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Abstract   Traditionally, Electrical power plant capacities are determined after specific plant 
locations have been selected. In this paper an expansion policy of power plant centers involving the 
choice of regions that must be allocated to power plant centers and power plant centers capacities 
over a specified planning horizon (years) is tackled. The problem is performed as a mixed integer-
programming model and solved using a modified Hop field’s neural network model designed for 
(T.S.P) travel salesman problem. This paper makes an approach to estimate number of centers, 
optimum distributions power respect to minimizing fixed investment and operational cost in long 
term. 
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در اين  . پس از تعيين محل استقرار آنها انجام مىگيرد        ) نيروگاهها(معمولا ظرفيت مراكز توليد نيرو         چكيده  
ى توسعه مراكز توليد نيرو با توجه به نوع منطقه و ظرفيت مورد نياز با نگرشى خاص انجام                        مقاله سياستها 

مدل سازى به كمك برنامه ريزى رياضى توسعه پيدا كرده و سپس با توجه به مفهوم شبكه هاى عصبى           . مىگيرد
ه شده مىتواند به تعيين     راهيافت مدل توسعه داد   . هوپ فيلد بهينه تعداد نيروگاههاى مورد نياز محاسبه مىگردد        

 نوع مراكز، محلها و نحوه توزيع اين مراكز با هدف حداقل كردن هزينه هاى سرمايه گذارى و عمليات در بلند                    
 .مدت منجر گردد

INTRODUCTION 

Economic development in any region of the world 
is closely related to availability of energy. This is 
more so in industrial areas of developing countries, 
in some of these countries, regions are sometimes 
rapidly and indiscriminately connected to electricity 
power plant network with out considering the 
economic viability and availability of generation 
and distribution capacity in long term. The major 
problem inherent in expansion policy of power 
plant centers is high investment that makes their 
optimal design very crucial for economically 
viable application in long term. Expansion policy 
of power plant centers has been discussed in 
numerous publications. Most of the existing literatures 
consider policy for one time period (year) and one 
load center. However, The problem often faced by 
people responsible for planning of energy development 

in how to increase generation capacity in a specific 
time frame extending over one time period while 
attaining certain objectives. The objectives are 
typically lower investment and operation costs. 
The Problem of choosing the capacities of power 
plant centers over a period of time is known as an 
“expansion policy problem”. 
     Many researchers have studied this problem by 
using mathematical methods, such as linear 
programming [1,2,3] and dynamic programming 
[4,5,6,7,8,9]. The expansion policy problem 
generally exhibits a structure that makes decomposition 
into stages, particularly attractive. This makes 
dynamic programming or mixed integer programming 
(DP/MIP) very appropriate when used in conjunction 
with other optimization techniques like design 
analysis [7,9], production [8], probabilistic 
simulation [5,6] and expert system [4,10]. In most 
cases DP/MIP is employed in last stages of 
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planning after trail solutions to the expansion 
policy problem have been generated. One 
condition of using DP/MIP is that the power plant 
sizes are known in prior, a requirement that makes 
DP/MIP unsuitable. In this paper, a neural network 
approach was used to solve the multi-location 
(centers) expansion center problem. A model and 
an algorithm were developed to find the best 
combination of center location, center size over a 
number of years and power distribution. The 
problem was formulated as a mixed integer 
programming and a neural network method 
designed for T.S.P (Travel Salesman Problem). 
Due to the special structure of the problem and 
model, the well-developed modified network 
approach was quite successful in obtaining optimal 
solutions. 

PROBLEM DESCRIPTION 

An illustration of power plant /distribution network 
system is shown in Figure 1. It consists of a few 
power plant centers located in C different centers 
and many regions are fed. Each region is 
connected to the nearest power plant center in 
specific period. The produced power energy Oi and 
demand of power energy of region I in period T is 
Lit. If this is more than the load demand in the 
region, the excess energy is injected into the other 
centers. On the other hand, drawing power from 
the other centers with surplus production rectifies 
any shortfall in energy supply from one center. 
     The expansion policy problem discussed in this 
paper can be stated as follows given: 

- Expected load demand data of each region in 
each period. 

- Cost of investment and operational power. 
     Determine the size of center and grouping 
regions to be introduced each year over T periods 
to minimize the cost of providing power to the R 
chosen regions while satisfying operational and 
economic constraints. 

SYSTEM MODELING 

Hop field’s (1982) introduced a network architecture 
known as the Hhopfields network. His network has 
a single layer of neuron, and each neuron has a 
state that can be binary (0,1) or bipolar (-1,1). In 
this paper binary state will be used. The entire 
network also has a state at any point in time 
represented by the state of a vector of neurons. The 
neurons are fully interconnected and every pair of 
neurons has connection in both directions. Figure 2 
shows a diagram of Hhopfield network. Because of 
this interconnection topology, output of each 
neuron feeds into every other neurons and causes 
the network to be recursive. This recursive feature 
will allow the network to maintain a stable state. If 
no external input exists, each interconnection has 
an associated weight. In the Hhopfield network 
the connection weights of every pair of neurons 
have equal value in both directions, (i.e., 
WXtRt,YtQt=WYtQt,XtRt) and there is no self-loop 
connection (i.e., WXtRt, XtRT=0). The connection 
weights have to be set prior to every application 
and maintain unchanged during updating 
procedure. These weight values are set in such a 
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Figure 1. Power plant distribution network. 
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Figure 2. The diagram of hop field’s network. 
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way that the energy function of the network is 
minimized. 
     Before starting the updating procedure, an initial 
value has to be assigned to each neuron. Then one 
neuron at a time is updated and its output affects the 
state of other neurons. The updating candidate can be 
selected either randomly or sequentially. This updating 
process continues until the network stabilizes at a 
local or global minimum. The effect of each neuron 
on every other neuron is influenced by connection 
weight between them. Let UXt, Rt denotes the state of 
neuron Xt (i.e. 0 or 1). This value will be the output 
of neuron XtRt to every another neuron, which is a 
candidate for updating. If neuron YtQt is an updating 
candidate, it will be affected by all other neurons 
according to following equations. 
 

Γ Y t Q t  =∑ M  ∑ M  U X t R t .  W X t R t , Y t Q t  

              ∀ Yt , Qt, Xt Rt # Yt Qt  
 

     The state of neuron will be updated as follows: 
 

UYtQt  ={ 1 if ΓYtQt >=0 AND 0 otherwise} 
             ∀ Yt Qt 
 

The energy function in this neural network is 
 

E= ½ ∑c∑c∑c∑cWXtRt,YtQt. UXtRt. UYtQt (Xt Rt  # Yt Qt) 
 

     Figure 3 illustrates the updating process in the 
Hhopfield network. This process repeats until a stable 
state is attained. Base on this network topology, 
Hhopfield and Tank (1985) proposed a model to solve 
the traveling salesman problem (T.S.P). In their 
model, neuron Xt Rt, if the salesman visits city Xt in 
Rth t

 position of the tour, and not active otherwise (t is 
period that here assumed equal one). 
     The energy function was selected in such a way 
that the energy level becomes lower after state 
changes. The progressive updating of Hhopfield 
network leads the network to a stable state at which the 
energy reaches a minimum. This minimum could be 
either local or global .The following energy function 
was used in their network: 
 

E= ½ A∑xt ∑rt ∑qt UXtRt UYtQt +½ B ∑rt∑xt∑yt 
UXtRt UYtRt  +  ½C ∑xt∑rt(Uxtrt-M)2  + 
 ½D ∑xt∑yt∑rt∑XtYtUXtRt(UYt,(r-1)t+UYt,(r-1)t) 
r# q x # y yt# xt 
 

     The first term of energy function corresponds to 
the constraint that each city should be visited only 
once. When this constraint is satisfied, this term 
has the minimum value. The second term is 

associated with the restriction that the salesman 
can visit only one city at a time, i.e. no more than 
one city can be placed in the same position in the 
tour sequence. This term will be zero when each 
city is placed in only one position. The third term 
will force the number of visited cities to be equal 
to the M, i.e., all cities should be visited, therefore 
all the constraint in T.S.P have been incorporated 
in to the energy function.  The objective function 
of T.S.P minimize total travel distance is reflected 
by the last term. It is important to note that, unlike 
most neural networks, Hopfield network does not 
need the training phase. Therefore, once the 
connection weights are set, they remain unchanged 
through out the entire iterative process. The logic 
represented by the energy function is further 
mapped to the connection weights used in updating 
process. The connection weights suggested by 
Hopfield (1985) have the following form. 

WXtRt,YtQt= - A δXtYt (1-δRtQt) - B δRtQt (1-δXtYt) – C  
- D δXtYt (δQt(r+1)t + δQt(r-1)t) 

∀ Xt ,Yt , Rr ,Qt 
 
     The first and second terms in the above weight 
equation are related to the constraints of the model 
(i.e., city can not be placed in more than one 
position in the tour, and one position can not be 
used for more than one city). They cause inhibitory 
connection within each row and each column. As 
A and B have the same effects but in different 
directions. In most cases A is set equal to B. The 
third term has a global inhibitory effect while the 
term forces the network to minimize the distance 
between two adjacent cities in the tour. 
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Figure 3. The Hhopfield Network Updating Process. 
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NEURAL NETWORK MODELING FOR 
EXPANSION POLICY 

Considering the demand loads as cities and the 
power plant centers as a position in a tour modified 
Hopfiels neural network can be applied to 
expansion policy of power plants in different areas. 
In this case, the constraint include: 
a) Each demand load had better assigned to only 

one plant center. 
b) All demand loads should be allocated to the 

power plant centers. 
     The major object is to minimize the total 
investment and operational costs. By comparing 
the T.S.P and expansion policy of power plant 
centers , the following can be observed: 
1) In the T.S.P, each city can be visited only once. 

This is similar to the constraint of assigning 
one demand load to only one power plant 
center. 

2) In the T.S.P, no more than one city can be 
assigned to a single position, but in the 
expansion policy problem, it is allowed to 
assign more that one demand to a power plant 
center.  

3) The T.S.P requires that all the cities should be 
visited which is similar to the requirement that 
all demand loads must be assigned to the 
power plant center in expansion policy.  

4) The objective function of T.S.P is to minimize 
the total travel distance while in expansion 
policy problem is to minimize the investment 
and operational costs.  

     The expansion policy power plant center 
problem in the context of the Hopfield network can 

be illustrated in Figure 4. In this sample we have 
two regions as a demander and five power plant 
centers, which two of them are candidate for 
expanding in future. We want to built expansion 
policy base on T=3 periods. Region one dose not 
have any increasing demand load in period three. 
In this case: 
a) Shows a feasible solution with allocating region 

load of demand one of region1 and demand 
load of period one of region2 to center 2 and the 
remaining three demand loads to another. 
Minimum cost of investment and operational 
cost can be occurred when we expand exactly 
center two and three.  

b) Shows a feasible solution with splitting demand 
load of period 2 of region1 between center two 
and three because of expansion constraint or 
reducing cost.  

c) Shows an infeasible solution where demand 
load of period3 of region2 in row5 is empty – 
no active neurons i.e., this demand load is not 
assigned to any center.  

     Based on the above observation, the first 
and third term in the T.S.P energy functions 
are adopted for expansion policy. The last term 
is modified to reflect the objective of the 
expansion policy problem. The energy function 
and the associated connection weight equation 
are as follow:  
 

E=½ A∑Xt∑R∑Q UXtRt UXtQt + ½ B ∑R∑ t 
(∑X∑Y 1- UXtRt UYtRt (êXtRt + êYtRt)  /Ht )+½ C 
(∑X∑t∑R UXtRt –M)²  +½ D  ∑t 1/INV 
{∑R∑X∑Y UXtRt UYtRt (ICRt +PCRt (T-t+1))} 
R<>Q                                                                                   X<>Y 
 

ICRt = fix investment cost of one unit generated 
power in region R in period t. 
PCRt = operational cost of one unit generated 
power in region R in period t. 
Ht = upper limit of expansion capacity of power 
plant in any region in each period t. 
M = number of regions multiply number of 
periods. 
 
êXtRt =demand of region X in period t  satisfied by 
center R in period t  
δYtQt =∑t∑X∑R  UXtRt .WXtRt,YtQt      ∀  Y ,T,Q  

UYtQt ={1 if  ΓYtQt>=0  , 0 otherwise } 
δRtQt ={1 if Rt=Qt , 0 otherwise } 

 
C1 C2 C3 C4 C5     C1 C2 C3 C4 C5   C1 C2 C3 C4 C5 
   

 
 [a] [b] [c] 

Figure 4. The Expansion Policy with T=3. 
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δXtYtt ={1 if Xt=Yt , o otherwise } 
WXtRt,YtQt   = - A δXtYt (1- δRtQt) + B δRtQt (êXtRt + 
êYtQt)/Ht  - C  - D  SXtYt 

SXtYt = { δRtQt(êXtRt  + êYtQt )(ICRt +δRt(T-t+1)+(1- 
δRtQt ) (êXtRt (ICRt+PCRT.T) + êYtQt (ICQt+PCQt.T))} 
 
     The S value can be obtained from load 
distribution matrix (initial solution). The solution 
doses not depend on the initial load distribution 
matrix presentation or data input sequence. To 
initialize the expansion policy process, the number 
of center is set to be equal the “number of periods 
of study” multiple by “number of regions”. Then 
only one demand load in specific period is assigned 
to each center. The above-mentioned updating 
procedure can be used to minimize the energy of 
the network, but the solution could be a local 
minimum. After reaching a stable state, the actual 
number of centers is equal to number of center that 
have at least one active neuron. The expansion 
policy algorithm can be summarized as follow: 

Step 1   A) read A, ∇A, B, ∇B, C, ∇C, D, ∇D, R, 
C, T, G and calculate S, W. 
 B) Initialize the network with one region to one 
center. 

Step 2   Update network states until a stable states 
attained. 

Step 3   if any region is assigned to more than one 
center, discard the current solution and set A = A-
∇A, and go to step one. If total assigned load in 

Tth period is more than H, discard the current 
solution, set B= B+ ∇B, and go to step one. If the 
total number of active neurons is less than R, 
discard the current solution and set C = C-∇C and 
go to 2 in Step 1. 

Step 4   If G equal number of center, stop. Else go 
to next step. 

Step 5   discard the current solution, If G> number 
of center, set D=D+∇D other wise, set D=D-∇D 
go to 2 Step 1 

RESULTE 

The above-presented problem essentially is a 
mixed integer programming. The integer variables 
are the complicating variables that make the 
problem so difficult to solve and when the scale of 
model is large, NP hard problem arises. In this 
paper an example designed was solved by neural 
network and compare with mixed integer 
programming results. Although adjusting the 
parameters of neural model takes time, finding the 
result of model is more faster than that in the 
backtracking method and mixed integer method 
algorithms, such as branch and bound, benders 
decompositions. 
     In mixed integer programming, it is necessary 
that the number of the centers as an input to the 
model be defined, but in this paper the number of 
the centers is assigned based on the optimal 
investment and operational cost. As follow the 

TABLE 1. The Comparison Between N.N, and Bender Decomposition Problem. 
 
 

MODEL No. OF 
YEAR 

No. OF REGION 
 No. OF CENTER 

Neural Net. Model 
(cpu time) 

h:m:s 

Benders decomposition 
(cpu time) 

h:m:s 
I 5 4 4 0:00:01.20 0:00:12.85 
II 5 4 4 0:00:01.45 0:05:28.50 
III 5 4 4 0:00:01.12 0:00:47.18 
IV 5 4 4 0:00:00.55 0:00:45.60 
V 7 4 4 0:00:02.40 0:00:48.23 
VI 9 4 4 0:00:45.32 0:12:08.25 
VII 10 5 5 0:01:15.20 2:02:11.27 
VIII 10 5 5 0:02:00.03 2:36:15.16 
IX 8 8 8 0:05:30.01 3:48:00.00 
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result of neural network modeling compare with 
bender decomposition in C.P.U time for nine 
different models in number of region, number of 
center and number of year. The Information of 
those models is provided by NSERC, Canada. 

CONCLUSION 

This paper makes an approach to find optimum 
number of centers and Optimum distribution power 
respect to minimizing fixed investment and 
operational cost, along with others economical and 
environmental objective functions in long term as 
an expansion policy of power plant centers. This 
approach is neural network and it has ability to 
work without training phase.  
     The results of neural network in all models, 
which provided by NSERC, Canada are better than 
those in Bender’s decomposition method. Although 
the neural network reduces time processing, it has 
problem with initial network. Future researches 
include further development of the model and the 
algorithm of initializing network. 

REFRENCES 

1. Ramakumar, R., Shetty, P. S. and Ashenayi, K., “A linear 
Programming Approach to Design of Integrated 
Renewable Energy System for Developing Countries, 
IEEE Trans. on Energy Conv., Vol. EC-1, (1986), 18-
24. 

2. Rutz, W., Becker, M., Wicks, F. E. and Yerazunis, S., 
“Sequential Objective Linear Programming for 
Generation Planning”, IEEE Trans. on Power App. and 
Systems, Vol. PAS-98, (1979), 2015-2021. 

3. Jabalameli, M. S., Saboohi, Y., “Model of Optimal 
Development of Energy System with Autonomous Sub-
Systems”, IUST, Vol. 7 2b, (1996), 25-43. 

4. David, A. K. and Rong-da, Z., “Integrating Expert 

      System with Dynamic Programming in Generation 
Expansion Planning”, IEEE Trans. on Power Systems, 
Vol.4, (1989), 1095-1101. 

5. Kbouris, J. and Contaxis, G. C., “Autonomous System 
Expansion Planning Considering Renewable Energy 
Sources - a Computer Package”, IEEE Trans. on Energy 
Conv., Vol. 7, (1992), 374-381. 

6. Kbouris, J and Contaxis, G. C., “Optimum Expansion 
Planning of an Unconventional Generation System 
Operating in Parallel with a Large Scale Network”, IEEE 
Trans. on Energy Conv., Vol. 6, (1991), 394-400. 

7. Lo, N. E., Campo, R. and Ma, F., “Design Framework for 
New Technologies: A Tool for Strategic Planning of 
Electric Utilities”, IEEE Trans. on Power Systems, Vol. 
Pwrs-2, (1987), 959-967. 

8. Yang, H. T. and Chen, S. L., “Incorporating a Multi 
Criteria Decision Procedure into Combined Dynamic 
Programming/Production Simulation Algorithm for 
Generation Expansion Planning”, IEEE Trans. on Power 
System, Vol. 4, (1989), 165-172. 

9. Bart, A., Benahmed, M., “Long-Term Energy 
Management Optimization According to Different Types 
of Transactions”, IEEE Trans, on Power Systems, Vol. 
13, (1998), 67-80. 

10. Nabil, H., Abbasy and Soliman, S. A., “Artificial Neural 
Network Application to Economic Operation of All-
Thermal Power Plants”, International Journal of Power 
and Energy Systems, Vol. 18, No. 2, (1998). 

11. Abouzahr, I. and Ramakumar, R., “An Approach to 
Access the Performance of Utility-Interactive 
Photovoltavicsystem”, IEEE Trans. On Energy Conv., 
Vol 8, (1993), 145-153. 

12. Abouzahr, I. and Ramakumur, R., “Loss of Power Supply 
Probability of Stand – Alone Wind Electric Conversation 
Systems’, IEEE Trans. on Energy Conv., Vol.5, (1990), 
445-451. 

13. Akuff, F. O., “Climatic Data for Solar and Wind Energy”, 
Application in Ghana, London, (May 1991). 

14. Ashenayi, K. and Ramakumar, R., “IRES-A Program to 
Design Integrated Renewable Energy System”, Enery, 
Vol .15, (1990), 1143-1152. 

15. Asiedu, M .Y., “Designing a Renewable Energy 
Generation Network Using Mixed Integer Programming 
Model”, M.Sc Thesis, Industrial Systems Engineering, 
Faculty of Engineering, University of Regina, Sask., 
Canada, (1995). 




