
IJE Transactions A: Basics Vol. 15, No. 1, February 2002 - 81

RESEARCH NOTE

A BRANCH-AND-BOUND METHOD FOR FINDING
FLOW-PATH DESIGNING OF AGV SYSTEMS

R. Zanjirani Farahani and F. Ghasemi Tari

Department of Industrial Engineering, Sharif University of Technology

Tehran, Iran, farahani@imiorg.com - ghasemi@sharif.edu

(Received: November 16, 1999 – Accepted in Revised Form: July 9, 2001)

Abstract One of the important factor in the design of automated guided vehicle systems (AGVS) is
the flow path design. This paper presents a branch-and-bound algorithm to determining the flow path
by considering not only loaded-vehicles, but also empty-vehicles. The objective is to find the flow
path, which will minimize total travel of loaded vehicles. We know that in branch-and-bound method
a branch can be fathomed in different ways, but it sometimes causes infeasible solutions. By
branching on only feasible solutions, the algorithm presented in this paper works effectively. We also
use DFS algorithm for finding only feasible solutions of the problem and by testing the objective
function, one efficient flow path can be determined.

Key Words AGV Systems, Flow Path Design, Depth First Search

ين مقاله ا. وامل در طراحي سيستمهاي باربر خودكار، طراحي مسير حركت است عيكي از مهمترين كيدهچ
 فقط براي وسايل بار شده، بلكه براي وسايل خالي يك روش شاخه و كران ارائه ه حركت ن ر براي تعيين مسي

م كه در روش داني مي. نحوي است كه كل فاصله طي شده كمينه شود هب تكرح ريستن م فياهدف، . دده يم
ليل د ي از آنها بسته شدن به يكيل مختلف بسته شود؛ بطوريكه ت يك شاخه به دلا ممكن اس ،ناشاخه و كر

ار كري وثه، الگوريتم به نحو م بهاي موج اجوي روط فقن زد مقاله با شاخه نيا رد. بودن جواب است وجهرمغي
به اين صورت . كنيم ستجوي اولين عمق استفاده مي جتم ينين براي يافتن جوابهاي موجه از الگور چهم. دكن يم

 . مشخص شودبا بررسي تابع هدف، مسير حركت موثري

INTRODUCTION

An automated guided vehicle (AGV) is a driverless
vehicle used for transportation goods and materials
throughout a facility, usually by following either a
wire guide-path painted on the floor [1]. A system
controller is responsible for the regulation of traffic
when more than one vehicle is in system. One of the
most important design vehicles is the guide path
layout. The AGVS guide path configurations
discussed in previous research include: I-
conventional (Gaskin and Tanchoco [2], Kaspi and
Tanchoco [3], Venkataramanan and Wilson [4]), II-
tandem (Bozer and Srinivasan [5], Lin et al. [6]), III-
single loop (Tanchoco and Sinriech [7], Sinriech and
Tanchoco [8]), IV- bi-directional shortest path (Kim
and Tanchoco [9], Chhajed et al. [10]) and V- the
segmented flow topology (SFT) (Sinriech and

Tanchoco [11]). Related work in facility layout
design includes Langevin et al. [12] and Banerjee
and Zhou [13]. In conventional configurations,
flow path is unidirectional. Unidirectional flow
occurs when vehicle travel is restricted to only one
direction along a given segment of the flow path.
With unidirectional travel, a vehicle may have to
travel a greater distance in moving from one point
to another than it would if bi-directional flow is
allowed. On the other hand, unidirectional flows
require fewer controls and are more economical.
The objective is to minimize the total distance
traveled by loaded vehicles subject to the constraint
that the resulting network consist of a single strongly
connected component. This constraint assures that a
vehicle can leave any station in the facility, visit any
other station.
 Efficient material flow is necessary for an AGVS

82 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics

to be successfully utilized. There are several
factors, which contribute to efficient material
flow. The first is the choice of the appropriate
vehicle type(s). Shelton and Jones [14] have
developed a selection model that assists to user in
evaluating his requirements and provides a set of
AGV types that meet the user needs.
 Maxwell and Muckstadt [15] addressed the
issues of vehicle requirements and routing. Given a flow
path, their method will simultaneously consider the
minimum number of vehicles, the vehicles routs,
and the number of trips over each route to meet the
material handling requirements. Leung et al. [16],
who allowed the capacity and speed of the vehicles
to differ, extended this work.
 Blair, Charnsethikul, and Vasques [17] also addressed
the issue of vehicle routing. Their heuristic algorithm
assumes that the number of vehicles and the flow
path are given. It seeks to organize material movement
into tours with the objective of minimizing the
maximum tour length. Another factor that contributes
to efficient material flow is dispatching. Egbelu
and Tanchoco [18] presented a number of heuristic
rules for dispatching AGVS and used simulation to
evaluate effectiveness of these rules in different
job shop environments.
 All of the work mentioned thus far assumes that
the flow-path design is given. Gaskin and Tanchoco
[2] first proposed a method, which uses zero-one
integer programming to determine the optimal,
unidirectional flow path. The objective of their
program was to minimize the total distance traveled by
loaded vehicles. This method results in a nonlinear
objective function and requires many sets of
constraints. The constraint formulation requires
evaluation of various shortest paths from the points of
material pickup and material delivery. In a follow
up paper, Kaspi and Tanchoco [3] proposed a
branch-and-bound technique for solving the
same problem. Venkataramanan and Wilson [4]
presented an algorithm for determining the optimal,
unidirectional flow path for an AGVS with a given
facility layout. They formulated the problem as an
integer program. The objective was to minimization
the total distance traveled by vehicle subject to the
constraint that the resulting network consist of a
single strongly connected component and a specialized
branch-and-bound solution procedure was discussed.
In last three papers, the pickup/delivery stations

were assumed stationary.
 The simultaneous determination of flow direction
and locations of pickup/delivery stations in a given
facility has also been addressed by several researchers.
Goetz and Egbelu [19] presented a zero-one
integer-programming model for determining the
location of pickup/delivery stations based on a finite set
of available sites. Riopel and Langevin [20] presented a
penalty-based heuristic method for locating
pickup/delivery stations. In a conceptual study, Kiran
and Tansel [21] presented a strongly polynomial
solution for the problem of locating a pickup point on
a material handling loop network where the locations
of the network-centers are fixed. In another study Kiran
et al. [22] presented evidence suggesting that in solving
the problem of locating stations on a unidirectional
loop network, LP relaxation solutions are optimal.
Kouvelis and Kim [23] later proved that assigning
machines to candidate locations in a unidirectional
loop network to minimize total material handling
cost is NP-complete.
 The work by Tanchoco and Sinriech [7] specifically
addressed the problem of simultaneously determining
the shortest single loop layout and the locations of the
pickup/delivery stations. For solving an integer program,
they provided a five-part procedure to find an initial
valid loop, generating all valid loops, discarding
all inferior loops, solving a mixed integer program to
find optimal locations of pickup/delivery stations, and
ending with a lower-bound calculation. In a follow up
paper, Sinriech and Tanchoco [8] provided mathematical
procedure for solving the single loop layout problem.
 Empty vehicle travel influences blocking/congestion,
the number of vehicles needed and the required
storage space at pickup/delivery stations. It is also
directly affected by the dispatching rules used in
the system. Egbelu [24] and Kaspi and Tanchoco
[3] have assumed the amount of empty vehicle
travel time the same as the loaded-vehicle travel
time. But, the accuracy of these models was
inevitably undetermined by them. In 1991,
Venkataramanan and Wilson [4] developed their
algorithm, which has been designed for determining the
optimal flow-path, by considering empty vehicles.
 Vehicle dispatching research emphasizes
consideration of both vehicle- and work center-
initiated dispatching rules in operating an AGVS [25].
When a system is in the vehicle- initiated situation all
the time, the number of vehicles is not sufficient

IJE Transactions A: Basics Vol. 15, No. 1, February 2002 - 83

for the load requests, and the materials have to
wait to be removed. On the other hand, when the
system is always in the work center-initiated situation,
there are too many vehicles in the system. As the
number of vehicles in the system decreases, the
impact of the vehicle- initiated dispatching rule on the
waiting time for load requests increases. Although the
dispatching rules used in atypical system are usually a
combination of both work center- and vehicle-
initiated rules [14], an ideal environment is to have
as few vehicles as possible while at the same time
keeping the proportion of time in which the system
uses the vehicle- initiated rules as small as possible.
This can be accomplished by choosing an appropriate
work center- initiated dispatching rule [26].
 Few researchers have used analytical methods to
explore the relationships between vehicle dispatching
rules and other decision variables. For example, the
empty vehicle-dispatching rule developed by Srinivasan
et al. [27] considers only one vehicle, which is unrealistic
in real-life situations. In 1998, Kobza et al. [28] used a
discrete time Markov chain based on vehicle location
and represented dispatching rules in the one-step
transition matrix, and considered empty vehicle travel.
 This paper presents an especial branch-and-bound
algorithm to determine flow-path in conventional form.
The objective is to find the flow path that minimizes
the total travel of loaded vehicles. We use an algorithm
and call it Revised- DFS algorithm, for finding only
feasible solutions, because we have made it by
changing DFS algorithm in graph theory.

DEFINITION OF PROBLEM

A network can easily represent the flow-path design
problem [4]. For example you consider block layout of
a production plant partitioned into p polygonal zones
Z1, Z2, …., Zp; as illustrated in Figure 1 a block layout
with 11 departments. These zones need not be convex,
but they only contain 90 and 270-degree angles.
Suppose you have a block layout, say output of
CRAFT or any other software.
 In this network, the set of vertices, denoted as V,
represents corner and intersections of the given facility
layout. Some of these vertices are pre-specified to be
picking up (P) and delivery (D) stations and some are
intersection points. The possible directions of travel

between vertices are represented by a set of edges,
denoted as E (Throughout this article the word edge

will be used to indicate an undirected edge, and the
word arc will be used for a directed edge).

Figure 1. Production plant partitioned into eleven level.

Figure 2. Production plant partitioned into three zones with
pickup, delivery and intersection points.

Figure 3. Production plant in Figure 2 without any difference
between nodes.

 Thus the facility layout can be regarded as a
graph G = (V,E). For example you can suppose
block layout in Figure 2, regarding to type of
nodes. We define, hereafter, edges with e, nodes of
graphs with N, degree 2 nodes with dotted boxes
and the other nodes with filled boxes. The reason

Z10
Z8

Z11

Z9
Z7

Z3
Z6

Z4

Z1 Z2 Z5

4

4

N7

N5

N2

N8

N3

2
 e5

6

 2

4 N1
1 e1

3

 2 e3
 5
 e4 N6 N4

4

4

1

2

 6 D2

 2

4

 3

 2
5

D3

D1

P2 P1

84 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics

will be explained.
 In Figure 2, the length of each edge is shown.
This example can be generalized as a form with no
difference between pickup and delivery stations.
We knew that in From-To chart the total of picked
up loads equals to the total of dropped off loads.
By our definition for layout graph, consider Figure
3 as another example in which all of nodes are
similar.
 Now, if we consider Table 1 as a From-To
chart, we will see that all types of the nodes are
similar to each other, although in nature these are
different.
 Gaskin and Tanchoco [2] presented the general
mathematical formulation of this problem. The
objective function is to minimize the sum of the
loaded travel. Constraints must ensure that the
travel between any two adjacent vertices is
unidirectional and layout graph must be strongly
orientable graph.

In summary our problem is converting layout
graph to a digraph in which there is at least one
way between any two points in order to travel the
load (in From-TO chart). In this digraph every
edge must be unidirectional. We call this digraph a
strongly connected digraph.

Since there is more than one way for converting
a graph to strongly connected digraph, we must
choose the one in which objective function be
minimized. The definitions that follow are adapted
from Minieka [29]: A graph G is called strongly
connected if for any vertices i, j ∈V a path from i
to j exists.
 Up to this point, only movement of loaded
vehicles have been considered. In some
circumstances, the travel of empty vehicles is a
secondary concern in flow-path design. In others,
however, empty- and loaded- vehicle travels are
equally important. Both of these cases will be
considered in this section. If empty vehicles are a
secondary concern, the objective function is

Min M L S L Rpd pd dp dp

p d
[* (*) *]

,
+

∀
∑

M = preemptively large weight associated with
loaded- vehicle travel ratio to empty vehicle,

Lpd = number of loads shipped per unit time from

pickup station p to delivery station d (normally
equal to Ldp, the number of times that empty
vehicles travel from delivery station to pickup
station),

Spd = shortest path from p to d given eij’s,

Rdp = shortest path for return of empty vehicle
from d to p given eij’s.

 Now, in previous example you suppose, M=3,
and Lpd is transpose of elements in Table 1 as
Table 2.

DEPTH-FIRST-SEARCH (DFS)

The algorithm, which will be presented, is based
on DFS method. The DFS method has designed for
testing connectivity of a graph. It has developed to
convert a connected and bridgeless graph to a
strongly connected digraph. The algorithm is as
follows [30].

Let the vertices of the graph G be
v v vn1 2, ,... , . Select an arbitrary vertex and label
it as 1. Pick any vertex adjacent to 1. This is not
yet labeled, so label it as 2. Mark the edge {1,2} as
a used edge so that it will not be used again.
Proceeding similarly, suppose that we label vertex
Vi with integer K. Search among all the unlabeled
adjacent vertices of this vertex, select one of them
and label it as (K+1). Mark the edge {K, K+1} as
a used edge. Now it may be the case that all the

TABLE 1. From-To chart for layout graph in Figure 3.
 To

 N5 N7 N8
N1 0 0 10
N2 0 20 0
N3 30 0 0

TABLE 2. Transpose of From-To chart in Table 1 for
Figure 3.
 To

 N1 N2 N3
N5 0 0 30
N7 0 20 0
N8 10 0 0

From

From

IJE Transactions A: Basics Vol. 15, No. 1, February 2002 - 85

adjacent vertices of K are labeled. If so go, back to
vertex (K-1) and search among its unlabeled
adjacent vertices. If we find one such vertex, label
it as (K+1) and mark the edge {K-1, K+1} as a
used edge. Continue the process until all the
vertices are labeled or we are back at vertex 1 with
at least one vertex unlabeled. If it is not possible to
label all the n vertices by the DFS technique, we
conclude that the graph is not connected.

If G is connected and bridgeless, consider G is
a graph model in which the vertices are the street
corners of a large city. Two vertices are joined by
an edge if there is a street joining them.

We are now interested in converting all streets
in the city into one-way streets. Since G is strongly
orientable graph every corner can be reached from
every other corner after. How is this conversion
carried out? We again resort to the DFS procedure
and label all vertices. If {i, j} is a marked edge
where i < j, convert this edge into an arc from i to
j. On other hand, if {i, j} is an unmarked edge where
i < j, convert this edge into an arc from j to i. The
resulting digraph G’ is a strong orientation of G.

THE ALGORITHM

Recall that, using the DFS algorithm for making a
connected digraph had three phases:
(a) Labeling all of nodes and marking some edges: we
saw that in this stage, for every type of labeling we
will have one spanning tree. Then, if the layout graph
has n nodes, there will have n-1 marked edges.
(b) Directing all of the marked edges from label
with less value toward label with greater value.
(c) Directing all of remaining edges from label
with greater value toward label with less value.
 We know that above procedure creates some
feasible solutions. In fact, for every situation of
labeling (the nodes) and marking (the edges), we
will have one feasible solution. Now, we propose
Revised-DFS method. In this method, for every
situation of labeling and marking, we can find
more than one feasible solution, and we can find
better solutions. Revised-DFS method will work in
following way:

(a) Labeling all of nodes, marking the edges
(similar to the Phase (a) in normal DFS).

(b) Directing all of the marked edges from label
with less value toward label with greater value
edges (similar to the Phase (b) in normal DFS).

(c) Finding all of walks in the directed spanning
tree obtained from Phase (b), from every leaf (leaf
is every nodes with indegree = 1 and outdegree =
0) to the root (the root is the node labeled 1 with
indegree =0 and out degree = 1).

(d) Directing all of remaining un-directed edges in
every (two) possible direction.
 We will prove that, every resulting digraph
with above procedure will be one strongly
connected digraph (feasible solution). Now, we
show the procedure through one example.
 Suppose after Phases (a) and (b), we will have
following directed spanning tree in Figure 4.
 After doing Phase (b), we know that the node 1
is root and the nodes 6 and 8 are leaves. Now,
based on Phase (c), we should find every walk
from 6 to 8 and from 8 to 1 (these walks cannot be
opposite with the directed edges). For example, the
walks 6-4-1, 6-2-3-4-1 and 6-2-7-8-1 all can be
used. Suppose we use 6-4-1 for the leaf 6 and 8-1
for the leaf 8. Regarding to this, we will have

Figure 4. An example of Revised-DFS after running phases a
and b.

Figure 5. Figure 4 after running phase c in revised-DFS.

86 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics

Figure 5. Then, with respect to Phase (d), directing
as 2-6 or 6-2 creates two feasible solutions. We
will show that, this procedure makes only feasible
solutions (but we are not sure that it covers all of
feasible solutions).
Theoream: Revised-DFS method output,
results only feasible solutions.

Proof: If resulting digraph will be strongly
connected, we will have a feasible solution.
We must show that there is at least one walk
from i to j and vice versa (for all i,j).
Case 1- There is walk from 1 to every j, for
every j, because of DFS nature.
Case 2- There is walk from every i to every j,
if i<j and i is not a leaf, because of DFS
nature.
Regarding to above case, following situations
can be occurred:

Situation 1 - If i is a leaf, there is at least one
walk from i to root 1 (because of Phase (c) in
Revised-DFS). Now, we have walk from i to 1,
and based on Case 1, there is walk from 1 to
every j. Then, there is walk from i to every j (if
i is a leaf).

Situation 2 - If i is not a leaf, we can move
from i to j (i<j) because of Case 2, as j is leaf.
Now, via situation 1, we can move from j (a
leaf) to every node.

In summary, there is at least one walk from
i to j and from j to i for every i,j.
 By above procedure, we can enumerate
(probably some of) feasible solutions, and we
can find the best between these feasible
solutions. Then, we are not sure that Revised-
DFS covers all of feasible solutions, and for
testing efficiency we use computer
programming.

Figure 6. Especial Branch - and - Bound for the example.

IJE Transactions A: Basics Vol. 15, No. 1, February 2002 - 87

BRANCH AND BOUND APPROACH

The specific technique used in the branch and
bound with depth-search first and backtracking
rather than jump-tracking type of approach.
Using the backtracking method a feasible
complete solution (not necessarily optimal) is
obtained very quickly and the required memory
is much less than for jump-tracking method.
The proposed approach involves eight steps.
Each of these steps is described below. But
first, some additional definitions are needed.

{D} : the set of directed arcs
{U} : the set of undirected arcs
{A} : the set of all the arcs, i. e. {U} ∪ {D}
 = {A}, {U} ∩ {D} = φ
UB : upper bound, i.e. the current (known) best
value of the objective function. The initial
value of UB is set at infinite. Any time a
feasible complete solution is obtained with a
value less than UB, the value of upper bound
UB is updated.
LBk : lower bound of branch k is the best
value of the objective function with all arcs in

{U}. The lower bound LBk is used to label the
branches in the search process. Any time a
lower bound of a certain branch is greater than
(or equal to) upper bound UB, this branch is
bounded.
 For clarity’s, the proposed branch - and -
bound method is explained through a simplified
numerical example. The departmental layout,
graph layout and the material flow From-To
chart are given in Figure 3, and Table 1.

Step 1. Initialization Figure 3 is the
corresponding graph of the layout graph shown
in Figure 2; this graph is equivalent with node-
arc network in which every edge can be
changed to two arcs in opposite directions. The
procedure is initiated by determining set {A}.
Initially, {A} = {set of all 20 arcs in Figure 3,
which can be in every direction}. Since all the
arcs are currently undirected {U} = {A} and
{D}= φ. The upper bound UB = ∞.

Step 2. Branching Branching process, has
three stages: (I) Phases (a) and (b) of Revised-
DFS. (II) Phase (c) of Revised-DFS. (III) Phase
(d) of Revised-DFS.
Step 3. Calculating LB For each branch,

N7

 e5

N5

N2

N8

N3 N1
1 e1

N6 N4
e2

e4

e3

Figure 7. Optimal solution for the example.

88 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics

we know direction of the edges in {D}. The
other edges {U}={A}-{D} should be
considered bi-directional. In stage k, we
calculate LBk = f Ylm lm∑ that regarding to

these directions, is shortest path between node
l and m, and flm is delivered load between l and
m (in From-To chart).

Step 4. Setting Bounds In this algorithm
there is no infeasible solution. Then branch k
is bounded if: (I) lower bound LBk >upper
bound UB and (II) all nodes are labeled and we
have found a complete feasible solution.

Step 5. Branch Selection Considering the
all-new branches (see the branching
procedure), the one with lowest LB is selected.
The information on the other branch (LB, {U},
{D}) is recorded. If both branches are
bounded, the backtracking procedure (step 7)
is evoked.
 The lower bound of branch k = 1 is LB1 =
410 and for branch k = 2, LB2 = 410, Now,
in stage one, we have 10 new branches, the
branches 1, 2, 3 or 5 can be selected (Figure
6). The branching process is continued with
LB1 = 410.

Step 6. Updating of Upper Bound In a
branch, when all of the graph nodes are
labeled, all walks are found, and all remaining
undirected edges are directed, value of
objective function for this feasible solution,
LBk , is less than UB (the current best value of
the objective function), then UB is updated;
i.e. UB = LBk. For example, LB16 = 440 is a
feasible solution. Up to now, UB has been
equal to ∞ so UB is updated to be equal to 440.

Step 7. Backtracking The backtracking
procedure is invoked any time a feasible
complete solution is obtained. The backtracking
returns to the source branch. If a previously
not selected branch of the source, i.e. a sibling
branch is available (i.e. it is not bounded and it
has not been selected before), then the
procedure continues through this branch. If

sibling branches are not available, then
backtracking is performed again. Referring to
Figure 6, the branch k =17 represents a
feasible complete solution, so the procedure
returns to its source, the branch k=2, the
sibling branches are k=18, 19.

Step 8. Termination When backtracking
reaches the root (k =0), and all branches are
ended or bounded (Step 4), then the search is
terminated. The optimal flow path layout for
the example problem (of B&B, not real
problem) is shown in Figure 7.

COMPUTATIONAL RESULTS

In this algorithm, we saw that every solution
obtained from the algorithm is feasible, but we
can’t prove that we can find all of the feasible
solutions by this method. In worst case, we
suppose this algorithm checks only some of
feasible solutions, and branch-and-bound help
us for finding the best solution between only
those feasible. Then, this algorithm is a
heuristic and for testing its efficiency we have
solved about 100 different problems and you
can see the results, in Table 3. Here, we have
compared the result with the last Sinriech and

TABLE 3. Comparing the Computational Results.

Elapsed Time
(sec);

(Revised-DFS
algorithm)

Elapsed Time
(sec)

(Tanchoco)

No. of
Solved

Problems

No. of
Depts.

9 10 20 5

50 87 20 9

135 189 20 12

424 675 20 15

1077 1430 20 20

IJE Transactions A: Basics Vol. 15, No. 1, February 2002 - 89

Tanchoco optimal algorithm [31]. The results
show that this algorithm can solve the
problems in shorter time without error. Up to
now, we have not found any difference between
objective functions in both algorithms.

ACKNOWLEDGMENTS

The author would like to thank Professor J. M.
A. Tanchoco and K. Eshghi for their remark
and comment on this paper.

REFERENCES

1. Hodgson, T., King, R. and Monteith, S., “Developing

Control Rules for an AGVS Using Markov Decision
Processes”, Material Flow, 4(1), (1987), 85-96.

2. Gaskin, R. J. and Tanchoco, J. M. A., “Flow Path
Design for Automated Guided Vehicle System”,
International Journal of Production Research,
25(5), (1987), 667-676.

3. Kaspi, M. and Tanchoco, J. M. A., “Optimal Flow
Path Design of Unidirectional AGV Systems”,
International Journal of Production Research,
28(6), (1990), 1023-1030.

4. Venkataramanan, M. A. and Wilson, K. A., “A
Branch- and- Bound Algorithm for Flow Path Design
of Automated Guided Vehicle Systems”, Naval
Research Logistics Quarterly, 38, (1991), 431-445.

5. Bozer, Y. A. and Srinivasan, M. M., “Tandem
Configuration for Automated Guided Vehicle
Systems and the Analysis of Single Vehicle Loops”,
IIE Transactions, 23(1), (1991), 72-82.

6. Lin, J. T., Chang, C. C. K. and Liu, W. C., “A Load
Routing Problem in a Tandem-Configuration
Automated Guided Vehicle System”, International
Journal of Production Research, 32(2), (1994),
411-427.

7. Tanchoco, J. M. A. and Sinriech, D., “OSL-Optimal
Single Loop Guide Paths for AGVs”, International
Journal of Production Research, 30(3), (1992),
665-681.

8. Sinriech, D. and Tanchoco, J. M. A., “Solution
Methods for the Mathematical Models and Single
Loop AGV Systems”, International Journal of
Production Research, 31(3), (1993), 705-725.

9. Kim, C. W. and Tanchoco, J. M. A., “Conflict-Free
Shortest-Time Bi-Directional AGV Routing”,
International Journal of Production Research,
29(12), (1991), 2377-2391.

10. Chhajed, D., Montreuil, B., and Lowe, T., “Flow
Network Design for Manufacturing Systems Layout”,
European Journal of Operations Research, 57(2),

(1992), 145-161.
11. Sinriech, D. and Tanchoco, J. M. A., “SFT-

Segmented Flow Topology”, In Material Flow
System in Manufacturing, Chapter 8, Tanchoco, J. M.
A., (Ed.), (London: Chapman and Hall), (1994), 200-
235.

12. Langevin, A., Montreuil, B. and Riopel, D.,
“Spine Layout Design”, International Journal of
Production Research, 32(2), (1994), 429-442.

13. Banerjee, P. and Zhou, Y., “Facilities Design
Optimization with Single Loop Material Flow Path
Configuration”, International Journal of
Production Research, 33(1), (1995), 183-204.

14. Shelton, D. and Jones, M. S., “A Selection
Method for Automated Guided Vehicles”, Material
Flow, 4, (1987), 97-107.

15. Maxwell, W. L. and Muckstadt, J. A., “Design of
Automated Guided Vehicle Systems”, IIE
Transactions, 14(2), (1982), 114-124.

16. Leung, L. C., Khator S. K. and Kimbler, D. L.,
“Assignment of AGVS with Different Vehicle
Types”, Material Flow, 4, (1987), 65-72.

17. Blair, E. L., Charnsethikul, P. and Vasques, A.,
“Optimal Routing of Driverless Vehicles in a
Flexible Material Handling System”, Material Flow,
4, (1987), 73-83.

18. Egbelu, P. J. and Tanchoco, J. M. A., “Characterization
of Automatic Guided Vehicle Dispatching Rules”,
International Journal of Production Research,
22(3) (1984), 359-374.

19. Goets, W. G. and Egbelu, P. J., “Guide Path Design
and Location of Load Pick-Up/Drop-Off Points for
an Automated Guided Vehicle System”, International
Journal of Production Research, 28(5), (1990),
927-941.

20. Riopel, D. and Langevin, A., “Optimizing the
Location of Material Transfer Stations within Layout
Analysis”, International Journal of Production
Economics, 22(2), (1991), 169-176.

21. Kiran, A. S. and Tansel, B. C., “Optimal Pick-Up
Point Location on Material Handling Networks”,
International Journal of Production Research,
27(9), (1989), 1475-1486.

22. Kiran, A. S., Unal, A. T. and Kirabati, S., “A
Location Problem on a Unicyclic Network: Balanced
Case”, European Journal of Operations Research,
62(1), (1992), 144-202.

23. Kouvelis, P. and Kim, M., “Unidirectional Loop
Network Problem in Automated Manufacturing
Systems”, Operations Research, 40(3), (1992), pp
533-550.

24. Egbelu, P., “The Use of Non-Simulation Approaches
to Estimating Vehicle Requirements in an Automated
Guided Vehicle Based Transport System”, Material
Flow, 4(1-2), (1987), 33-51.

25. Malmborg, C. and Shen, Y.-C., “Heuristic
Dispatching Models for Multi-Vehicle Material
Handling System”, Applied Mathematical Modeling,
18, (1994), 124-133.

26. Shen, Y.-C. and Kobaz, J. E., “A Dispatching-Rule

90 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics

Based Algorithm for Automated Guided Vehicle
Systems”, Design. Production Planing and Control,
9, (1), (1998), 47-59.

27. Srinivasan, M., Bozer, Y. and Cho, M., “Trip-Based
Material Handling System: Throughput Capacity
Analysis”, IIE Transactions, 26(1), (1994), 70-89.

28. Kobaz, J. E., Shen, Y.-C. and Reasor R. J., “A
Stochastic Model of Empty Vehicle Travel Time and
Load Request Service Time in Light Traffic Material
Handling Systems”, IIE transactions, 30, (1998),

133-142.

29. Minieka, E., “Optimizing Algorithms for Networks
and Graphs”, Marcel Dekker, Inc., New York,
(1978).

30. Balakrishnan, V. K., “Discrete Mathematics”,

Prentice Hall PTR, (1991).
31. Sinriech, D. and Tanchoco, J. M. A., “Intersection

Graph Method for AGV Flow Path Design”,
International Journal of Production Research,
29(9), (1991), 1725-1732.

