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Abstract   The problem of minimum-cost expansion of power transmission network is formulated as 
a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each 
bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the 
mechanics of natural selection and genetics. An applied example is presented. The results from a set 
of tests carried out on the prototype show that the application of GA techniques is feasible in 
transmission network planning. An empirical analysis of the effects of the parameters of the algorithm 
is also presented in the context of this novel application. Existing mathematical programming, 
heuristic techniques, artificial intelligence (AI) and iterative improvement methods are also reviewed 
briefly. 
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   در ايـن مقالـه مسـاله برنامه ريزي خطوط انتقال به وسيله الگوريتمهاي ژنتيكي فرموله شده است كه                        در ايـن مقالـه مسـاله برنامه ريزي خطوط انتقال به وسيله الگوريتمهاي ژنتيكي فرموله شده است كه                     چكـيده چكـيده 
الگوريتم الگوريتم . . هزيـنه هـاي خطـوط جديـد و محدوديتهاي ديگر در هر باس در مساله مورد توجه قرار گرفته است                    هزيـنه هـاي خطـوط جديـد و محدوديتهاي ديگر در هر باس در مساله مورد توجه قرار گرفته است                    

و روش حل بدين صورت است و روش حل بدين صورت است ژنتيكـي بـر اساس سيستمهاي تكاملي و تدريجي و قواعد موروثي استوار بوده           ژنتيكـي بـر اساس سيستمهاي تكاملي و تدريجي و قواعد موروثي استوار بوده           
كه با مجموعه اي از حلهاي بالقوه از جمعيت مورد مطالعه حل را شروع كرده و از آن براي توليد نسلهاي آينده                كه با مجموعه اي از حلهاي بالقوه از جمعيت مورد مطالعه حل را شروع كرده و از آن براي توليد نسلهاي آينده                

 ريزي   ريزي  مثالي از برنامه  مثالي از برنامه  . . كند كه يكي از شناخته شده ترين الگوريتمهاي مدرن براي مسائل بهينه سازي است             كند كه يكي از شناخته شده ترين الگوريتمهاي مدرن براي مسائل بهينه سازي است               اسـتفاده مـي   اسـتفاده مـي   
دهد كه الگوريتم ژنتيكي متد خوبي براي حل اينگونه شبكه          دهد كه الگوريتم ژنتيكي متد خوبي براي حل اينگونه شبكه            نتايج نشان مي  نتايج نشان مي  . . ستستخطـوط انتقال شرح داده شده ا      خطـوط انتقال شرح داده شده ا      

همچنين آناليز نشان داده است كه حدود پارامترهاي الگوريتم ژنتيك براي حل چنين مسائلي چه            همچنين آناليز نشان داده است كه حدود پارامترهاي الگوريتم ژنتيك براي حل چنين مسائلي چه            . . باشـد باشـد   هـا مـي   هـا مـي   
 ..ستستدر ضمن متدهاي رياضي، ابتكاري، هوش مصنوعي و متد جستجو شرح داده شده ادر ضمن متدهاي رياضي، ابتكاري، هوش مصنوعي و متد جستجو شرح داده شده ا. . تواند باشدتواند باشد  مقدار ميمقدار مي

 
INTRODUCTION 

The long-range planning of an electrical power 
transmission network is concerned with finding the 
most economical expansion plan for the power 
system over an extended but finite planning 
period, 20 years for example. It is a complex 
process in which the application of computing 
techniques has grown steadily from the well-
established areas of load flow and security analysis 

for high voltage transmission and distribution 
system analysis.  
     The transmission solution method suited to 
solve power system planning problem uses the 
linear (DC) load flow model because [1]: 
i. it can be solved by a standard linear programming 
code;  
ii. it uses only active power - Mega Watt, forecasts; 
iii. the error introduced by using the linear load 
flow approximation is acceptable in long-range 
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planning studies. 
     Transmission network expansion is a complex 
mathematical optimization problem because it 
involves, typically, a large number of problem 
variables. The commonly used methods reported in 
the literature can be categorized into mathematical 
programming, heuristic based, artificial intelligence 
and iterative improvement methods [2-22].  

MATHEMATICAL PROGRAMMING BASED 
TECHNIQUES 

The general form of the above techniques is: 

Optimize: ),..,,( n21 XXXF         Subject to the 
constraints: 
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and according to F G and , ~X , the techniques are 
classified into linear, integer, mixed-integer linear, 
zero-one, or non-linear programming, etc. 
     As long ago as 1960, Knight [2] used such a 
method in which starting from the geographical 
positions of the substations required to interconnect, a 
set of equations is obtained and solved by linear 
programming to obtain a minimum cost power 
transmission network design. The drawback of this 
method is that the load flow constraints are not 
taken into consideration. Garver [3] proposed a 
method that starts by converting the electrical 
network expansion problem into a linear programming 
problem. The mathematical programming technique 
used in solving the linear network model 
minimizes a loss function defined as power times a 
guide number summed over all network links. The 
overload path with the largest overload is selected 
for circuit addition. The drawback of this method 
is that the model has no user interaction and is 
fixed by program formulation. Villasana et al [1] 
and Serna et al [4] also proposed methods used a 
DC linear power flow model and a transportation 
model respectively. In both methods, the model is 
intractable. 
     Berg and Sharaf [5] proposed a method, using 

the admittance approach and linear programming, for 
planning transmission capacity additions. The method 
consists of two phases. In the first phase admittance 
addition is made, while in the second phase VAR 
(Voltage Amper Reactive) allocation is specified. 
In this method, losses have been excluded. Kaltenbach 
et al. [6] proposed a model, which uses a 
combination of linear and dynamic, programming 
techniques to find the minimum cost capacity 
addition to accommodate a given change in demand 
and generation. The drawback of this method is 
that a very large number of decision variables is 
required. 
     Farrag and El-Metwally [7] proposed a method, 
using mixed-integer programming, in which the 
objective function contains both capital cost 
represented in its discrete form and the 
transmission loss cost in a linear form. Kirchhoff’s 
first and second laws are included in the 
constraints, in addition to the line security constraints. 
In this method the loss term is linearized and a 
large number of decision variables is required. 
Sharifnia and Ashtiani [8] proposed a method for 
the synthesis of a minimum-cost secure network. 
In this method the loss terms are linearized in the 
constraints and a large number of decision variables 
is required. Adam et al [9] proposed a method, 
which is based on an interpretation of, fixed cost 
transportation type models, and includes both 
network security (in the transmission network) and 
cost of loss (in the distribution network). The 
drawback of this method is that the loss term is in 
a linearized form and it requires a large number of 
decision variables, due to the use of the mixed-
integer linear programming technique as the 
solution tool. 
     Lee et al [10] proposed a method which is 
based on static expansion of networks using the 
zero-one integer programming technique and 
Romero and Monticelli [11] proposed a zero-one 
implicit enumeration method for optimizing 
investments in transmission expansion planning. 
These methods require a large number of decision 
variables and are computationally very expensive. 
Padiyar et al [12] made a comparison of the 
computation times required by four different 
optimization techniques: the transportation model; 
linear; zero-one and non-linear programming. The 
use of zero-one and non-linear programming 
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requires high CPU times compared to other 
methods which makes them ineffective for large 
scale systems [13] and all of the methods 
reviewed are fixed by program formulation. 
     Yousef and Hackam [14] proposed a model 
capable of dealing with both static and dynamic 
modes of transmission planning, using non-linear 
programming. The cost function includes the 
investment and transmission loss cost. Again, this 
method requires long computation times and a 
large number of decision variables [15].  

HEURISTIC TECHNIQUES. 

El-Sobki et al [16] proposed a heuristic method, 
which is a systematic procedure to cancel the 
ineffective lines from the network. The process 
is directed in a good manner such that the 
minimum cost network will be obtained 
containing the most effective routes with the 
best number of circuits. The DC-load flow 
model is used. The drawback of this method is 
that power losses are not taken into account.  
     Albuyeh and Skiles [17] presented a 
planning method involving three integral parts. 
The first is a network model using a fast-
decoupled load flow relating the changes in 
active and reactive powers to changes in bus 
angles and voltages, respectively. In the second 
part, a selection contingency analysis is 
employed to determine the maximum overload 
on each branch and the maximum voltage 
deviation for each bus. Finally, the line cost, 
maximum overload and a sensitivity matrix are 
combined into two formulae to determine the branch 
to be added and the susceptance of that branch. 
The procedure is repeated until the contingency 
analysis shows no overload. In this method 
losses have been included as a linear term. 
     Ekwue [18] proposed a method derived on 
the basis of a DC-load flow approach. The 
method determines the number of lines of each 
specification to be added to a network to 
eliminate system overloads at minimum cost. A 
static optimization procedure, based on the 
steepest-descent algorithm, is then used to 
determine the new admittances to be implemented 
along these rights of way. In this method, the 

model is only applicable to already connected 
systems and not expansion as considered here. 
     In general, a characteristic of heuristic techniques 
is that strictly speaking an optimal solution is 
not sought, instead the goal is a “good” 
solution. Whilst this may be seen as an 
advantage from the practical point of view, it 
is a distinct disadvantage if there are good 
alternative techniques that target the optimal 
solution.  

ARTIFICIAL INTELLIGENCE 

With the development of artificial intelligence (AI) 
theory and techniques, some AI-based approaches 
to transmission network planning have been 
proposed in recent years. These include the use of 
expert systems [19] and artificial neural network 
(ANN) based [20] methods. The main advantage 
of the expert system based method lies in its 
ability to simulate the experience of planning 
experts in a formal way. However, knowledge 
acquisition is always a very difficult task in 
applying this method. Moreover, maintenance 
of the large knowledge base is very difficult. 
Research into the application of the ANN to the 
planning of transmission networks is in the 
preliminary stages, and much work remains to be 
done. The potential advantage of the ANN is its 
inherent parallel processing nature.  

ITERATIVE IMPROVEMENT METHODS 

In recent years, there has been a lot of interest in 
the application of simulated annealing (SA) and 
taboo search (TS) to solving some difficult or 
poorly characterized optimization problems of a 
multi-modal or combinatorial nature. SA is 
powerful in obtaining good solutions to large-scale 
optimization problems and has been applied to the 
planning of transmission networks [21]. In this 
reference, the transmission network planning is 
first formulated as a mixed integer non-linear 
programming and then solved using SA. The 
strength of GA’s is that they are free from 
limitations about the search space, e.g., continuity, 
differentiability and unimodality and they are very 
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flexible in the choice of an objective function. 
Furthermore, GA’s can work on very large and 
complex spaces. These properties give GA the 
ability to solve many complex real-world problems. 
Cooling schedule could be important and 
neighborhood function is crucial to its effectiveness. 
TS has emerged as a highly efficient, search paradigm 
for finding quickly high quality solutions to 
combinatorial problems [22-25]. It is characterized 
by gathering knowledge during the search, and 
subsequently profiting from this knowledge. TS 
has been applied successfully to many complicated 
combinatorial optimization problems in many 
areas including power systems [26-27], The drawback 
of this method is that its effectiveness depends 
very much on the strategy for tabu list manipulation. 
Obviously, how to specify the size of the tabu list 
in the searching process plays an important role in 
the search for good solutions. In general, the tabu 
list size should grow with the size of a given 
problem. 

WHY GENETIC ALGORITHMS? 

From the above review, the following conclusions 
are drawn regarding previous methods: 
i. most allow no user interaction [1-5];  
ii. most require a large number of decision 
variables [6-10]; 
iii. models fixed by program formulation [11-16]; 
iv. long computation times [17-18,21-22]; 
v. considerable effort and good mathematical 
knowledge is usually required for adaptation to specific 
problems [9-14]. 
     In this paper, the application of a genetic algorithm 
(GA) is proposed to solve the transmission network-
planning problem. 
     GA’s are based in concept natural genetic and 
evolutionary mechanisms working on populations 
of solutions in contrast to other search techniques 
that work on a single solution. Searching not on 
the real parameter solution space but on a bit string 
encoding of it, they mimic natural chromosome 
genetics by applying genetics-like operators in 
search of the global optimum. An important aspect 
of GA’s is that although they do not require any 
prior knowledge or any space limitations such as 
smoothness, convexity or unimodality of the 

function to be optimized, they exhibit very good 
performance in the majority of applications [28]. 
They only require an evaluation function to assign 
a quality value (fitness value) to every solution 
produced. Another interesting feature is that they 
are inherently parallel (solutions are individuals 
unrelated with each other); therefore their 
implementation on parallel machines reduces 
significantly the CPU time required [28]. 
     Compared with other optimization methods, 
GA’s are suitable for traversing large search 
spaces since they can do this relatively rapidly and 
because the use of mutation diverts the method 
away from local minima, which will tend to become 
more common as the search space increases in size. 
GA’s give an excellent trade-off between solution 
quality and computing time and flexibility for 
taking into account specific constraints in real 
situations. 
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Figure 1. Existing conditions of the 6-bus network. 
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EXAMPLE TRANSMISSION NETWORK 
 
The 5-bus network to be expanded to 6-bus, as 
described in [3], is shown in Figure 1 before 
expansion (existing conditions). The existing 
network consists of three load only buses and two 
generator and load buses. Single 3-phase paths 
already exist between some of the buses, as 
indicated. 
     The conditions for the expanded system are 
shown in Figure 2, where the loads of the network 
are increased by a factor of 4. Two additional 120 
MW generating units are added at Bus 3. A new 
generating Bus 6 with a total generation capacity 
of 600 MW is also added to the network. The data 
for the existing and new transmission lines is given 
in Table 1, where the determination of the capacity 
of each line is based on thermal limitations and 
stability considerations. 
     The net generation minus load is computed 
from the load forecast at each bus and the 
generation scheduled to exactly match the total 
load as given in Table 2. This assumes that Bus 1 

dispatches 50 MW, Bus 3 dispatches 165 MW, and 
a new site (Bus 6) has been selected for a new 
generating station with a maximum capacity of 
600 MW - but dispatching 545 MW. 
     For the expanded network, the goal is to 
determine which new line to construct in order to 
supply the future load pattern. 

FORMULATION FOR LINEAR 
PROGRAMMING 

The transmission network synthesis used here is 
based on the linearized power-flow model [12]. 
The mathematical formulation of the minimum-
cost circulation problem for solution by linear 
programming is: 

TABLE 1. Transmission Line Data for the 6-Bus Network. 

From  
Bus 

To 
Bus 

Length 
(miles) 

Power 
Capacity 

(MW) 

Line 
Number 

1 2 40 100 1 
1 4 60 80 2 
1 5 20 100 3 
2 3 20 100 4 
2 4 40 100 5 
2 6 30 400 6 
3 5 20 400 7 
4 6 30 400 8 
5 6 61 312 9 

 
 
TABLE 2. Net Generation. 
 

Bus  Generation
/MW 

Load 
/MW 

Net 
Generation/

MW 
1 50 80 -30 
2 0 240 -240 
3 165 40 125 
4 0 160 -160 
5 0 240 -240 
6 545 0 545 

Total 760 760 0 
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Minimize:  
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+
jP : Oriented power in line j from its “start” to its 

“end”. 
−
jP : Oriented power in line j from its “end” to its 

“start”. 
 
     In the example considered here the existing and 
proposed transmission lines are considered to be of 
the same voltage and the cost per unit length 
( )'K  is considered to be a constant = 400 [12]. 

K K
cj

j

j

= ′
l

                                                        (4) 

Where  
l j = Length of right-of-way j . 
c j = Capacity of line along right-of-way j .  

GENETIC ALGORITHM 

The transmission network planning used GA is 
illustrated in Figure 3. It starts with an initial 

population of possible solutions. Each member of 
the population comprises a bit string, called a 
chromosome, to represent a particular set of 
possible transmission line power 
capacities: n21 P,...,P,P  Each individual line 
capacity is encoded by sufficient bits to cover its 
allowable range of values. For example, if Px  has a 
maximum capacity of 400 MW, in either direction, 
then the range is MW. This range (with a resolution 
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Figure 3. Flowchart the genetic algorithm. 
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of 1 MW) requires 10 bits with - 400 MW being 
encoded as all zeros and +400 MW as 1100100000. 
The bit strings for each Pi  are concatenated to 
form a chromosome. It is important to note that in 
the GA formulation there is no need to constrain 
decision variables to being non-negative. 
Consequently, the total number of decision 
variables is greatly reduced. The initial population 
is generated randomly, that is, each bit in each 
chromosome is set randomly to either 1 or 0. 
Whenever a new chromosome is generated it is 
checked to see that in decoded form it produces 
valid values for the Pi ’s. In the example, it is 
possible for Px  to be given a value greater than 
+400 MW due to the length of the bit string. When 
an invalid value is produced the chromosome is 
discarded and another one is generated. The fitness 
value of a chromosome is determined according to 
how well it meets the desired object. In this case 
the objective is the minimization of the network’s 
cost function, so the fitness value is the reciprocal 
of this cost. A steady-state GA is used here. This 
means that at each iteration, two parent chromosomes 
are selected from the population for reproduction. 
These parents produce a child who is added into 
the existing population and the weakest member of 
the population is then deleted. The alternative 
generational GA produces a whole new population 
of children at each iteration. Reproduction is the 
process that implements natural selection. It is the 
mechanism by which two parent chromosomes are 
selected randomly from the population for subsequent 
crossover and mutation to produce a new child 
chromosome. According to the principles of 
natural selection, the more fit members of the 
population should have a greater chance of 
reproduction. Whilst there are many different methods 
to achieve this, a rank based method is used here. 
This means that the members are ranked in order 
of their fitness and the probability of selection is 
inversely rated to this ranking. The advantage of a 
rank based approach is that it helps to avoid too 
rapid a rate of convergence that may lead to the 
population being swamped by a local optimum due 
to the loss of diversity [29,35]. Whilst various 
methods of crossover have been proposed uniform 
crossover is used here as demonstrated in Figure 4. 
Empirically, uniform crossover been shown to be 

more effective on a variety of function optimization 
problems [30]. In this method a child is formed by 
taking a mixture of bits from its two parents 
according to a random bit string. The proportion of 
bits coming from the first parent is defined by the 
user-defined crossover rate in the range zero to 
one. The process is illustrated in Figure 4 where a 
‘1’ in the random bit string indicates that in that 
position the child inherits the corresponding bit 
from parent-1, whilst a ‘0’ causes inheritance from 
parent-2. 
     Parent Chromosome 1: 1001001110 
     Parent Chromosome 2: 0101110011 
    To mimic the function of genetic mutation 
found in nature, each bit in a child chromosome 
can be randomly mutated. This mutation involves 
randomly inverting each bit with a probability 
defined by the mutation rate. 
     The GA iterates for a specified number of 
generations or until a measure of convergence is 
observed in the “best” solution. The GA stops 
when a convergence criterion is reached. In the 
experiments performed here, this is when the 
change in the best fitness in the last 100 trials is 
less than 0.0001 unit cost.  
     The work presented here is carried out using 
proprietary spreadsheet software and an ‘add-in’ to 
provide the basic GA. This demonstrates how 
simple it is to adopt the GA approach. 
     GA's are different from traditional optimization 
and search procedure in following ways [31].  
i. they work with a symbolic representation of 
solution parameters rather than the parameters 
themselves,  
ii. they treat a set of potential solutions, not a 
single solution, 
iii. they use only information about the pay off (or 
the objective function), not any other auxiliary 
information, 
iv. they use probabilistic transition, not deterministic 
rules. 
     There has been a big growth in their application 
and development since the mid-1980s when the 

Random Bit String: 1010111000 
Child Chromosome 1:  1101001011 
Child Chromosome 2:  0001110110 

Figure 4. Uniform crossover. 
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practical application for GA's became apparent. 
GA has been successfully applied in various areas 
[31] such as computer science, engineering, operations 
research and transmission network planning in 
particular. 
 
 
APPLICATION OF GA TO TRANSMISSION 

NETWORK 
 
The GA formulation of the transmission network-
planning problem is: 
Minimize: ∑=
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     Equation 6 satisfies Kirchhoff’s current or first Law 
(KCL),.in which: 
 

.)j,i( linein Power  :P
.)j,i ( linein  flowunit per Cost  :K

lines. proposed ofSet  :NP

ij
ij  

k. Bus 
 towarddirected are that lines ofSet  :Ak

+

k. Bus 
fromaway  directed are that lines ofSet  :Ak

−
 

.i Busat  generationPower  :PG
.j line of flowpower  Maximum :PM

i
j  

network.cost  of Total :Z
.i Busat  Load :PLi  

     Comparison of this formulaic with the previous 
mathematical programming formulaic shows a 
significant simplification due to the “power in line” 
variable ijP  being allowed to take negative values. 
In linear programming the variables must be non-
negative so separate variables (  P and -

i
+

iP ) are 
required to provide power flow in each direction. 
 
 

EXPERIMENTAL RESULTS 

In the approach, several GA parameters such as 
population size and genetic operator probability 
are included. In this problem, combination of 
following GA parameters is tested.  
     For each combination of the parameters the GA 
is run for 8 different random initial populations. 
These 8 populations are different for each 
combination. Thus, in total, the GA is run 480 
times. The values chosen for the population size 
are representative of the range of values typically 
seen in the literature, with 0.016 being included to 
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Figure 5. Performance of GA using population size = 50, crossover rate = 0.5, and mutation rate = 0.006 for the 6 bus-bar TNP. 
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highlight the effect of a relatively large 
mutation range. The crossover rates chosen are 
representative of the entire range (0.2, 0.4, 0.5, 0.6, 
0.8). 
     Distribution of number of iterations required to 

analyze the distribution of the number of trials 
required reaching the optimal solution. Iterations 
show that the number of iterations they require is a 
very good fit to lognormal distribution. This means 
that statistical analysis techniques that assume 

Mutation Rate 

17600 
17800 
18000 
18200 
18400 
18600 

0 1000 2000 3000 4000 5000 
Iterations 

Pm = 0.001 
Pm = 0.006 
Pm = 0.011 
Pm = 0.016 

 

Figure 6. Effect of mutation rate on performance for crossover rate = 0.5 and population size = 50. 
 
 

 
TABLE 4. Natural Logarithm of the Number of Iterations for Different Crossover Rates with Mutation Rate = 0.006 and 

Population Size = 50. 
 

Run 0.2 0.4 0.5 0.6 0.8 
1 7.32 8.67 3.66 7.66 7.09 
2 7.20 7.75 5.85 8.10 7.76 
3 7.36 4.87 7.52 8.21 7.37 
4 9.12 8.56 6.66 6.74 7.50 
5 6.24 7.30 8.62 7.24 6.12 
6 8.38 7.68 7.46 8.25 8.01 
7 3.78 4.06 8.47 7.94 8.68 
8 8.39 8.31 7.82 7.49 8.55 

Average 7.22 7.15 7.00 7.70 7.63 
 
 
 

TABLE 5. One-Way ANOVA for Crossover Rate Using Results in Table 4. 
 

Source of Variation SS  Df MS F P-value F crit 
Between Groups 

(treatment) 
 

3.040285 4 0.760071 0.406412 0.802737 2.641464 

Within Groups (error) 65.45703 35 1.870201    
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normality can be applied to log of the number of 
iterations required. 
     Average of objective function result is displayed 
in Figure 5. This figure is the result of which 
population size is 50, crossover rate is 0.5 and 
mutation rate is 0.006. 
     Meanwhile, combinations are tested by analysis 
of variance techniques (ANOVA) using the F-test, 
in order to examine relation between the parameters 
and the performance. For example, Table 4 shows 
the natural logarithm of the number of iterations 
for different crossover rates with the mutation rate 
fixed at 0.006 and a population size of 50. Table 5 
displays the one-way ANOVA table for this data. 
     If the value of the F falls in the rejection region 
i.e. F > Fcrit, then reject the null hypothesis; 
otherwise, do not reject the null hypothesis. In 
Table 5, F = 0.406412, this does not fall in the 
rejection region. Thus the null hypothesis is 
accepted. The data provide sufficient evidence to 
conclude that the means for the five different 
crossover rates are not significantly difference and 
that the crossover rate is therefore an insignificant 
factor across the range [0.2:0.8] in the 
performance of GA. This is in line with the 
findings of Gupta et al. [32] and Haida and 
Akimoto [33]. 
     Results, which are observed in these experiments, 
indicate that the crossover rate is an insignificant 
factor in the performance of GA. 
     In Figure 6 effect of mutation rate on the GA 
approach is displayed in case that crossover rate 
and population size are fixed. There is a degree of 
insensitivity to mutation rate (in this research, 
mutation rate of which range from 0.006 to 0.011 

are suitable) in so far as “good“ value form a fairly 
broad range rather than coming at a more precise 
point. However, outside of the “good“ range 
performance soon deteriorates greatly that is 
significant. And also it is observed that there are 
trade off relation between a mutation rate and a 
population size. That is, low mutation rate is 
desirable if population size is large, and high 
mutation rate is desirable if population size is 
small. 
     The sensitivity to population size is greatly 
reduced when the mutation rate is in the “good“ 
range and is an insignificant. However, outside of 
the “good“ range is significant.  
     Table 6 summarizes the results found by GA in 
comparison with minimum-cost network. Optimal 
solution in Minimum-Cost network is spanning 
tree [34]- a spanning tree is a connected subset of a 
network including all nodes and containing no 
loops - that is the fundamental theorem for the 
network simplex method [34]. But GA solutions 
show that is both spanning tree and no spanning 
tree. And also Equations 1, 2 and 3 with 5, 6 and 7 
show that decision variables for solving GA in the 
transmission network planning are less than 
minimum-cost network. These results demonstrate 
the validity and effectiveness of the proposed 
methodology and flexible and straightforward 
method. 

 
 

CONCLUSIONS 
 
In this paper, transmission network planning by 
using genetic algorithm is proposed. GA is able to 

 
TABLE 6. Optimal Power Line Capacities (MW). 

 
    Line     Cost 

Method 1-5 2-1 2-3 3-5 4-1 4-2 6-2 6-4 Function 
Linear Programming 100 100 15 140 30 100 255 290 17750 

  GA 1 100 100 15 140 30 100 255 290 17750 
  GA 2 100 100 15 140 30 98 257 288 17750 
  GA 3 100 100 15 140 30 99 256 289 17750 
   GA 4 100 98 15 140 32 100 253 292 17750 
   GA 5 100 100 15 140 30 95 260 285 17750 
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produce optimal solution by simulating the 
adaptive nature of natural genetics. From the 
numerical example, it can be seen that the 
crossover rate is an insignificant factor in the 
performance of the GA and there is a degree of 
insensitivity to the mutation rate (range 0.006 to 
0.011) in so far as the “good“ values form a fairly 
broad range rather than coming at a more precise 
point. However, outside of the “good“ range 
performance is significant. It is observed that a 
low mutation rate is desirable when the population 
size is large and higher mutation rate is desirable 
when the population size is small and the 
sensitivity to population size is greatly reduced 
when the mutation rate is in the “good“ range. 
However, outside of the “good“ range is 
significant. GA solutions are showed that is both 
spanning tree and no spanning tree and the 
decision variables for solving GA are less than 
minimum-cost. These results show that GA 
techniques are feasible in transmission network 
planning. 
 
 

REFERENCES 
 
1.  Villasana, R., Garver, L. L. and Salon, S. J., “Transmission 

Network Planning Using Linear Programming”, IEEE 
Trans. on PAS, Vol. PAS-104, No. 2, (February 1985), 
349-356. 

2.  Knight, U. G. W., “The Logical Design of Electrical 
Networks Using Linear Programming Methods”, Proc. 
IEE, Vol. 107A, No. 33, (1960), 306-319. 

3.  Garver, L. L., “Transmission Network Estimation Using 
Linear Programming”, IEEE Trans. on PAS, Vol. PAS-
89, No. 7, (September-October 1970), 1688-1697. 

4.  Serna, C., Duran, J. and Camargo, A., “A Model for 
Expansion Planning of Transmission Systems: A Practical 
Application Example”, IEEE Trans., Vol. PAS-97, No. 2, 
(1978), 610-615. 

5.  Berg, G. and Sharaf, T. A. M., “Reliability Constrained 
Transmission Capacity Assessment”, Electric Power 
Systems Research, Vol. 15, (1988), 7-13. 

6.  Kaltenbach, J. C., Peschon, J. and Gehring, E. H., “A 
Mathematical Optimization Technique for the Expansion 
of Electric Power Transmission System”, IEEE Trans. on 
PAS, Vol. PAS-89, No. 1, (1970). 

7.  Farrag, M. A. and El-Metwally, M. M., “New Method for 
Transmission Planning Using Mixed-Integer Programming”, 
IEE Proc. C, Gen. Trans. and Distrib., Vol. 135, No. 4, 
(1988), 319-323. 

8.  Sharifnia, A. and Ashtiani, H. Z., “Transmission Network 
Planning: A Method for Synthesis of Minimum-Cost 
Secure Networks”, IEEE Trans. on PAS, Vol. PAS-104, 

No. 8, (1985). 
9.  Adams, R. N. and Laughton, M. A., “Optimal Planning of 

Power Networks Using Mixed-Integer Programming”, 
IEE Proc. C, Gen. Trans. and Distrib., Vol. 121, No. 2, 
(1974), 139-147. 

10.  Lee, T. V. and Hick, K. L., “Transmission Expansion by 
Branch-Bound Integer Programming with Optimal Cost-
Capacity Curves”, IEEE Trans. on PAS, Vol. PAS-93, 
No. 5, (1974). 

11.  Romero, R. and Monticelli, A., “A Zero-One Implicit 
Enumeration Method for Optimizing Investments in 
Transmission Expansion Planning”, IEEE Trans. on PS, 
Vol. 9, No. 3, (1994), 1385-1391. 

12.  Padiyar, K. R. and Shanbhag, R. S., “Comparison of 
Methods for Transmission System Expansion Using 
Network Flow and D.C. Load Flow Models”, Electric 
Power and Energy Systems, Vol. 10, No. 1, (1989), 17-24. 

13.  El-Metwally, M. M. and Al-Hamouz, Z. M., 
“Transmission Network Planning Using Quadratic 
Programming", Electric Machines and Power Systems, 
Vol. 18, No. 2, pp. 137-148, 1990. 

14.  Youssef, H. K. and Hackam, R., “New Transmission 
Planning Model”, IEEE Trans. on PS, Vol. 4, No. 1, 
(February 1989), 9-17. 

15.  El-Metwally, M. M. and Harb, A. M., “Transmission 
Planning Using Admittance Approach and Quadratic 
Programming”, Electric Machines and Power Systems, 
Vol. 21, (1993), 69-83. 

16.  El-Sobki, S. M., El-Metwally, M. M. and Farrag, M. A., 
“New Approach for Planning High-Voltage Transmission 
Networks”, IEE Proc., Vol. 133, No. 5, (1986), 256-262. 

17.  Albuyeh, F. and Skiles, J. J., “A Transmission Network 
Planning Method for Comparatives Studies”, IEEE 
Trans. on PAS, Vol. PAS-100, No. 4, (1981), 1679-1684. 

18.  Ekwue, A. O., “Investigations of the Transmission System 
Expansion Problem”, Electric Power and Energy Systems, 
Vol. 6, No. 3, (1984), 139-142. 

19.  Galiana, F. D., McGillis, D. T. and Marin, M. A., “Expert 
System in Transmission Planning”, Proc. IEEE, Vol. 80, 
No. 5, (1992), 712-726. 

20.  Yoshimoto, K., Yasuda, K. and Yokoyama, R., “Transmission 
Expansion Planning Using Neuro-Computing Hybridized 
with Genetic Algorithm”, Proc. 1995 IEEE Int. Conf. 
Evolutionary Computation, Perth, Australia, (1995), 126-
131. 

21.  Romero, R., Gallego, R. A. and Monticelli, A., 
“Transmission System Expansion Planning by Simulated 
Annealing”, Proc. 1995 IEEE Power Industry Computer 
Application Conference (PICA’95), USA, 278-283. 

22.  Fushuan, W. and Chang, C. S., “Transmission Network 
Optimal Planning Using the Tabu Search Method”, Electr. 
Power Syst. Res., Vol. 42, No. 2, (1997), 153-163. 

23.  Glover, F., Laguna, M., Taillard, E. and DeWerra, D. 
(Eds.), “Tabu Search”, Science Publishers, Basel, 
Switzerland, (1993). 

24.  Glover, F., “Tabu Search-Part I”, ORSA J. Comput., Vol. 
1, No. 3, (1989), 190-206. 

25.  Glover, F., “Tabu Search-Part II”, ORSA J. Comput., Vol. 
2, No. 1, (1990), 4-32. 

26.  Bai, X. and Shahidehpour, S., “Hydro-Thermal Scheduling 



74 - Vol. 15, No. 1, February 2002 IJE Transactions A: Basics 

by Tabu Search and Decomposition Method”, IEEE 
PWRS, Vol. 11, No. 2, (1996), 968-974. 

27.  Fushuan, W. and Chang, C. S., “A Tabu Search Approach 
to Alarm Processing in Power Systems”, IEE Proc. 
Generation, Transmission and Distribution, Vol. 144, 
No. 1, (1997), 31-38. 

28.  Bakirtzis, A., Petridis, V. and Kazarlis, S., “Genetic Algorithm 
Solution to the Economic Dispatch Problem”, IEE Proc.-
Gener. Transm. Distrib., Vol. 141, No. 4, (July 1994). 

29.  Baker, J. E, “Adaptive Selection Methods for Genetic 
Algorithms”, In J. J. Grefenstette, Ed., Proceedings of 
First International Conference on Genetic Algorithms, 
Erlbaum, (1985). 

30.  Davis, L., “Handbook of Genetic Algorithms”, Van Nostrand 
Reinhold, New York, (1991). 

31.  Goldberg, D. E., “Genetic Algorithms in Search Optimization 

and Machine Learning”, Addison Wesley, (1989). 
32.  Gupta, M. C., Gupta, Y. P. and Kumar, A., “Minimizing 

the Flow Time Variance in a Single Machine System 
Using Genetic Algorithms”, European Journal of 
Operational Research, Vol. 70, (1993), 289-303. 

33.  Haida, T. and Akimoto, Y., “Genetic Algorithms 
Approach to Voltage Optimization”, Proceedings of 
the IEEE First International Forum on the 
Applications of Neural Networks to Power Systems, 
(1991), 139-143. 

34.  Frederick, S. H. and Gerald, J. L., “Introduction to 
Operations Research”, McGraw-Hill, (1990). 

35.  Imran, A., “Manufacturing Shop Scheduling Using 
Genetic Algorithms”, Ph.D, Intelligent Systems Laboratory 
Systems Division, School of Engineering, University of 
Wales, Cardiff, UK, (1997). 




