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Abstraet  This paper presents three new systematic approaches for computing coefficient matrices
of the Heffron-Phillips multi-machine model (K1, ..., K6). The amount of compulations needed for
conventional and three new approaches are compared by counting number of multiplications and
divisions. The advantages of new approaches arc: (1} their computation burdens are less than 73
percent of that of conventional approach, for a reduced network, (2) they are able to model infinite
bus dircetly, whereas the conventional approach cannot, {3) The second and third approaches are able
to account for voltage dependent loads and (4) The third approach preserves network structure and
doesn’t deal with ¢ and o components and Blondel-Park transformation. The coefficients of the
Heffron-Fhillips model for a five-bus network and the New England system are computed by four
approaches. The results agree within the bounds of admissible approximation. Computation times
confirm the result of counting number of multiplications and divisions.
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INTRODUCTION

In 1952, Heffron and Phillips [1] presented a
simplified lincar model for a synchronous machine
connected to an infinite bus with a local impedance
load. Thereafter this model has been used extensively
in power system dynamic analysis. De Mello and
Concordia explored the small perturbation stability
characteristic of one machine-infinite bus by means
of frequency response analysis [2]. De Mello and
Laskowski used this model to find the system
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configurations and loading conditions that produce
negative damping [3]. This model was later generalized
for multi-machine power systems [4] and was
widely used to study means of increasing damping
and coordinating PSS’s via the supplementary
excitation control [4-10].

In adaptive control and fast small signal stability
analysis [11], rapidness of computing Heffron-
Phillips model coefficients is very important. The
conventional approach has intensive computations,
its running time is large, and it cannot account for
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Figure 1. Phasor diagram of ith bus.

infinite bus directly. In the conventional approach
infinite bus is modeled by a large machine, the
cocfficient matrices Kl,..., K6 are computed and
the row and column related to infinite bus are
omitted. This increases the amount of computation.
Furthermore, this approach is not structure preserving,
It is not able to account for non-impedance loads,
and load buses must be omitted before computing
coefficients. The above disadvantages are remedied
in the present approaches.

In section 2 the model is set up. In sections 3, 4,
and 5 three new systematic approaches for
computing (K1, ..., K&) are presented. The first
approach is applicable only to networks with
impedance loads. The second approach is applicable
for networks with impedance loads, wvoltage
dependent loads and constant power loads at
generator terminal buses. The third approach is
applicable for networks with impedance loads,
voltage dependent loads and constant power loads
at generator terminal buses or load buses. The third
approach doesn’t deal with ¢ and & components
and Blondel-Park transformation [12]. Accounting
for infinite bus is presented in section 6. In section
7 amount of computations of different approaches
are compared. Two examples are given in section 8,

MODEL SET UP

Consider an »# machine network with simplified
linear model [12] for each machine, then:
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II-J.&.'.' = Jr."! {‘5Is'~'r ﬁu!EIrr"'1 E;.}
Ej=fgl8m 8 Bl E)) (1)
Vo= Ll s 80 B B0 F=l,...n

Where V,,P,,E, and E] are terminal voltage,

generated active power, open circuit voltage and
internal stator voltage of the ith machine. §,1is the

angle between E! and a common synchronously

rotating reference frame as shown in Figure |.
Each phasor is written in terms of its d and g
components as:

f.:zifqr"'jfdfje (2)

Where?,- represents  voltage, current or flux
linkage of the ith machine. Linearizing (1):

AP, =K1,A8, + ...+ K1,AS, + K2, AE]

+..+ K2, AE]
AE, =K4, A8, +..+ K4, A8, + K3 AE]
+o.+ K37 AE!
AV, =K5, A8 +..+ K5, A8, + K6, AE|
et Kb AR f=toor (@)

From (3) and the simplified linear model, Heffron-
Phillips model block diagram will be derived as in
Figure 2 [4].

FIRST APPROACH

Consider an » machines system with impedance
loads. All load buses have been omitted [13]. This
approach uscs linearized KCL equations at each

bus, for computing AV, AP, AE, in terms of

state variables AS),..,A8, AE[,.. AE]

oo

Generated Current
Voand E] is as follows:

The relation between

E:‘ :{qu + j Vm‘]ejéf :E_Jlxu'f}-mejﬁi

S . ja. :
= Jxaly Jej ; i=1,.,n (4)
Separating real and imaginary parts, linearizing
and grouping:
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Where AI, =[Al,....AL, ] and AL, AV,, AV,,
AE"are similar nx [ vectors, and I'l, B2, A2 are

n=n matrices with their elements defined in
Appendix A.

Injected Current The current that flows from
the ith generator to its connected lines and loads is
equal to:

-SEE s @
k=l

Separating the d and g axis components,
linearizing and grouping:

"J”q » Bl Il dlnll'/“I A'l
[M’I;}_[—FT BFIM'&"V."]F{A'E][&E] (7

Where Al AT, AV, , AV,, A are nx ] vectors

and B'I, "1, A'l, A'2 are nxn matrices with
their elements as defined in appendix A.

Computing AV, and AV,
Eliminating Af_, Al between (5) and (7):

IJE Transactions A: Basics

av,] [x1 x2][as ?

AV, | | X3 Xx4|| AE' ®)
Computing K1 and K2 The power generated
by the ith machine is:

1 1  —
FR; :(_, - _}Vcﬂyqi TR E.‘ Iﬂﬁ
X J‘."g“; X
Sloe Toag Iom
Qs.' ='_r_Vq.' ——Fbat—=EVy i=l.. .09
Xy X Xy

Linearizing and grouping (9):

AP, | [BI cr|[aV,]| [A41 BE] (o)

= = 2

AQ, B2 C2||AV, Ax
Where AP,,AQ,, AV, AV, AE" are nx/
vectors and BI, CI, B2, C2, A1, A2 are nxn
matrices with their elements as defined in appendix
B. Substituting for AV,, AV, from (8) into (10):

Kl=BIX1+CI X3
K2=A41+ BIX2+Cl X4 (1

Computing K3 and K4 £/ is related to E; as

follows:
’E'I"-r' = El'r . {‘x.'.l'l 7= 't:f.: }er'n o

# X . - v :
Ej = {4 _—S¥, —E} i
X 2

o M (12 )
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Linearizing (12), and substituting ﬁ:nrﬂ.Vqr. from
(8):

K3, =[( _.'f'.'_zs-i,-}ﬂu_]q -
Xy
K3, =[-% Lai +[1_¥_:"r'}x2ﬁ]—'.
'1-::"I' ‘xu'f

K4, =(1- 24

i=lL...n  f=L..% (13)

i

Computing K5 and K6 Voltage of each bus is
related to its components as follows:

FraEd w ¥ 3 i=l..,n (14)
Linearizing and grouping (14) yields:

AV =v, AV, +v, AV, (15)

Where v, and v, are diagonal matrices with
elements (V,,/V,) and (F;/V;) respectively.

Substituting (8) into (15):

KS=v,6 XI+v, X3
Ké=v,6 X2+vu, X4 (16)

SECOND APPROACH

Consider an »n machines system with impedance
loads on load buses, and impedance or voltage
dependent or power constant loads on generator
terminal buses. Suppose load buses are omitted,
The load of the ith generator terminal bus can be
modeled as:

By :f;”{m
Oy :f:,-;(lﬂ i=l..p {1n

This approach uses linearized power flow
equations at each bus for computing AV,, AP,

and AE, in terms of state variables.Ad,,
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AB,,... A8, AE!, .., AE

Generated Power Linearized generator power
equations are as (10).

Injected Power The power flowing from the ith
generator to its connected lines and loads 1s equal
to:

R e i T LTS

Z Yffc {Vr,l-' Ve + Vrfr V‘?ﬁ. JCJJ; - {E;q'l' r'der d.l |,l-. )Su.l ]

Q_gi =0, +Qr'=frj-f|:V

Z}I}k !-{VJ‘HV +V-¢.|] Ifn’l }E + (I qi (.':fc Vm Ifr,lk :H:- ]

F=lion (18)

Where:
Cy=cos(f, =8, 4y, ) 8, =sin(d, =&, +y4).
Linecarizing and grouping (18):

AP, [B1 c'1][AV,] [a1

= T4 [a.a] (19)
AQ, | | B2 c2]|Ay,
Where AP,, AQ,, AV,, AV,, A8  are  nx
vectors and B'I, C'1, B'2, C'2, A'I, A'2are

nxn matrices with their clements as defined in
appendix B.

Computing AV, and AV,
From (10} and (19):

AV X! X2|| AS

= 3 (20)
AV, | | X3 X4 | AE
Computing K1, ..., K6 Matrices K1, ..., K6

can be calculated from the formulas presented in
sections 3, 4, 3.5 and 3.6,

THIRD APPROACH

Consider an » machines network with m load
buses. Suppose generator terminal buses have been
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numbered [ to » and load buses » +1 to n+m, Each
load can be modeled with an impedance or as in
(17). This approach uses linearized power flow
equations at each bus for computing
AV AP, AE, in terms of state variables

g2
A8,,.., A8, AE],..., AE'

o Tk L

Generated Power Generated power by the ith
machine is equal to:

F.E!
Bl G 0

= xe.rl
SRR 2 g
+(———)—sin2(5; -6,)
Iq.‘ ‘xdl' 2
VE! cos(8, —8,)~F}
Qgéz ]

'Ia'r'

(W sin(5, =0 i=l.yn  (2])
xr‘u' L

Where 6, is the voltage angle of ith bus.
Linearizing and grouping (21):

AP, B Bl C1| AV, -C1l Al| AS (22)
AQ, |"|B2 c2]a6, |"|-c2 Az]aE
Where AP,, &Qg,an,ﬁﬂx, AE, Ad are nx ]

vectors and Bl, C1, B2, C2, Al, A2 are nxn
matrices with their elements as defined in appendix
C.

Injected Power The power injected by the ith

generator to its connected lines and loads is equal
to:

ng' . ZF’{VI% }r.i.fc cos'l:ﬂk o Hr' T Tj'k }-'L f_p.: (K :I

=1

Qzé = _Z ViV, Y, sin(@, =0, +y,)+ fq-‘ )
k=l

i=l,n+m (23)

Linearizing and grouping (23) yields:
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AP Bl Bl Cl, C1,[ar

g S
0 | |BL, Bl C1, C1,|AaV -
AQ, | B2, B2, C2, C2,|A8,

s | |B2, B2, €2, C2,|As

Where:

AV

-+ ] and

ﬂ.Vg E[Ei VL?"'::&VH] ! 'ﬁVr :i'ﬂV

4 R

other vectors are defined similarly. Elements of
sub-matrices are defined in appendix C.
Eliminating AV, and A@,:

AP, | [B1 C'1][AV,

= (25}
AQ, | |B2 C2/ 48,
Where AP, AQ,, AV, A@, are nx[ vectors

and B'1, C'1, B2, C'2 are nx n matrices.

If loads of load buses are impedance loads,
omitting load buses and computing (25) directly
involves less computation than computing it from
(24) (see section 7).

Computing  A¥, and A@, From (22) and
(25):
AV, | X1 X2]| Ad
] =
L&J_[xa XJ[&E'} 20

Computing K1 and K2 Substituting (26) into
(22) vields:

Kil=-Cl+BIX1+C1X3
K2=A1+DB1X2+C1X4 {27}

Computing K3 and K4
related as follows:

E!, E;and ¥V, are

E, =28 E! 4 (1-24 7, cos(5, -6,) (28)

i

X i

Linearizing (28) and substituting for ¥, form (26):
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TABLE 1. Total NMD of Conventional Approach,

Computation NMD Comments
v, 6(n+p) This matrix is complex
{;J—u PX }-l 6(n+p)’ This matrix is complex
Al 25(n+p)? LAl = P AS + 0, AE"
¥y, Fy 2(n+p)’ Fy=Py+MuF, , Yy =0,+M,¥Y,
Total 16.5(n+ p)*
K3, =[hl x2, + hEr-xﬁlE]'l i#j that Mdk and ."."Jrr'.: are not zero, and hence
i Ry
; o conventional approach is not able to account for
K3, :[(%} + bl x2; + h2,x4,1" infinite bus directly.
X
K4, =hl;xl, +h2,x3, P# Comparing Computation Times To compare
i ! i paring P p
" (RN 5, SE % BN S . L ¢ (29) amount of computations for different approaches,
i i i i [ Rl ]

Where:

hl, = (1—2%) cos(5, - 6,)

i

h2, =(1- f.f{f'..) sin(o, —8,)

!
Xy

Computing KS and K6 Comparing (3) and
(26) yields:

K5 = X1
K6 =X2 (30)

Accounting for Infinite Bus Suppose bus No.
k is an infinite bus then AE],AS,,AV,,

AE[, A8, , AV, , AB,, AV, AV, are zero and
hence row k of vectors AE', A8, AV, A8, AV,

AV, and consequently column % of all sub-
matrices in equations (5), (7), (10), (19), (22), (25)
are omitted. Furthermore, equations related to the
k's bus is not required for computing Ki, ..., K6,
then row &k of vectors Af , Al,, AP, AQ g and
row k of all sub-matrices in (5), (7), (10}, (19),
(22), (25) are omitted. Therefore, infinite bus is
modeled without increasing computations. Note
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computations that are proportional to / and /7 are
ignored, where / is the dimension of matrices in
each approach. Run time of addition or subtraction
is much less than run time of multiplication or
division and hence only number of multiplications
and divisions (NMD) are compared. NMD that is
needed to inverse a real (complex) square matrix
with dimension [ by Gausien-Jordan method [14] is
approximately equal to 1.5/ P (61%).

Consider a multi-machine network with »
generator terminal buses, m load buses, and p
infinite buses. First assume m=0, NMD of
conventional approach, as listed in Table 1 is

approximately equal to 16.5(n+p)’. In our

approaches infinite buses are modeled directly
therefore n+p reduces to #. In these approaches all
computations except a 2nx2n matrix inversion are

proportional to # or #°. Note that NMD of each
2
matrix multiplication is proportional to # | since
in each matrix multiplication one matrix is
diagonal. Therefore, NMD of each new approach
is approximately equal to 1.5(2x)° =12#". The
ratio of computations of proposed approaches
to  conventional approach is equal to
12n /16.5(n+ p)*. Therefore, if p=0, the amount

of computations of presented approaches are
equal to 73 percent of computation amount of
conventional approach, else they are less than 73,
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Figure 3. Five Buses Network.

Now suppose w20, if loads of load buses are

impedance loads, load buses can be omitted. NMD
that is needed for omitting load buses is equal to

Gm* +4mn® | 6m’ for matrix inversion and 4mn’

for substitution. Therefore, NMD of conventional
approach and proposed approaches are equal to

6m’ +4mn® +16.5(n+p)’ and  6m® + dmn®

+12n" respectively.

If there is a non-impedance load at load buses,
load buses cannot be omitted, and only the third
approach is capable to handle it. In this case (25)
must be computed from (24), not directly, this will
increases NMD to 12m° +8mn” +12n° .

Therefore, if loads of load buses are impedance
loads, omitting load buses and computing (25)
directly involves less computation than computing
it from (24).

APPLICATIONS

Example 1: Five Buses Network Consider
the five buses network of Figure 3. Its parameters
and operating point are given in appendix D. Load
bus was omitted first, The coefficients were
computed by the four approaches and are given in
appendix E. Run time of each approach for
reduced network is given in table 2. As is shown in
appendix E, the computed coefficients by different
approaches are equal within admissible
approximation. Run time of different approaches
confirms that the amount of computations in new
approaches 15 less than 73 percent of that of
conventional approach.

Example 2: New England Network  This
network consists of 10 generator terminal buses, 29

LJE Transactions A: Basics

TABLE 2. Run Time Different Approaches in Mega Cyele
of CPU Clock for Examples 1 and 2.

Ex. Time Time | Time Time
of Con. of 1¥ of 2™ af 3™
| Appr. Appr. Appr. Appr.

Ex. 1 40765 4.2016 4.2304 42160
Ex.2 | 1013376 | 69.4355 | 69.5488 | g9.5792

load buses, and 46 lines [15]. All loads are
impedance loads; the coefficients computed by the
four approaches are equal within admissible
approximation [16]. The run time of each approach
for reduced network is given in table 2, confirming
the results of section 7.

CONCLUSION

Three new systematic approaches for computing
Heffron-Phillips multi-machine model coefficients
(K1, ..., K6) were proposed. The first approach is
applicable only on impedance Ioad networks, but
the second approach is able to account for voltage
dependent and power constant loads at generator
terminal buses, the third approach is able to
account for voltage dependent and power constant
loads at each bus. All proposed approaches are
able to account for infinite bus directly without
increasing the amount of computations. Comparing
NMD of different approaches shows that, for a
reduced network, NMD of new approaches is less
than 73 percent of conventional approach. The
amount of computations of third approach
increases if there are non-impedance loads at load
buses, and hence it is better to omit load buses
when loads of load buses are impedance loads. The
examples show that the results of four approaches
are equal within admissible approximation. The
run time of each approach confirms the result of
comparing the amount of computations. Table 2
shows that run time of first approach is a little less
than second and third approaches. The third
approach doesn’t deal with g and J components
and Blondel-Park transformation.

APPENDIX A

Elements of First Approach's Sub-matrices

=1
vl =—
X

rly =0 i f,
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a2, =0 i# | Gdp=—=
A i
1
B2;=0 izf, PB2y=—
.l:m-
a'ly = =¥, (VySy +V4Cy) i
M
a'l; = ZY;& (VoS + Vi Cip)
s

k=i
By =YyC,
rly =15
a'2; = ¥ (VyCy —VySy) i

L

Z VorCa —VarSu)

APPENDIX B

Elements of Second Approach's Sub-
matrices

m’,-j =) i#f, aly =x;—def-
|
Mér-:[} i bi; —':—'__.“’m
Xt qi
hings I | R
cl; =0 izf, «cly =(T——JV¢,-—TEJ.
Xai Xgi Xy
o i 1
aEH =0 i#f, ad= x_;.r-qu
|
bz{n‘ =0 jij: hzﬁ =T{Er'_2}fq!}
X
.. -2
c2,-',- =0 i=j, e2,=—V,;
i xw

J .:,l [( dj ai Vqﬂ'Vd_} :](:" { qi r,l.r L Vdr'V{f,l' :}S.!If ]j # j

aly,= —Za'f&

k=i
b'ly =Yy Vg Cy + Vi Sy) i#j
3 & %))
bl = 2VuCaly + Z Y (Vor G = VarSie ) + T av;
o
erjf ﬁfﬂ.[Vdr- CEI' _V'IF S-J}_:I_ Eij
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: 5 i Vg ¥ pilVi)
c'ly = 2VaCi¥ +Z (VG + V8 + ; i%V
k=l i i
k=l

a2y =YgV —VaV ISy — WV +VaV g )Cyli s j

k=]
ki
b'2; =c'l; i#f
i (V)
B2y = =2V,S,¥; ;mm& FVuCy) + -w‘f;— o
kel
c'2y =-b'iy iw
¥ 86
c 2 ==2 V.r.l'r'gu i ;}:k(ydk‘grk rj'k( .'.h':} d er
k=l
APPENDIX C

Elements of Third Approach's Sub-matrices

31‘]. =0 i#j
al _ VFisin(d,—-8))
G Xgi
bl; =0 i#j
bl = EisGi =0 (1 1y gios,-6)
T Toi X
ely =0 i#®j
Ciir' = _ML-_E-’.A_ (L__];j ij oS 2{5] uﬂj.}
Xt Tai X
al; = P f
a2, _ Vicos(d;-86))
X
b2, =0 i+
b2, = E} cos(8, TQJ—EI',. _2(L—+]IV;SJ'H!(5,- _6,)
-xﬂl]' _'I.'IF- X
2, =0 i#]
€2, = MJ__G_"]HL__{} Vr_z sin (5, -6,)
X Xai X
bl =F, ¥y cos(@; —0; +7) s
(V)
b'l; = 2F, ¥ cos(y ;) + ZI@ weosi@, -0, + 7,0+ Ig;:;
k=1
kel
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C'EJ-J,-=“V|-Vj1";-‘l-5inl:ﬂ.r-—ﬂ',-+}f‘-jj i j K3
6.131165 1.182260 1.426841

1= SR Y 6000 <0, 7, 1.050029  -6.094800  1.450936
é G e i) 0.760465  0.870719  -4.547827
k#i K4
brz,j ==V Yg Sin{ﬂj -, *'?‘{f} i#f 3347144 -0.644758 -0.786225
0510889 3.150877 0773188
’ . = . afm':K}
b2, = 2K ¥, Sm{?”}_Zy& Yy sin{@ =0, +7,)+ .;’;:'V s -0.509724  -0.596232 2747217
km) i
ki 0050734 0.031344 -0.008382
e e L0IT0 00358  Dovsens
9 =NPR T R K6 '
e EV“ Vi Y 0080, =05 % ¥i) 0.212040  0.148171  0.127395
ki 0.116303 0.255361 0.124345
0.103873 0.130430 0.310339
APPENDIX D First Approach:
Characteristics of Five Buses Network Kl

) 2808604  -1.424903 -0.655489
Machine Data; 0424507  1.919343 -0.689649
-0.655470  -0.689623 4.351999

Gen, Rating | xg=xd | x'd External K2
No. (MVA) | (pu) (pu) reactance (pu) 3285408  -0.596842 -0.842596
; Ilzgg 1;3‘; g;;j ggig: -0.599098  3.486200 -0.972443
3 325i0 n}szs ﬂjﬂﬂ4 n'_mz? -0.780073 -0.847234 5.009098
Inf. bus | e=e- 0.0001 | 0.00001 | 0.067 K3
46130941 1.181662 1.430252
ot o 1.050505  -6.003608 1.449237
Dperating ot 0.760063  0.866306  -4.533863
Gen. Active Reactive | Terminal | Voltage K4
| [Gms | o T dihe Do
u EE =W, 5 =0,
| Q0,00 27.55 1.018 14,55 04558069 -0.499064 2. 709859
2 G000 21.55 1.OLE 14.55 K5
3 127.50 2051 1.018 16.77
Inf. Bus ~355.50 -22.47 10400 0000 gg Téggg ggﬁg‘;gg ﬁgg;;i
0.011640  0.020364 0.055023
APPENDIX E K6

0.212821 0.148827 0.129386
0.117043 0.256133 0.125676

Coefficients K1, ..., K6 0.104677 0130726 0313786

Computed Coefficients for Example 1- Conventional

Approach: Second Approach:

Kl Kl
2R09179  -0.443749 -0.651488 2808604  -0.424903 -0.655490
-0.409413 2.916649 -0.692354 -0.424907 2919343 -0.689690
0715461 -0.793594] 4389877 0.655470 -0.689622 4351997

K2 K2
3283734 -0.398374 -0.844573 3285408  -D.396842 -0.842396
-0.600665 3485166 -0.927487 -0,599098 3486200 -0.922443
-0.783637  -0.835077 5.017840 0780073 -0.847234 5.009097
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K3

-6.130941 1.181662 1.430252
1.050505  -6.093609 1.449237
0.760063  0.866306  -4.533863
K4
3344490 -0.609929 -0.7942232
-(.540199 3.154956 -0.766865
0455869 -0.499064 2709858
K3
0.051390 0.027487 -0.007359
0.016605 0.066300 -0.008675
0.01 1640 0.020364 0.055023
Ko
0.212820  0.148826 0.129386
0.117042  0.256133 0.125676
0.1045677  0.130726 0.313786
Third Approach:
Kl
2808341  -D.424850 -0.635428
-0.424850 2918862 -0.689532
-0.655428  -0.689532 4351735
K2
3285185  -0.396366 -0.542605
-0.599103 3482797 -0.922404
780149 -0.847295 5.008799
K3
-6.130904 1181713 1.430294
1.050541 -6.093570 1.449259
0.760107 0.866352 -4.533810
K4
3.344319  -0.609858 -0.794192
-0.540164 3.154646 -0.766802
00455849 0499021 2709760
K5
0.051388 0.027489 -0.007355
0.016604 0.066302 -0.008671
0.011637 0.020364 0.055029
K
0.212815 0.148825 0.129383
0.117035 0.256133 0.125672
0104667 0.130721 0.313786
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