RESEARCH NOTE

THREE NEW SYSTEMATIC APPROACHES FOR COMPUTING HEFFRON-PHILLIPS MULTI-MACHINE MODEL COEFFICIENTS

M. H. Modir Shanechi and M. Oloomi Buygi

Department of Electrical Engineering, Ferdowsi University
Mashhad, Iran, modir-h@ferdowsi.um.ac.ir-m_oloomi@ferdosi.um.ac.ir

H. Ghafoori-Fard

Department of Electrical Engineering, Amirkabir University Tehran, Iran, h. ghafoorifard@hotmail.com

(Received: August 19, 2000 - Accepted: January 4, 2001)

Abstract This paper presents three new systematic approaches for computing coefficient matrices of the Heffron-Phillips multi-machine model (K1, ..., K6). The amount of computations needed for conventional and three new approaches are compared by counting number of multiplications and divisions. The advantages of new approaches are: (1) their computation burdens are less than 73 percent of that of conventional approach, for a reduced network, (2) they are able to model infinite bus directly, whereas the conventional approach cannot, (3) The second and third approaches are able to account for voltage dependent loads and (4) The third approach preserves network structure and doesn't deal with q and d components and Blondel-Park transformation. The coefficients of the Heffron-Phillips model for a five-bus network and the New England system are computed by four approaches. The results agree within the bounds of admissible approximation. Computation times confirm the result of counting number of multiplications and divisions.

Key Words Simplified Linear Model, Multi-Machine Models, Heffron-Philips Model

چکیده در این مقاله سه روش جدید برای محاسبه ضرایب (K1,..., K6) مدل چند ماشینه هفرون-فیلیپس ارائه شده است. مزایای این روشها عبارتند از: (۱) برای یک شبکه که باسهای بار آن حذف گردیده است، حجم محاسبات روش معمول می باشد؛ (۲) این روشها قادرند باس بینهایت را مستقیماً مدل نمایند در صورتیکه روش معمول قادر نمی باشد؛ (۳) روشهای دوم و سوم قادرند بارهای متغیر ما ولتاژ را در نظر بگیرند و (۴) روش سوم ساختار شبکه را حفظ نموده و با مولفههای q و b تبدیل بلاندل پارک سر و کار ندارد. حجم محاسباتی که برای روشهای مختلف مورد نیاز است بوسیله شمارش تعداد ضربها و تقسیمهای هر روش مقایسه شده است. ضرایب مدل هفرون-فیلیپس برای یک شبکه پنج شینه و برای شبکه نیوانگلند توسیط چهار روش محاسبه گردیده است. ضرایب با تقریب قابل قبولی با یکدیگر مساویند. زمان محاسبه ضرایب نتیجه مقایسه بالا را تایید می نماید.

INTRODUCTION

In 1952, Heffron and Phillips [1] presented a simplified linear model for a synchronous machine connected to an infinite bus with a local impedance load. Thereafter this model has been used extensively in power system dynamic analysis. De Mello and Concordia explored the small perturbation stability characteristic of one machine-infinite bus by means of frequency response analysis [2]. De Mello and Laskowski used this model to find the system

configurations and loading conditions that produce negative damping [3]. This model was later generalized for multi-machine power systems [4] and was widely used to study means of increasing damping and coordinating PSS's via the supplementary excitation control [4-10].

In adaptive control and fast small signal stability analysis [11], rapidness of computing Heffron-Phillips model coefficients is very important. The conventional approach has intensive computations, its running time is large, and it cannot account for

Figure 1. Phasor diagram of ith bus.

infinite bus directly. In the conventional approach infinite bus is modeled by a large machine, the coefficient matrices K1,..., K6 are computed and the row and column related to infinite bus are omitted. This increases the amount of computation. Furthermore, this approach is not structure preserving. It is not able to account for non-impedance loads, and load buses must be omitted before computing coefficients. The above disadvantages are remedied in the present approaches.

In section 2 the model is set up. In sections 3, 4, and 5 three new systematic approaches for computing (K1, ..., K6) are presented. The first approach is applicable only to networks with impedance loads. The second approach is applicable for networks with impedance loads, voltage dependent loads and constant power loads at generator terminal buses. The third approach is applicable for networks with impedance loads, voltage dependent loads and constant power loads at generator terminal buses or load buses. The third approach doesn't deal with q and d components and Blondel-Park transformation [12]. Accounting for infinite bus is presented in section 6. In section 7 amount of computations of different approaches are compared. Two examples are given in section 8.

MODEL SET UP

Consider an n machine network with simplified linear model [12] for each machine, then:

$$P_{gi} = f_{Pi}(\delta_1, ..., \delta_n, E'_1, ..., E'_n)$$

$$E_i = f_{Ei}(\delta_1, ..., \delta_n, E'_1, ..., E'_n)$$

$$V_i = f_{Vi}(\delta_1, ..., \delta_n, E'_1, ..., E'_n) \qquad i = 1, ..., n$$
(1)

Where V_i, P_{gi}, E_i and E_i' are terminal voltage, generated active power, open circuit voltage and internal stator voltage of the ith machine. δ_i is the angle between E_i' and a common synchronously rotating reference frame as shown in Figure 1. Each phasor is written in terms of its d and q components as:

$$\overline{f}_i = (f_{qi} + j f_{di})e^{j\delta_i} \tag{2}$$

Where $\overline{f_i}$ represents voltage, current or flux linkage of the *i*th machine. Linearizing (1):

$$\begin{split} \Delta P_{gi} &= K 1_{i1} \Delta \delta_1 + ... + K 1_{in} \Delta \delta_n + K 2_{i1} \Delta E_1' \\ &+ ... + K 2_{in} \Delta E_n' \\ \Delta E_i &= K 4_{i1} \Delta \delta_1 + ... + K 4_{in} \Delta \delta_n + K 3_{i1}^{-1} \Delta E_1' \\ &+ ... + K 3_{in}^{-1} \Delta E_n' \\ \Delta V_i &= K 5_{i1} \Delta \delta_1 + ... + K 5_{in} \Delta \delta_n + K 6_{i1} \Delta E_1' \\ &+ ... + K 6_{in} \Delta E_n' \qquad i = 1, ..., n \end{split}$$
 (3)

From (3) and the simplified linear model, Heffron-Phillips model block diagram will be derived as in Figure 2 [4].

FIRST APPROACH

Consider an n machines system with impedance loads. All load buses have been omitted [13]. This approach uses linearized KCL equations at each bus, for computing $\Delta V_i, \Delta P_{gi}, \Delta E_i$ in terms of state variables $\Delta \delta_1,...,\Delta \delta_n, \Delta E'_1,...,\Delta E'_n$.

Generated Current The relation between V_i and E'_i is as follows:

$$\begin{split} \overline{V}_{i} &= (V_{qi} + jV_{di})e^{j\delta_{i}} = \overline{E'_{i}} - jx_{qi}I_{qi}e^{j\delta_{i}} \\ &- jx'_{di}I_{di} je^{j\delta_{i}} \qquad i = 1,...,n \end{split} \tag{4}$$

Separating real and imaginary parts, linearizing and grouping:

Figure 2. Multi-machine Heffron-Phillips block diagram.

$$\begin{bmatrix} \Delta I_q \\ \Delta I_d \end{bmatrix} = \begin{bmatrix} 0 & \Gamma 1 \\ B2 & 0 \end{bmatrix} \begin{bmatrix} \Delta V_q \\ \Delta V_d \end{bmatrix} + \begin{bmatrix} 0 \\ A2 \end{bmatrix} [\Delta E'] \tag{5}$$

Where $\Delta I_q = [\Delta I_{q1}, ..., \Delta I_{qn}]^T$ and ΔI_d , ΔV_q , ΔV_d , $\Delta E'$ are similar $n \times I$ vectors, and ΓI , B2, A2 are $n \times n$ matrices with their elements defined in Appendix A.

Injected Current The current that flows from the *i*th generator to its connected lines and loads is equal to:

$$\overline{I}_{i} = \sum_{k=1}^{n} \overline{Y}_{ik} \overline{V}_{k} \qquad i = 1, ..., n$$
(6)

Separating the d and q axis components, linearizing and grouping:

$$\begin{bmatrix} \Delta I_q \\ \Delta I_d \end{bmatrix} = \begin{bmatrix} B'1 & \Gamma'1 \\ -\Gamma'1 & B'1 \end{bmatrix} \begin{bmatrix} \Delta V_q \\ \Delta V_d \end{bmatrix} + \begin{bmatrix} A'1 \\ A'2 \end{bmatrix} [\Delta \delta] \quad (7)$$

Where ΔI_q , ΔI_d , ΔV_q , ΔV_d , $\Delta \delta$ are $n \times 1$ vectors and B'1, $\Gamma'1$, A'1, A'2 are $n \times n$ matrices with their elements as defined in appendix A.

Computing ΔV_q and ΔV_d

Eliminating ΔI_q , ΔI_d between (5) and (7):

$$\begin{bmatrix} \Delta V_q \\ \Delta V_d \end{bmatrix} = \begin{bmatrix} X1 & X2 \\ X3 & X4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta E' \end{bmatrix}$$
 (8)

Computing K1 and K2 The power generated by the *i*th machine is:

$$\begin{split} P_{gi} = & (\frac{1}{x'_{di}} - \frac{1}{x_{qi}}) V_{di} V_{qi} - \frac{1}{x'_{di}} E'_{i} V_{di} \\ Q_{gi} = & \frac{-1}{x'_{di}} V_{qi}^{2} - \frac{1}{x_{qi}} V_{di}^{2} + \frac{1}{x'_{di}} E'_{i} V_{di} \quad i = 1,...,n \quad (9) \end{split}$$

Linearizing and grouping (9):

$$\begin{bmatrix} \Delta P_g \\ \Delta Q_g \end{bmatrix} = \begin{bmatrix} BI & CI \\ B2 & C2 \end{bmatrix} \begin{bmatrix} \Delta V_q \\ \Delta V_d \end{bmatrix} + \begin{bmatrix} AI \\ A2 \end{bmatrix} [\Delta E'] \tag{10}$$

Where ΔP_g , ΔQ_g , ΔV_q , ΔV_d , $\Delta E'$ are $n \times 1$ vectors and B1, C1, B2, C2, A1, A2 are $n \times n$ matrices with their elements as defined in appendix B. Substituting for ΔV_q , ΔV_d from (8) into (10):

$$K1 = B1 XI + CI X3$$

 $K2 = A1 + B1 X2 + C1 X4$ (11)

Computing K3 and K4 E'_i is related to E_i as follows:

$$E_{i} = E'_{i} - (x_{di} - x'_{di}) I_{di} = E'_{i} - (\frac{x_{di} - x'_{di}}{x'_{di}}) (V_{qi} - E'_{i}) \qquad i = 1,..., n$$
 (12)

Linearizing (12), and substituting for ΔV_{qi} from (8):

$$K3_{ij} = [(1 - \frac{x_{di}}{x'_{di}})x2_{ij}]^{-1} \qquad i \neq j$$

$$K3_{ii} = \left[\frac{x_{di}}{x'_{di}} + (1 - \frac{x_{di}}{x'_{di}})x2_{ii}\right]^{-1}$$

$$K4_{ij} = (1 - \frac{x_{di}}{x'_{di}})x1_{ij}$$

 $i = 1,...,n$ $j = 1,...,n$ (13)

Computing K5 and K6 Voltage of each bus is related to its components as follows:

$$V_i^2 = V_{ai}^2 + V_{di}^2$$
 $i = 1,..., n$ (14)

Linearizing and grouping (14) yields:

$$\Delta V = v_a \Delta V_a + v_d \Delta V_d \tag{15}$$

Where v_q and v_d are diagonal matrices with elements (V_{qi}/V_i) and (V_{di}/V_i) respectively. Substituting (8) into (15):

$$K5 = \upsilon_q X1 + \upsilon_d X3$$

$$K6 = \upsilon_q X2 + \upsilon_d X4$$
(16)

SECOND APPROACH

Consider an *n* machines system with impedance loads on load buses, and impedance or voltage dependent or power constant loads on generator terminal buses. Suppose load buses are omitted. The load of the *i*th generator terminal bus can be modeled as:

$$P_{di} = f_{pi}(V_i)$$

 $Q_{di} = f_{qi}(V_i)$ $i = 1,...p$ (17)

This approach uses linearized power flow equations at each bus for computing ΔV_i , ΔP_{gi} and ΔE_i in terms of state variables. $\Delta \delta_i$,

$$\Delta \delta_1, ..., \Delta \delta_n, \Delta E'_1, ..., \Delta E'_n$$
.

Generated Power Linearized generator power equations are as (10).

Injected Power The power flowing from the *i*th generator to its connected lines and loads is equal to:

$$\begin{split} P_{gi} &= P_{di} + P_{i} = f_{pi}(V_{qi}, V_{di}) + \\ &\sum_{k=1}^{n} Y_{ik} [(V_{qi}V_{qk} + V_{di}V_{dk})C_{ik} - (V_{qi}V_{dk} - V_{di}V_{qk})S_{ik}] \\ Q_{gi} &= Q_{di} + Q_{i} = f_{qi}(V_{qi}, V_{di}) - \\ &\sum_{k=1}^{n} Y_{ik} [(V_{qi}V_{qk} + V_{di}V_{dk})S_{ik} + (V_{qi}V_{dk} - V_{di}V_{qk})C_{ik}] \\ &i = 1, ..., n \end{split}$$

$$(18)$$

Where:

 $C_{ik} = \cos(\delta_k - \delta_i + \gamma_{ik}), S_{ik} = \sin(\delta_k - \delta_i + \gamma_{ik}).$ Linearizing and grouping (18):

$$\begin{bmatrix} \Delta P_g \\ \Delta Q_g \end{bmatrix} = \begin{bmatrix} B'I & C'I \\ B'2 & C'2 \end{bmatrix} \begin{bmatrix} \Delta V_q \\ \Delta V_d \end{bmatrix} + \begin{bmatrix} A'I \\ A'2 \end{bmatrix} [\Delta \delta]$$
(19)

Where ΔP_g , ΔQ_g , ΔV_q , ΔV_d , $\Delta \delta$ are $n \times 1$ vectors and B'1, C'1, B'2, C'2, A'1, A'2 are $n \times n$ matrices with their elements as defined in appendix B.

Computing ΔV_q and ΔV_d

From (10) and (19):

$$\begin{bmatrix} \Delta V_q \\ \Delta V_d \end{bmatrix} = \begin{bmatrix} X1 & X2 \\ X3 & X4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta E' \end{bmatrix}$$
 (20)

Computing K1, ..., K6 Matrices K1, ..., K6 can be calculated from the formulas presented in sections 3, 4, 3.5 and 3.6.

THIRD APPROACH

Consider an n machines network with m load buses. Suppose generator terminal buses have been

numbered I to n and load buses n+1 to n+m. Each load can be modeled with an impedance or as in (17). This approach uses linearized power flow equations at each bus for computing $\Delta V_i, \Delta P_{gi}, \Delta E_i$ in terms of state variables $\Delta \delta_1, \dots, \Delta \delta_n, \Delta E'_1, \dots, \Delta E'_n$.

Generated Power Generated power by the *i*th machine is equal to:

$$\begin{split} P_{gi} &= \frac{V_{i}E_{i}'}{x_{di}'} \sin(\delta_{i} - \theta_{i}) \\ &+ (\frac{1}{x_{qi}} - \frac{1}{x_{di}'}) \frac{V_{i}^{2}}{2} \sin 2(\delta_{i} - \theta_{i}) \\ Q_{gi} &= \frac{V_{i}E_{i}' \cos(\delta_{i} - \theta_{i}) - V_{i}^{2}}{x_{di}'} \\ &- (\frac{1}{x_{qi}} - \frac{1}{x_{di}'}) V_{i}^{2} \sin^{2}(\delta_{i} - \theta_{i}) \qquad i = 1, ..., n \end{split}$$
 (21)

Where θ_i is the voltage angle of *i*th bus. Linearizing and grouping (21):

$$\begin{bmatrix} \Delta P_g \\ \Delta Q_g \end{bmatrix} = \begin{bmatrix} B1 & C1 \\ B2 & C2 \end{bmatrix} \begin{bmatrix} \Delta V_g \\ \Delta \theta_g \end{bmatrix} + \begin{bmatrix} -C1 & A1 \\ -C2 & A2 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta E' \end{bmatrix} (22)$$

Where ΔP_g , ΔQ_g , ΔV_g , $\Delta \theta_g$, $\Delta E'$, $\Delta \delta$ are $n \times l$ vectors and B1, C1, B2, C2, A1, A2 are $n \times n$ matrices with their elements as defined in appendix C.

Injected Power The power injected by the ith generator to its connected lines and loads is equal to:

$$P_{gi} = \sum_{k=1}^{n} V_{i} V_{k} Y_{ik} \cos(\theta_{k} - \theta_{i} + \gamma_{ik}) + f_{pi}(V_{i})$$

$$Q_{gi} = -\sum_{k=1}^{n} V_{i} V_{k} Y_{ik} \sin(\theta_{k} - \theta_{i} + \gamma_{ik}) + f_{qi}(V_{i})$$

$$i = 1, ..., n + m$$
(23)

Linearizing and grouping (23) yields:

$$\begin{bmatrix} \Delta P_g \\ 0 \\ \Delta Q_g \\ 0 \end{bmatrix} = \begin{bmatrix} B'1_{gg} & B'1_{gl} & C'1_{gg} & C'1_{gl} \\ B'1_{lg} & B'1_{ll} & C'1_{lg} & C'1_{ll} \\ B'2_{gg} & B'2_{gl} & C'2_{gg} & C'2_{gl} \\ B'2_{lg} & B'2_{ll} & C'2_{lg} & C'2_{ll} \end{bmatrix} \begin{bmatrix} \Delta V_g \\ \Delta V_l \\ \Delta \theta_g \\ \Delta \theta_l \end{bmatrix} (24)$$

Where:

 $\Delta V_g = [\Delta V_1, ..., \Delta V_n], \Delta V_I = [\Delta V_{n+1}, ..., \Delta V_{n+m}]$ and other vectors are defined similarly. Elements of sub-matrices are defined in appendix C. Eliminating ΔV_I and $\Delta \theta_I$:

$$\begin{bmatrix} \Delta \mathbf{P}_g \\ \Delta \mathbf{Q}_g \end{bmatrix} = \begin{bmatrix} \mathbf{B}' \mathbf{1} & \mathbf{C}' \mathbf{1} \\ \mathbf{B}' \mathbf{2} & \mathbf{C}' \mathbf{2} \end{bmatrix} \begin{bmatrix} \Delta V_g \\ \Delta \theta_g \end{bmatrix}$$
 (25)

Where ΔP_g , ΔQ_g , ΔV_g , $\Delta \theta_g$ are $n \times I$ vectors and B'1, C'1, B'2, C'2 are $n \times n$ matrices.

If loads of load buses are impedance loads, omitting load buses and computing (25) directly involves less computation than computing it from (24) (see section 7).

Computing ΔV_g and $\Delta \theta_g$ From (22) and (25):

$$\begin{bmatrix} \Delta V_g \\ \Delta \theta_g \end{bmatrix} = \begin{bmatrix} X1 & X2 \\ X3 & X4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta E' \end{bmatrix}$$
 (26)

Computing K1 and K2 Substituting (26) into (22) yields:

$$K1 = -C1 + B1 X1 + C1 X3$$

 $K2 = A1 + B1 X2 + C1 X4$ (27)

Computing K3 and K4 E'_i , E_i and V_i are related as follows:

$$E_{i} = \frac{x_{di}}{x'_{di}} E'_{i} + (1 - \frac{x_{di}}{x'_{di}}) V_{i} \cos(\delta_{i} - \theta_{i})$$
 (28)

Linearizing (28) and substituting for V_i form (26):

TABLE 1. Total NMD of Conventional Approach.

Computation	NMD	Comments
\overline{Y}_t^{-1}	$6(n+p)^3$	This matrix is complex
$\{Y_i^{-1} + j X_d'\}^{-1}$	$6(n+p)^3$	This matrix is complex
ΔI_q	$2.5(n+p)^3$	$L_q \Delta I_q = P_q \Delta \delta + Q_q \Delta E'$
Y_d , F_d	$2(n+p)^3$	$F_d = P_d + M_d F_q , \ Y_d = Q_d + M_d Y_q$
Total	$16.5(n+p)^3$	

$$K3_{ij} = [h1_{i}x2_{ij} + h2_{i}x4_{ij}]^{-1} i \neq j$$

$$K3_{ii} = [(\frac{x_{di}}{x'_{di}}) + h1_{i}x2_{ii} + h2_{i}x4_{ii}]^{-1}$$

$$K4_{ij} = h1_{i}x1_{ij} + h2_{i}x3_{ij} i \neq j$$

$$K4_{ii} = -h2_{i} + h1_{i}x1_{ii} + h2_{i}x3_{ii} (29)$$

Where:

$$h1_{i} = (1 - \frac{x_{di}}{x'_{di}})\cos(\delta_{i} - \theta_{i})$$

$$h2_{i} = (1 - \frac{x_{di}}{x'_{di}})\sin(\delta_{i} - \theta_{i})$$

Computing K5 and K6 Comparing (3) and (26) yields:

$$K5 = X1$$

 $K6 = X2$ (30)

Accounting for Infinite Bus Suppose bus No. k is an infinite bus then $\Delta E_k', \Delta \delta_k, \Delta V_k$, $\Delta E_k', \Delta \delta_k, \Delta V_k, \Delta \theta_k, \Delta V_{qk}, \Delta V_{dk}$ are zero and hence row k of vectors $\Delta E', \Delta \delta, \Delta V_g, \Delta \theta_g, \Delta V_q$, ΔV_d and consequently column k of all submatrices in equations (5), (7), (10), (19), (22), (25) are omitted. Furthermore, equations related to the k's bus is not required for computing K1, ..., K6, then row k of vectors $\Delta I_q, \Delta I_d, \Delta P_g, \Delta Q_g$ and row k of all sub-matrices in (5), (7), (10), (19), (22), (25) are omitted. Therefore, infinite bus is modeled without increasing computations. Note

that ΔI_{dk} and ΔI_{qk} are not zero, and hence conventional approach is not able to account for infinite bus directly.

Comparing Computation Times To compare amount of computations for different approaches, computations that are proportional to l and l^2 are ignored, where l is the dimension of matrices in each approach. Run time of addition or subtraction is much less than run time of multiplication or division and hence only number of multiplications and divisions (NMD) are compared. NMD that is needed to inverse a real (complex) square matrix with dimension l by Gausien-Jordan method [14] is approximately equal to $1.5l^3$ ($6l^3$).

Consider a multi-machine network with n generator terminal buses, m load buses, and p infinite buses. First assume m=0. NMD of conventional approach, as listed in Table 1 is approximately equal to $16.5(n+p)^3$. In our approaches infinite buses are modeled directly therefore n+p reduces to n. In these approaches all computations except a $2n \times 2n$ matrix inversion are proportional to n or n^2 . Note that NMD of each matrix multiplication is proportional to n^2 , since in each matrix multiplication one matrix is diagonal. Therefore, NMD of each new approach is approximately equal to $1.5(2n)^3 = 12n^3$. The ratio of computations of proposed approaches conventional approach is equal to $12n^3/16.5(n+p)^3$. Therefore, if p=0, the amount of computations of presented approaches are equal to 73 percent of computation amount of conventional approach, else they are less than 73.

Figure 3. Five Buses Network.

Now suppose $m \neq 0$, if loads of load buses are impedance loads, load buses can be omitted. NMD that is needed for omitting load buses is equal to $6m^3 + 4mn^2$, $6m^3$ for matrix inversion and $4mn^2$ for substitution. Therefore, NMD of conventional approach and proposed approaches are equal to $6m^3 + 4mn^2 + 16.5(n+p)^3$ and $6m^3 + 4mn^2 + 12n^3$ respectively.

If there is a non-impedance load at load buses, load buses cannot be omitted, and only the third approach is capable to handle it. In this case (25) must be computed from (24), not directly, this will increases NMD to $12 m^3 + 8mn^2 + 12 n^3$.

Therefore, if loads of load buses are impedance loads, omitting load buses and computing (25) directly involves less computation than computing it from (24).

APPLICATIONS

Example 1: Five Buses Network Consider the five buses network of Figure 3. Its parameters and operating point are given in appendix D. Load bus was omitted first. The coefficients were computed by the four approaches and are given in appendix E. Run time of each approach for reduced network is given in table 2. As is shown in appendix E, the computed coefficients by different approaches are equal within admissible approximation. Run time of different approaches confirms that the amount of computations in new approaches is less than 73 percent of that of conventional approach.

Example 2: New England Network This network consists of 10 generator terminal buses, 29

TABLE 2. Run Time Different Approaches in Mega Cycle of CPU Clock for Examples 1 and 2.

Ex.	Time of Con. Appr.	Time of 1 st Appr.	Time of 2 nd Appr.	Time of 3 rd Appr.
Ex. 1	14.0768	4.2016	4.2304	4.2160
Ex. 2	101.3376	69.4368	69.5488	69.5792

load buses, and 46 lines [15]. All loads are impedance loads; the coefficients computed by the four approaches are equal within admissible approximation [16]. The run time of each approach for reduced network is given in table 2, confirming the results of section 7.

CONCLUSION

Three new systematic approaches for computing Heffron-Phillips multi-machine model coefficients (K1, ..., K6) were proposed. The first approach is applicable only on impedance load networks, but the second approach is able to account for voltage dependent and power constant loads at generator terminal buses, the third approach is able to account for voltage dependent and power constant loads at each bus. All proposed approaches are able to account for infinite bus directly without increasing the amount of computations. Comparing NMD of different approaches shows that, for a reduced network, NMD of new approaches is less than 73 percent of conventional approach. The amount of computations of third approach increases if there are non-impedance loads at load buses, and hence it is better to omit load buses when loads of load buses are impedance loads. The examples show that the results of four approaches are equal within admissible approximation. The run time of each approach confirms the result of comparing the amount of computations. Table 2 shows that run time of first approach is a little less than second and third approaches. The third approach doesn't deal with q and d components and Blondel-Park transformation.

APPENDIX A

Elements of First Approach's Sub-matrices

$$\gamma I_{ij} = 0$$
 $i \neq j$, $\gamma I_{ii} = \frac{-1}{x_{qi}}$

$$\alpha 2_{ij} = 0 i \neq j, \quad \alpha 2_{ii} = \frac{-1}{x'_{di}}$$

$$\beta 2_{ij} = 0 i \neq j, \quad \beta 2_{il} = \frac{1}{x'_{di}}$$

$$\alpha' 1_{ij} = -Y_{ij} (V_{qj} S_{ij} + V_{dj} C_{ij}) i \neq j$$

$$\alpha' 1_{ij} = \sum_{\substack{k=1 \\ k \neq i}}^{n} Y_{ik} (V_{qk} S_{ik} + V_{dk} C_{ik})$$

$$\beta' 1_{ij} = Y_{ij} C_{ij}$$

$$\gamma' 1_{ij} = -Y_{ij} S_{ij}$$

$$\alpha' 2_{ij} = Y_{ij} (V_{qj} C_{ij} - V_{dj} S_{ij}) i \neq j$$

$$\alpha' 2_{ij} = -\sum_{\substack{k=1 \\ k \neq i}}^{n} Y_{ik} (V_{qk} C_{ik} - V_{dk} S_{ik})$$

APPENDIX B

Elements of Second Approach's Submatrices

$$\begin{split} aI_{ij} &= 0 & i \neq j, \quad aI_{ii} = \frac{-1}{x'_{di}} V_{di} \\ bI_{ij} &= 0 & i \neq j, \quad bI_{ii} = (\frac{1}{x'_{di}} - \frac{1}{x_{qi}}) V_{di} \\ cI_{ij} &= 0 & i \neq j, \quad cI_{ii} = (\frac{1}{x'_{di}} - \frac{1}{x_{qi}}) V_{qi} - \frac{1}{x'_{di}} E'_{i} \\ a2_{ij} &= 0 & i \neq j, \quad a2_{ii} = \frac{1}{x'_{di}} V_{qi} \\ b2_{ij} &= 0 & i \neq j, \quad b2_{ii} = \frac{1}{x'_{di}} (E'_{i} - 2V_{qi}) \\ c2_{ij} &= 0 & i \neq j, \quad c2_{ii} = \frac{-2}{x_{qi}} V_{di} \\ a'I_{ij} &= Y_{ij} [(V_{di}V_{qj} - V_{qi}V_{dj})C_{ij} - (V_{qi}V_{qj} + V_{di}V_{dj})S_{ij}]i \neq j \\ a'I_{ii} &= -\sum_{k=1 \atop k \neq i}^{n} a'I_{ik} \\ b'I_{ij} &= Y_{ij} (V_{qi} C_{ij} + V_{di} S_{ij}) & i \neq j \\ b'I_{ii} &= 2 V_{qi}C_{ii}Y_{ii} + \sum_{k=1 \atop k \neq i}^{n} Y_{ik} (V_{qk}C_{ik} - V_{dk}S_{ik}) + \frac{V_{qi}}{V_{i}} \frac{\partial f_{pi}(V_{i})}{\partial V_{i}} \\ c'I_{ij} &= Y_{ij} (V_{di} C_{ij} - V_{qi} S_{ij}) & i \neq j \end{split}$$

$$\begin{split} c'I_{ii} &= 2\,V_{di}C_{ii}Y_{ii} + \sum_{k=1}^{n}Y_{ik}\big(V_{dk}C_{ik} + V_{qk}S_{ik}\big) + \frac{V_{di}}{V_{i}}\,\frac{\partial f_{pi}(V_{i})}{\partial V_{i}} \\ a'2_{ij} &= Y_{ij}\big[(V_{qi}V_{dj} - V_{di}V_{qj})S_{ij} - (V_{qi}V_{qj} + V_{di}V_{dj})C_{ij}\big]i \neq j \\ a'2_{ii} &= -\sum_{k=1}^{n}a'2_{ik} \\ b'2_{ij} &= c'I_{ij} \\ i \neq j \\ b'2_{il} &= -2\,V_{qi}S_{ii}Y_{ii} - \sum_{k=1}^{n}Y_{ik}\big(V_{qk}S_{ik} + V_{dk}C_{ik}\big) + \frac{V_{qi}}{V_{i}}\,\frac{\partial f_{qi}(V_{i})}{\partial V_{i}} \\ c'2_{ij} &= -b'I_{ij} \\ i \neq j \\ c'2_{ii} &= -2\,V_{di}S_{ii}Y_{ii} - \sum_{k=1}^{n}Y_{ik}\big(V_{dk}S_{ik} - V_{qk}C_{ik}\big) + \frac{V_{di}}{V_{i}}\,\frac{\partial f_{qi}(V_{i})}{\partial V_{i}} \end{split}$$

APPENDIX C

Elements of Third Approach's Sub-matrices

$$\begin{split} &\text{a1}_{ij} = 0 & i \neq j \\ &\text{a1}_{ii} = \frac{V_i \sin(\delta_i - \theta_i)}{x'_{di}} \\ &\text{b1}_{ij} = 0 & i \neq j \\ &\text{b1}_{ii} = \frac{E_i' \sin(\delta_i - \theta_i)}{x'_{di}} + (\frac{1}{x_{qi}} - \frac{1}{x'_{di}}) V_i \sin 2(\delta_i - \theta_i) \\ &\text{c1}_{ij} = 0 & i \neq j \\ &\text{c1}_{ii} = -\frac{V_i E_i' \cos(\delta_i - \theta_i)}{x'_{di}} - (\frac{1}{x_{qi}} - \frac{1}{x'_{di}}) V_i^2 \cos 2(\delta_i - \theta_i) \\ &\text{a2}_{ij} = 0 & i \neq j \\ &\text{a2}_{ii} = \frac{V_i \cos(\delta_i - \theta_i)}{x'_{di}} \\ &\text{b2}_{ij} = 0 & i \neq j \\ &\text{b2}_{ii} = \frac{E_i' \cos(\delta_i - \theta_i)}{x'_{di}} - 2(\frac{1}{x_{qi}} - \frac{1}{x'_{di}}) V_i \sin^2(\delta_i - \theta_i) \\ &\text{c2}_{ij} = 0 & i \neq j \\ &\text{c2}_{ij} = 0 & i \neq j \\ &\text{c1}_{ij} = V_i E_i' \sin(\delta_i - \theta_i) + (\frac{1}{x_{qi}} - \frac{1}{x'_{di}}) V_i^2 \sin 2(\delta_i - \theta_i) \\ &\text{b'1}_{ij} = V_i Y_{ij} \cos(\theta_j - \theta_i + \gamma_{ij}) & i \neq j \\ &\text{b'1}_{ij} = 2V_i Y_{ii} \cos(\gamma_{ii}) + \sum_{k=1}^n V_k Y_{ik} \cos(\theta_k - \theta_i + \gamma_{ik}) + \frac{\partial f_{pi}(V_i)}{\partial V_i} \\ &\text{b'1}_{ij} = 2V_i Y_{ii} \cos(\gamma_{ii}) + \sum_{k=1}^n V_k Y_{ik} \cos(\theta_k - \theta_i + \gamma_{ik}) + \frac{\partial f_{pi}(V_i)}{\partial V_i} \end{split}$$

a/1 - 1	V V V al-	·/O O			T. 1	К3			
$c \mid_{ij} = -i$	$V_i V_j Y_{ij}$ sin	$1(\theta_j - \theta_i)$	+γ _{ij})		$i \neq j$	K3	-6.131165	1.182260	1.426841
, n							1.050029	-6.094800	1.450936
$c' I_{ii} = \sum_{i}$	ViVk Yik SI	$n(\theta_k - \theta_i)$	$+\gamma_{ik}$)				0.760465		
k=1 k≠i	V _i V _k Y _{ik} si					K4	0.760463	0.870719	-4.547827
						K4	2 247144	0.644750	0.50/005
$0 Z_{ij} = -$	$V_i Y_{ij} \sin(\theta)$	$\theta_j - \theta_i + \gamma$	γ _{ij})		$i \neq j$		3.347144	-0.644758	-0.786225
		n			ar (V)		-0.510889	3.150677	-0.773188
$b'2_{ii} = -2$	$V_i Y_{ii} \sin(\gamma)$	$(1) - \sum V_i$	Yik sin($\theta_k - \theta_i +$	γ_{ik}) + $\frac{\sigma_{qi}(r_i)}{2\pi i}$	22757	-0.509724	-0.596232	2.747217
26.00	and the state of t	k=1			γ_{ik}) + $\frac{\partial f_{qi}(V_i)}{\partial V_i}$	K5			
		$k \neq i$					0.050734	0.031344	-0.008382
$c'2_{ii} = -i$	$V_i V_j Y_{ij}$ co	$s(\theta_i - \theta_i)$	$+\gamma_{ii}$)		$i \neq j$		0.012884	0.066682	-0.007635
	20053450	Septem X	0 00.000				0.017770	0.032494	0.049752
$c'2=\sum_{n=1}^{\infty}$	V _i V _k Y _{ik} co	$s(\theta_{i} - \theta_{i})$	+ /)			K6			
k=1	i' k *ik	rolok o	' lik				0.212040	0.148171	0.127395
k≠i							0.116303	0.255361	0.124345
							0.103873	0.130430	0.310339
							0.100070	01120120	0.510557
		APPEN	DIX			229.0000.00	MATERIAL PRINCIPLES		
						First A	pproach:		
CI.		c Ti	n	** .					
Charac	teristics	of Five	Buse	s Netw	ork	K1			
							2.808604	-0.424903	-0.655489
Machine	Data:						-0.424907	2.919343	-0.689649
							-0.655470	-0.689623	4.351999
Gen.	Rating	xq=xd	x'd	Ext	ernal	K2			
No.	(MVA)	(pu)	(pu)	138.00	tance (pu)		3.285408	-0.596842	-0.842596
1	166.6	1.164	0.146	0.01			-0.599098	3.486200	-0.922443
2	166.6	1.029	0.124	0.01	94		-0.780073	-0.847234	5.009098
3	325.0	0.625	0.084	0.03	27	K3	-0.760075	-0.04/234	3.009096
Inf. bus	*****	0.0001	0.0000	1 0.06	7	N.S	6 120041	1.101773	1 420252
							-6.130941	1.181662	1.430252
Operatin	g Point:						1.050505	-6.093608	1.449237
						200	0.760063	0.866306	-4.533863
Gen.	Active	React	tive T	erminal	Voltage	K4			
No.	Power	Powe	r V	oltage	Angle		3.344496	-0.609929	-0.794222
(50,500)	(MW)	(MW		ou)	(deg)		-0.540199	3.154956	-0.766865
1	90.00	27.55	1	.018	14.55		-0.455869	-0.499064	2.709859
2	90.00	27.55		.018	14.55	K5			
3	127.50	20.51		.018	16.77		0.051390	0.027487	-0.007359
Inf. Bus	-355.50	-22,47	1	.000	0.000		0.016605	0.066300	-0.008675
							0.011640	0.020364	0.055023
						K6	0.011010	0.020001	0.0000020
		APPEN	DIXE	67.		KO	0.212821	0.148827	0.129386
							0.212821	0.256133	0.125676
Coeffici	ents K1	,, Ko	5						
							0.104677	0.130726	0.313786
Computed	1 Coeffici	ents for	Examr	le 1- (Conventional				
Approach		201	Littering		JOHN CHILICIAN	Second	Approach:		
Approaci	11.					5550110	търргошен.		
K1						K1			
KI	2 90017	0 04	12740	0.0	51400	KI	2.808604	0.424002	0.655400
	2.809179		43749		51488			-0.424903	-0.655490
	-0.40941		16649		92354		-0.424907	2.919343	-0.689690
10000	-0.71546	1 -0.7	93941	4.3	89877	825.8t	-0.655470	-0.689622	4.351997
K2						K2			
	3.28373	4 -0.5	98874	-0.8	44573		3.285408	-0.596842	-0.842596
	-0.60066	5 3.4	85166	-0.9	27487		-0.599098	3.486200	-0.922443
	-0.78363		55077		17840		-0.780073	-0.847234	5.009097
	20500	0.0		5.0			21.20010		2.227071

K3			
	-6.130941	1.181662	1.430252
	1.050505	-6.093609	1.449237
	0.760063	0.866306	-4.533863
K4			
	3.344496	-0.609929	-0.794222
	-0.540199	3.154956	-0.766865
	-0.455869	-0.499064	2.709858
K5			
	0.051390	0.027487	-0.007359
	0.016605	0.066300	-0.008675
	0.011640	0.020364	0.055023
K6			
	0.212820	0.148826	0.129386
	0.117042	0.256133	0.125676
	0.104677	0.130726	0.313786
Third A	Approach:		

2.808341	-0.424850	-0.655428
-0.424850	2.918862	-0.689532
-0.655428	-0.689532	4.351735
3.285185	-0.596866	-0.842605
-0.599105	3.485797	-0.922404
-0.780149	-0.847295	5.008799
-6.130904	1.181713	1.430294
1.050541	-6.093570	1.449259
0.760107	0.866352	-4.533810
3.344319	-0.609888	-0.794192
-0.540164	3.154646	-0.766802
-0.455849	-0.499021	2.709760
0.051388	0.027489	-0.007355
0.016604	0.066302	-0.008671
0.011637	0.020364	0.055029
0.212815	0.148825	0.129383
0.117035	0.256133	0.125672
0.104667	0.130721	0.313786
	-0.424850 -0.655428 3.285185 -0.599105 -0.780149 -6.130904 1.050541 0.760107 3.344319 -0.540164 -0.455849 0.051388 0.016604 0.011637 0.212815 0.117035	-0.424850 2.918862 -0.655428 -0.689532 3.285185 -0.596866 -0.599105 3.485797 -0.780149 -0.847295 -6.130904 1.181713 1.050541 -6.093570 0.760107 0.866352 3.344319 -0.609888 -0.540164 3.154646 -0.455849 -0.499021 0.051388 0.027489 0.016604 0.066302 0.011637 0.020364 0.212815 0.148825 0.117035 0.256133

REFERENCES

1. Heffron, W. G. and Phillips, R. A., "Effect of a Modern Amplitude Voltage Regulator on Under Excited Operation

- of Large Turbine Generators", IEEE Trans. PAS, Vol. 71, (August 1952), 692-697.
- 2. De Mello, F. P. and Concordia, C., "Concepts of Synchronous Machine Stability as Affected by Excitation Control", IEEE Trans. PAS, Vol. 88, No. 4, (April 1969), 316-329.
- 3. De Mello, F. P. and Laskowski, T. F., "Concepts of Power System Dynamic Stability", IEEE Trans. PAS, Vol. 94, No. 3, (May/June 1975), 827-833.
- 4. Yao-Nan Yu, "Electric Power System Dynamics", Academic Press, New York, 1983.
- 5. De Mello, F. P., Nolan, P. J., Laskowski, T. F. and Undrill, J. M., "Coordinated Application of Stabilisers in Multi-machine Power Systems", IEEE Trans. PAS, Vol. 99, No. 3, (1980), 892-901.
- 6. Fleming, R. J., Mohan, M. A. and Parvatisam, K. P., "Selection of Parameters of Stabilizers in Multi-machine Power Systems", IEEE Trans. PAS, Vol. 100, (May 1981), 2329-2333.
- 7. Gooi, H. B., Hill, E. F., Mobarak, M. A., Throne, D. H. and Lee, T. H., "Coordinated Multi-machine Stabilizer Settings without Eigenvalue Drift", IEEE Trans. PAS, Vol. 100, (1981), 3879-3886.
- 8. Abe, S. and Doi, A., "A New Power System Stabilizer Synthesis in Multi-Machine Power Systems", IEEE Trans. PAS, Vol. 102, (1981), 3910-3918.
- 9. Dio, A. and Abe, S., "Coordinated Synthesis of Power System Stabilizers in Multi-machine Power Systems", IEEE Trans. PAS, Vol. 103, No. 6, (June 1984), 1473-
- 10. Abdalla, O. H., Hassan, S. A. and Tweing, N. T., "Coordinated Stabilization of a Multi-machine Power System", IEEE Trans. PAS, Vol. 103, No. 3, (March 1984), 483-494.
- 11. Khederzadeh, M. and Ehsan, M., "Fast Small Signal Stability Analysis of Power Systems for Real-Time Operations Planning", ICEE, (May 1996).
- 12. Bergen, R. A., "Power System Analysis", Prentice-Hall, Englewood Cliffs, (1986).
- 13. Stevenson, W. D., "Elements of Power System Analysis". Academic Press, McGraw-Hill, New York, (1982).
- 14. Burden, R. I., Faires, J. D. and Reynolds, A. C., "Numerical Analysis", Prindle, Weber and Schmidt, Boston, (1981).
- 15. Athay, T., Sherkey, V. R., Podmore, R., Virmani, S. and Puech, C., "Transient Energy Stability Analysis", Conference on System Engineering for Power: Emergency Operating State Control-Section IV, Davos, Switzerland, (Sept. 1979).
- 16. Oloomi, M., "Low Frequency Oscillation Analysis of Power Systems with Frequency and Voltage Dependent Loads", B.S. Thesis, Ferdowsi University, (1993).