computational
domain near the common boundary of two adjacent
blocks.

In the common boundary, there is an overlap
area, in which fictitious cells of upper and lower
blocks cover each other. These cells do not exist
physically and they are just the temporary cells to
save boundary data. The map of physical surface in
multi-block computational space, named ‘Boundary
surface’, is shown in Figure 3 by thick-solid lines.
It is obvious that there must be two maps for a

96 - Vol. 15, No. 1, February 2002

|
I
upner Block

First

= intiet

P
Boundary T T o ills

Over Lap

i _—

lower Block cells

F

Figure 3. Schematic shape of block boundary condition.

physical surface for two mapped blocks.

Grid Generation Each passage (between two
blades) has an individual mesh, which is generated
by mesh generator program using PDE method.
Clustering is available by related source terms as
well as orthogonality. The mesh generated for each
individual passage is considered as a single block,
and the multi-blocks algorithm assembles them to
prepare the complete area of solution.

Turbulence Model One of the groups of
statistical turbulence models is the algebraic one or
two-layer turbulence closure. These models can
easily be implemented into a numerical algorithm,
but they require the determination of boundary
layer parameters to calculate the eddy viscosity. In
complex flow such as the flow through a turbine or
compressor cascade, the calculation of e.g. shear
layer thickness in a CFD code is difficult, because
no realistic criterion can be used to define the edge
of the boundary layer [14]. That is specially the
case when flow separation exists within the domain.

A algebraic model, which is not written in terms
of the boundary layer quantities and is very robust
in separated regions is the modified Baldwin-
Lomax (BL) model [15]. The BL model is
implemented by [16] in numerical investigation of
Rotating-Stall inception in a multi-blade cascade
flow in an axial compressor, which the flow may
have large scale separated zones. Moreover, the
comparison of other turbulence models such as k-
with BL model in [14] shows the adequate assurance
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Figure 4. Comparing computed and reference curves of
pressure coefficient (Cp) for airfoil of NACA0012.

of using BL. model in cascade problems. Regarding
a large amount memory required in multi-blades
studies, the BL consumes the least memory and
CPU time with respect to higher-order turbulence
models. Consequently, for present work the BL
model is preferred.

DISCUSSION OF RESULTS

Code Validation Comparing the computed results
to other approved dada’s assesses the performance of
the described methodology.

The first validation test case is prepared for
inviscid flow over half of the NACA0012 airfoil.
In Figure 4, the pressure coefficient (Cp)
distribution was compared with [17]. The flow is
transonic, the inlet Mach number is equal to
0.85, and the angle of attack is zero. The
computed results are in good agreement with the
reference data. This test case is prepared to
validate the solution of inviscid terms and the
related implemented techniques.

The second prepared test case is the subsonic
viscous flow around NACAO0012 airfoil. The
Reynolds number is set to 10° and the flow is
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Figure 5. Comparing computed and experimental results for
flow over a NACA0012 airfoil at M= 0.4 and Re= 10°,

turbulent. The inlet Mach number is set to 0.4, to
test the density-based solver in lower Mach
numbers. The angle of attack is zero. The transition
point is set near the leading edge (proposed in
[18]). The computed results are in good agreement
with experimental results reported in [19]. This test
case is prepared to validate the solver in viscous —
turbulent flows, which is a very usual condition in
flows, through compressor cascades.

Cascade Results In the third test case, the
transonic flow through a multi-block passage
(cascade) problem was solved and the results are
illustrated in Figures 6a and 6b. The airfoil
geometry chosen for this problem is the same as
the geometry used by Saxer etal. [11], for a
cascade of an axial compressor.

In this test case, a rotor cascade was studied in
design condition to investigate the implementation
of various methods in complicated areas. The design
conditions are given in Table 2. The velocity vectors
are computed in relative frame.

All the computations are done for mean radius.
The compressor is a transonic multi-stage type and
the flow is viscous and turbulent (the Reynolds
number based on chord is 10°).
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TABLE 2. The Design Condition Parameters.

F

A 0.6

R 045
Pi 101325 Pa
T 300K

Figure 6a. Mesh generated for a 3-blade cascade (a 76x41
erid is used for each passage). -

Figure 6b. Zoomed image of mesh generated for a 3-blade
cascade (a 76x41 grid is used for each passage).
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The exit pressure is set to give the design stage
load coefficient and the reaction factor.

Figures 7a to 7d show the Mach contours for the
cascade. Figure 7a illustrates the results obtained
from Roe’s splitting schemes, which is used with a
3" order limiter from MUSCL relation(r =1/3 in
Table 1), and an explicit solution technique is
employed. Further, Figure 7b shows the same
results using the same schemes, with implicit LU
decomposition technique. The CPU time for the
implicit solution was 3 times higher than CPU time
for explicit solution. Figures 7c and 7d show the
results of Van Leer’s flux splitting method but with
different order of accuracy. The results of Figure
7c are obtained from the 3™order Van Leer’s
limiter (r = 1/3 in Table 1), and those of Figure 7d
are from Fromm limiter (r = 0, in Table 1), which
is a second-order accuracy method.

The Roe’s splitting solutions have the best
accuracy but consumes higher CPU time compared
with Van Leer’s splitting solutions (approximately
1.3 times). The results shown in Figures 7a to 7d
are similar, and show good agreements with each
other in_their range of the Mach number. The
velocity vectors, streamlines, pressure contours,
temperature contours are plotted and presented in
Figures 8 to 11 respectively. The Van Leer’s
splitting and the 3™order limiter is used for
obtaining the results shown in Figures 8 to 11. In
Figure 10, oblique shocks have been captured near
the leading edge of airfoils that shows the shock-
capturing characteristic of the solver. In Figure 11,
the majority of high-pressure gradients are
accumulated near the lower left corner of the first
block. This phenomenon is due to the solid wall
effect of lower boundary of the cascade. Therefore,
an impact-type phenomenon takes place when the
flow impinges into the leading edge of the curved
part of lower boundary (The angle of lower wall is
higher than flow inlet angle). The solid wall
condition in lower and upper wall is set to give the
similar condition of a cascade wind tunnel. The
wall effect shown in Figure 11 is a very common
effect in experimental cascade studies. As evident,
using the periodic boundary condition in
computations, for lower and upper walls of the
cascade removes the wall effects. Figure 12
provides a comparison between various methods
used in the present work. The convergence
histories of implemented methods are compared to
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Figure 7a. Mach contours for a 3-blade cascade, using Roe’s
splitting scheme with 3™ order Van Leer’s universal limiter
and explicit solution (Range of contours: 0.2-2.55).
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Figure 7b. Mach contours for a 3-blade cascade, using Roe’s
splitting scheme with 3" order MUSCL limiter and implicit
solution (Range of contours: 0.2-2.55).

cach other in a 5000 iteration range. The vertical
axis of Figure 12 is the logarithm of normalized
relative-error of p(density), averaged over the
computational domain. The results show a higher
accuracy of Roe’s splitting algorithm and the less
accuracy of implicit solution technique, during the
first 5000 iterations. However, the implicit
methods may cause later convergence but the same
accuracy for higher iterations. Using implicit
techniques increases the cost of computations in
reported range of iterations.

It is also seen that the difference between Van
Leer’s splitting errors and those of Roe’s are
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Figure 7c. Mach contours for a 3-blade cascade, using Van
Leer’s splitting scheme with 3™ order MUSCL limiter and
explicit solution (Range of contours: 0.083-2.5472).
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Figure 7d. Mach contours for a 3-blade cascade, using Roe’s
splitting scheme with Fromm limiter, obtained from MUSCL
relation, and explicit solution. (Range of contours: 0.2-2.55).

relatively small (they have the same order of
accuracy). The mentioned error for each cell, using
explicit techniques reaches a minimum of 107,
whereas for implicit solution this error reaches a
minimum of 107 in the 5000 iterations.

CONCLUSION

A multi-blocks 2-D compressible solver was
developed to investigate the performance of numerical
schemes in turbomachinery through-flow problems
that may need enormous amounts of grid cells and
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Figure 8. Velocity vectors for cascade problem using Van
Leer’s splitting and 3™ order MUSCL limiter.

Figure 10. Temperature contours for cascade problem using
Van Leer’s splitting and 3™ order MUSCL limiter.

Figure 9. Streamlines for cascade problem using Van Leer’s
splitting and 3 order MUSCL limiter.

CPU times. Inviscid flow around an airfoil
NACAO0012 was observed to show the required
assurance of the solver in its inviscid part of
solution. Further, the viscous-turbulent flow
around the same airfoil was observed, to validate
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Figure 11. Pressure contours for cascade problem using Van
Leer’s splitting and 3™ order MUSCL limiter.

the solver in a viscous flow. The test cases of
NACAO0012 airfoil gave the required assurance
about the solver.

To use the solver for investigation of flow
instabilities in multi-blade cascades and to study
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Figure 12. Comparison of convergence histories of various methods. The vertical axis shows the logarithm of normalized averaged
error in the entire computational domain and the horizontal axis shows the number of time steps.

unsteady phenomena, like Rotating-stall in axial
compressors, a third test case was prepared. The
viscous-turbulent flow in a 3-blade cascade of an
axial compressor was studied, in a sample design
condition of the compressor stage.

Two different flux vector-splitting schemes
with MUSCL limiter were implemented. Implicit
and explicit techniques were both employed and
their results were compared with each other. The
convergence history during 5000 iterations shown
that the explicit solver was faster than the
implicit one to reach the first minimum amplitude
of the error, and the implicit technique had the
lower accuracy during the mentioned iteration
range.

The 3™ order MUSCL had the most accurate
results with Van Leer and Roe’s flux splitting
schemes. The Roe method consumed more CPU
times but gave the most accurate results for the
mentioned iteration range.
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The comparison of various methods in
unsteady range of solution illustrated the behavior
of the solver when using various methods and
techniques, which is a very important sequence
before the implementation of numerical schemes
in instability problems. To use the lower cost, and
fast responding methods, the above-mentioned
comparison was made.

The results of the Van Leer and Roe schemes
had the same order of accuracy but the results of
the Roe scheme had a lower bound of errors in the
same order of accuracy. Both splitting schemes
with a 3™ order MUSCL limiter seems to be
efficient for the cascade problems in an unsteady
compressible state. The implemented grid
resolution for the viscous flows appears to be
adequate and prevents exceeded computational
efforts.

As a final conclusion, a CFD tool was introduced
and several known methods were studied and
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compared to each other in a complicated area, to
find the suitable schemes before any numerical
investigation of instability conditions.

However, future studies by the present solver,
about instability effects can show the usefulness of
the present work.

NOMENCLATURE

T time in transformed coordinate
time step

o stress tensor

® slope averaging parameter

(= horizontal axis of transformed
coordinate

P density

v absolute viscosity

Es partial of & with respect to y

N partial of | with respect to y

£ partial of & with respect to x

N« partial of 1 with respect to x

ov bounding surface of volume

M eigenvalues of A*

M eigenvalues of A

As diagonal matrix with its elements
being the eigenvalues

B outlet angle of relative velocity

B inlet angle of relative velocity

ATiny maximum allowable

At maximum allowable time step

load coefficient
flow coefficient
vertical axis of transformed coordinate

limited slopes

Jacobian matrix for E
decomposed matrix of A

I+

> B O3 e €
4
\.qu
o+

Jacobian matrix for -]-fv

-

Jacobian matrix for F

=R =~

-

Jacobian matrix for -I*:v

velocity of sound
total energy vector

transformed unknown vector
transformed unknown vector

=

= | ] R 4

flux vector
inviscid flux vector

y
=
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| |

v

g(A)

imax

Jmax

]

SdVZEROO S

o
=]

AT

inviscid flux vector
transformed unknown
transformed unknown vector

any matrix having the right and
left eigenvectors

total enthalpy

unit tensor

cell index in & direction iblock
block index

maximum cell index in & direction
cell index in 1 direction

Jacobian of transformation
maximum cell index in 1 direction

-
CV

limiter function

eigenvector matrix of A

Inverse matrix of L

Mach number

inlet Mach number

normal vector of A

thermodynamic pressure

static pressure

total pressure

inlet pressure

heat flux

vector of consevative variables

transformed vector of consevative
variables

Reaction factor

parameter of MUSCL limiter
minimum cell Reynolds number in
1 direction

minimum cell Reynolds umber in
& directon :
minimum cell Reynolds number
hub radius

tip radius

safety factor for time step

time in physical coordinate

static temperature

static temperature

total temperature

inlet temperature

velocity vector

x-direction velocity component
contravariant velocity in § direction
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><"<15<:<:3

e

UL

X

¥
Ye
¥

n

Subscript

— TS

z—hz—«p-pm)-‘i—l‘—l-

< <

Superscript

averaged u at cell boundary
contravariant velocity in 1 direction
y-direction velocity component
relative inlet velocity

volume

vertical axis of Cartesian coordinate
partial of x with respect to &
partial of x with respect to 1
horizontal axis of Cartesian coordinate
partial of y with respect to §
partial of y with respect to n

partial derivative with respect to &
partial derivative with respect to n
index of bottom face flux

hub for blade radius

inviscid flux vector

mesh point index in

& direction

inlet condition

mesh point index in 1 direction
index of left face flux

index of right face flux

static thermodynamic properties
index of top face flux

tip for blade radius

total state for thermodynamic
properties

partial derivity with

respect to x

partial derivity with respect to y
viscous flux vector

positive split flux
negative split flux
previous time level
current time level
transpose of matrix
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