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Abstract Modified Normalized Least Mean Square (MNLMS) algorithm, which is a sign form of
NLMS based on set-membership (SM) theory in the class of optimal bounding ellipsoid (OBE)
algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a
special but popular case of measurement noise, a simple algorithm has been proposed. With some
simulation examples the performance of algorithm is compared with MNLMS.
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INTRODUCTION

OBE algorithms are used to identify a real model
of the general form

T
v, =W X, +v, (1)

in which W' =[w1,...,wm] is the unknown

parameter vector, {vn} is a disturbance, error, or
input sequence and {X ; } is a measurable sequence
of m-vectors. It is assumed that for each n, v, is

bounded in magnitude by y*, i.e

<) @)

Equations 1 and 2 together yield
2 «\2
b, - xf <) (3)

Let S, be a subset of R” defined by
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S, = {W:(yn ~wx, < (yf, WeRm} )

From a geometrical point of view, S, is a
convex polytope. Thus with each measured pair
(yn,X n), Equations 1 and 2 yield a convex
polytope in the parameter space. At any instant 7,
the intersection of the sequence of S, -, S

contains W and so must any ellipsoid that bounds
this intersection. OBE algorithms start with a
sufficiently large ellipsoid that covers all possible
values of W.

After (yl,X 1) is acquired, an ellipsoid that

bounds the intersection of the initial ellipsoid and
S; is found. Every OBE algorithm uses a specific
optimization criterion to find this ellipsoid that is

denoted by E, . By the same token, the algorithm
obtains a sequence of optimal bounding

ellipsoids {En}. The estimate for W at the nth
instant is defined to be the center of £, . Suppose
that £ _ , atinstantn —1, is given by

n-1°

Vol. 15, No. 1, February 2002 - 35



En—l = {W : (W - anl )T Pr:—ll (W - anl )S ni—l} (5)
for some positive definite matrix P,_, and a nonzero
scalarn,_, . Observing (yn X, ) , an ellipsoid that
bounds E, (1S, is given by

E, = (Wi (W-w, )R (W-W,)<nt}  ©)
where
Pl =(1-4,)P" +A,X, X (7

or equivalently (using matrix inversion lemma)

AP X X'P
Pn — 1 f),,_l _ n” n-1 n Tn n—1 (8)
1-2, 1-4, +AX'P_ X,
en:yn_XrTWn—l (9)
AP X
W =W _, + o e, (10)
1-4,+A,X,P,_ X,

2,(1=2, )e

2 — 1_)“ 2 +).« 2 _ n n/) n
nn ( n)nn—l n}/ l—ln +AnX5f)n_1Xn
(11)

and A, is any scalar in (0,1) [5].
In MNLMS algorithm, P, is replaced by a

n

diagonal matrix p,/ > P, (where A >B means A-

B is positive definite) and an expanded set E,

where

v v oW W]
= {W (W W, (W W) <)

which covers E, .i.e.

E,cE, (13)
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Choosing the value of A, which minimizes

{2=umn’ leads to a very simple algorithm

named MNLMS [12] (and also [10] for a
geometrical approach).

Wn—l ”en || < Y*
W - o
"W+ i Xsimte,) [ >
(14)
(;i—l en S'Y* 15
c=1 (e)-7) * (1)
Qm‘W e.[>v

Although & does not have any direct role in

MNLMS algorithm, but helps distinguishing the
variation of parameters. With the assumption that

y" is chosen correctly and under ideal time-
invariance condition, &’ never goes negative (see
> Gy g gativ

[12]). Every time § nz assumes a negative value, a

variation in the true parameter has occurred.
However we focus on another important

problem: MNLMS algorithm like conventional

OBE algorithm [8] is based on the premise that

{Vn} has an upper bound that is known apriori,

<y", for alln. However since {vn} is

Vn
unobservable, choosing a proper y~ (or bounding

sequence {y*} for the case of time wvariable
maximum level), is critical in practice. Over
bounding increases the estimation error and leads
to inconsistent estimator [11]. Under bounding is
riskier because it can cause divergence. In the next
section we focus on the case that over bounding or
under bounding has been occurred and propose a

method to decrease or increase ¥, to its correct

value (j/*) As stated earlier, our method is valid
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for a special class of measurement noises, which is
defined in the next section.

MLS NOISE AND PROPOSED ALGORITHM

Definition 1 {vn} is called a Maximum Level

Selecting (MLS) noise of order N if for any set of
time instants n,, n,+1,---, n, + N -1, there
exists at least one £ such that

"Vk” =y with  Prob.1

where y* is the global maximum magnitude of

{vn } ie.

14

n

<y

This class, choosing a suitable N , encompasses a
broad variety of noises, e.g. on-off, hard limited
and quantizer systems noises. The following
theorem is the basic key for noise bound correction
and completing of MNLMS algorithm.

Theorem 1 Suppose {vn} is an i.i.d MLS noise

of order N with <y* and fu,} is an iid

VYI

n

sequence for which v, is independent from u, for

all n. Then for every n,,0<y <y“and ¢ >0,

there exists a positive number M such that for
every K>M

Pl

<y n=n,n,+1---,n, +K—1}<8
(16)

v, +u,

Proof: See the appendix

Now suppose {vn} is an MLS noise of order

N and parameter ¥y~ and for a period M>>N the
sequence {e, } in Equation 9 satisfies
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Je]= v+ XT(W-W,.)|<v

n:n09n0+19""n0+M_1 (17)

According to theorem 1 for y <y" and a

sufficiently large M , the probability of the above
event is approximately zero. So it is clearly found
that with a high degree of accuracy

Y <y

Hence

<y <y (18)

Vn

The above statement is based on the assumption
that {un } = {XI (W -W, )} is an i.i.d sequence and

u, independent of v, for all »n (ordinary

n
assumptions in the literature of adaptive
algorithms). So we can candidate y* =y — & for
the maximum noise level. i.e.

y —>y-90

where 0 is an arbitrary small positive value. On
the other hand, because of the nature of OBE
algorithm, they use only a few percentages of the
input data. So if the algorithm uses input data
successively for a period exceeding L (usually L =
1, 2 or 3) without interruption, it insures that y is

less than y . Hence we should increase ¥

Yy >y +0

The above explanation is the foundation of new
algorithm called Automatic Bound Estimation
(ABE) MNLMS algorithm and is summarized as
follows (See [9] for another approach to ABE
algorithms):
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Initialization: Set W, =0,{,=a (large)
positive number, y, =any (over) estimated bound,

Choose O (small positive number), M (M>>N)
and L (usually L=1, 2 or 3)

Yo = Yo
k=k+11=0
if ||en||<'yn: W, =W,
CiZCi,l
if k>M: y,=y,,-0 ,k=0
W, =W,_, +"e""T—_y“anign(en)
” " " l=1+1 ,k=0
if Jle > v, :
2-c, ——(”i‘;'l;ﬁ
if I>L: y,=v,,+6, 1=0

if ¢2<0: ¢ =al(large) positive number

With a rather tedious mathematical analysis
one can show that if M, {vn} and

{un}: {X ! (W—Wn_1 )} satisfy the conditions of
theorem 1, y, finally settles in the interval

[}/* -6,7" +5]. We skip the exact proof but

demonstrate this fact via computer simulations in
the following section.

SIMULATION

In this section we present simulations that
support the abilities of proposed ABE-
MNLMS algorithm. We compare the results
with those of MNLMS algorithm using an
AR(2) model with

Yn :Cyn—l +dYn—2 +Vn ZXIW'FV“ (19)
where
W = [C d]T s Xn = [yn—l y}’l*2 ]T

Four cases are considered:

38 - Vol. 15, No. 1, February 2002

Case 1. Time Invariant Parameter with
Colored Noise Using ¢c=1 and d =—0.5 and
v, 1s a colored non-zero mean error sequence

generated by a correlated sequence {wn }

n

{ 1 if w,>-1 20)

—1  otherwise

in which w, is generated by
w,=-08w ,+z,

where z, is iid uniform in [-1,1]. Both
algorithms are run with an overestimated bound
y =1.5 since the true error bound (7/ =1) is
assumed unknown. The results are shown in Figure

1 (See also the result of SM--SA OBE algorithm
used in [13]).

Case 2. Time Invariant Parameter with
Multi Level Noise In this case v, assumes
values  {-1,-2/3,-1/3,0,1/3,2/3,1}  with  equal
probabilites. Other conditions are the same as case
1. The results are shown in Figure 2.

Case 3. Time Varying Model The parameter
¢ was changed by 50 % at one-thousandth
sample, while C was kept constant at its
nominal value. As before, v, chooses values {-
1,-2/3,-1/3,0,1/3,2/3,1} uniformly. The parameter
estimates are plotted against the true values in
Figure 3. The proposed algorithm also has
remarkable performance for the case of under
bounding.

Case 4. Time Varying Model with Under
Bounding Initial Value Consider case 3 but
with y=0.8. The results are illustrated in Figure 4.

ABE-MNLMS algorithm exhibits improved
performance over MNLMS in all cases. For
example in opposition to MNLMS algorithm, the
steady state error of the parameter estimate in
ABE--MNLMS algorithm is zero in all cases.
Especially from Figure 4 in the case of under
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Parameter Estimates
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Figure 1. Parameter estimates for case 1 (a) MNLMS with
Y = 1.5 and (b) proposed algorithm with Y = 1.5, M=50
and L =2.

bounding, MNLMS is unstable. Despite of all
results, it is important to point out that MNLMS
algorithm has remarkable performance when true y

is available [12].
As mentioned in the end of section 2, y, finally
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Parameter Estimates
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Figure 2. Parameter estimates for case 2 (a) MNLMS with
Y = 1.5 and (b) proposed algorithm with Yy = 1.5, M=50
and L =2.

settles in the interval
[y* -8,y + 8]

To illustrate this fact, Figure 5 shows the

Vol. 15, No. 1, February 2002 - 39



Parameter Estimates
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Figure 3. Parameter estimates for case 3 (a) MNLMS witl

y =1.5 and (b) proposed algorithm with ¥ =1.5, M = 5(
and L=2.

15 1 i 1
0 200 400 600

estimated values of y° (i.e. yn), calculated by

ABE--MNLMS algorithm in the cases 3 and 4. In
the cases 3 and 4 , the initial value of y was

v, =1.5 and y, = 0.8 respectively. Figure 5 (a
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Parameter Estimates
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Figure 4. Parameter estimates for case 4 (a) MNLMS with

y =.8 and (b) proposed algorithm with ¥, =1.5, M = 50
and L=2.

- 1 . 5 1 i 1
0 200 400 600

and b) shows that after » =500 (in case 3) and
n =200 (in case 4) ABE--MNLMS algorithm has
found its true value. Because of the value of L
(L=2) that is small, there is not any underestimating
after these time instants.
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Figure 5. Estimates of y* in (a) Case 3 (over bounding) and
(b) Case 4 (under bounding).

CONCLUSION

A simple strategy to find the true maximum
level of noise has been derived. It is valid
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for those measurement noises that reach
their maximum level in finite durations
with probability one. Simulation results
show that the tracking performance of this
algorithm in finding true maximum level
of noise is comparable to that of MNLMS
algorithm.

APPENDIX: PROOF OF THEOREM 1

Because {v,} is an MLS noise of order N , there

are time instants ¥ < y " in the sets of length N

such that

vi =7’ k eln, +iN;ng +((+ N -1}, i=0,1,2,...
21

Suppose K is an integer multiple of N.
Because y <y", the event

v, tu,||<y,n=ny,n,+1,...,n, +K-1 (22)

is covered by the event

sign(vki );t sign(ukl_ ) i-01---.K/N (23)

Hence
P!

< P{sigr{vki )7& sigr(uki ) 1=01,---, K/ N}< €
(24)

<y n=ny,n;+1--,n, +K—1}

v, +u,

Now suppose

p,=Plv, >0 p,=Plu, >0f (25)
because v, and u, are independent for all n

P{sign(vki );t sign(uki ) 1=0,L-- -,K/N}:
(p1 (1 - pz) a2 (1 P ))K/N (26)

Hence under natural conditions that
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O<p <1, O0<p,<l

it is obvious that for the given [ there exists M,
such that

(pl(l_p2)+p2(l_pl ))Ml <é (27)

Choosing M = M| N completes the proof.
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