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The calcu lation of the load carrying capacity of variable thickness circu lar platesAbstract
subjected to arbitrary rotat ional symmetric loading is presented. The analysis considers plate
materials that obey either the square or the Tresca yield criterion. By using upper and lower
bound theorems of limit analysis, corresponding estimations for the load carrying capacity of the
plate are obtained. I t is shown that these two bounds are identical. Therefore, the obtained
solution would represent the exact amount of the load carrying capacity of the variable thickness
circular plate. Finally, in order to obtain solu t ions for some special cases, plates having step
changes in thickness and those with linear thickness variation are considered and corresponding
results are illustrated.
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INTRODUCTION

In many p ract ica l sit u a t ion s, t h e co r r e ct
pre dict ion of the load car rying capacity of
st r u ct u r e s h a s be e n a sub je ct o f gr e a t
importance. However, the t radit ional elast ic
design has proved unable to present realist ic
e st imat ions for the load carrying capacity of
structures. This is due to the logic behind elastic
design according to which a structure would fail
if it yields at some point. Nevertheless, it is clear
that some relativelyconsiderable reserved load
carrying capacity still exists in a structure that
has failed according to the elastic design. That is
why the structures that have been manufactured

acco rding t o e la st ic de sign pr incip le s ar e
typically too heavy and expensive.
In order to obtain more accurate estimations

for the load carrying capacity of structures, limit
analysis th eorems have been p roposed and
widely used. This method does not possess the
above-mentioned shortcomings of the elastic
design and so lu t ion s a re usua lly obt aine d
somewhat easily. App licat ion of th e limit
analysis approach results in the design of lighter
st ructure s than those obtained through the
elastic design. Lighter structures not onlyneed
less constructional material and manufacturing
effort (and thus are less expensive) but also are
fr e qu e n t ly r e qu e st e d , e sp e cia lly in t h e
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aerospace transportation technology.
Limit analysis theorems and some of the ir

applications in the structural analysis were first
in t ro du ce d in 1950 ' s. Among t h e mo st
fundamental works on this subject references
1-4 are not ewor thy. These include p la st ic
behavior analyses of some structures carrying
specific t ype s of loadings. Comprehensive
reviews of the work done on the limit analysis
a nd de sign o f p la t e s, sh e lls, a n d o t he r
me ch an ica l o r st ru ct u ra l membe r s we re
presented in [5] and [6].
So far, lit t le attention has been paid to the

analysis o f th e p la st ic be havio r o f p lat e s
subjected to some general kinds of loadings. As
one of the few exceptions, in [7], the present
author considered constant thickness circular
plates obeying either the square or Tresca yield
crite rion and derived exact so lu tions for the
case of ro tat ional symme tr ic loadings. The
p la t e s we re assumed t o be e it h e r simp ly
supported or clamped.
Quite recently, several attempts have been

made in order to obtain estimations for the load
carrying capacity of constant thickness circular
p la te s obeying t he so -ca lle d un ifie d yie ld
criterion [8,9]. While in [8] the plate has been
assumed to resist a uniformly distributed load,
th e case of arbit ra ry ro t at ional symme t r ic
loading has been considered in [9]. It should be
noted, however, that in more complex problems,
ana lyt ica l so lu t ion s with t he unified yie ld
criterion are difficult to obtain. Nevertheless,
th is crit erion has the advantage of numerical
implementation because its yield surface does
enable linear programming methods.
As further research in the above-mentioned

field, in the present paper, the load carrying
capacity of simply supported circular plates with
gene ral radially varying th ickness has been
determined. The obtained results are applicable
to the analysis of circu lar p lates subjected to
arbitrary rotational symmetric loadings provided

Figure 1. P late with R otationally Symmetric Loading and
Thickness.

that the plate material obeys either the square
or the Tresca yield criterion.

STATEMENTOF THE PROBLEM

Figure 1 demonst rate s a var iable th ickness
circular plate of radius R and radially varying
t h ickn e ss t ( r ) su bje ct e d t o an a rb it r a ry
rotational symmetric loading f(r) per unit area.
It is assumed that the plate , in its undeformed
shape, has a plane middle surface with respect
to which the upper and lower surfaces of the
plate are at equal distances.
Rewriting the loading function as ,

where is called the load factor, the main
purpose of this paper is to obtain critical values
of , i.e. , which cause the collapse
mechanism (which is not necessarily unique) to
be generated. When is evaluated, the load
car rying capacit y o f t he plat e would t he n
become .
In the limit analysis, it is commonly assumed

that all deflections are negligibly small until the
collapse mechanism is fully formed. Accordingly,
the material is supposed to be rigid-pe rfectly
p la st ic. Th is a ssump t ion imp lie s th a t t h e
sequence of formation of the yield lines prior to
co llap se is no t sign ifican t in t h e re su lt s.
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Figure 2. Square (continuous) and Tresca (dashed) yield
diagrams.

Furthe rmore , it is assumed that the mate rial
obeys e ithe r the square or the Tresca yie ld
cr it e r ion , a s illust rated in F igure 2. In th is
figure, , and stand for the radial,
tangential and ult imate (fully plastic) bending
moments per unit length, respectively.
It is we ll known that the ultimate bending

momen t pe r un it le ngt h fo r a p la t e wit h
constant thickness t and yield stress is,

(1)

For the case of a variable thickness plate, the
ultimate bending moment per unit length can be
computed in a similar manner. Considering an
a r bit r a r y ra d iu s r , a cir cu la r yie ld lin e
co rre sponding to a fu lly deve loped p last ic
region across the plate th ickness would be
formed only if,

or,

(2)

The first bracket is the area per unit length
of the radial yie ld line on which tensile and
compressive components of the fully plastic
couple apply. The second bracket is the distance

between the resultant forces that generate the
couple equal to the ultimate bending moment.
Since is no longer a constant, if the

yie ld cr it e r ion is expre ssed in te rms of the
bending moment components per unit length,
the yie ld diagram for different point s of the
plate would not be the same. However, as may
be observed from Equation 2, the yield criterion
pattern remains unchanged if it is demonstrated
in terms of and . This
presentation, being depicted in Figure 2, is used
throughout this paper.

CRITICALLOAD FACTORFOR
SIMPLY SUPPORTED PLATES

For a simply supported plate under transverse
lo a d in g, i t may b e e xamin e d t h a t t h e
corresponding stress states lie on the line AB in
Figure 2, along which the two yield criteria are
identical. Hence, the analysis would result in the
same outcomes if eithe r of the two criter ia is
applied.
Conside ring Koiter' s rule [1], the collapse

mechanism should be compa t ib le with t he
assumed yield criterion. It may be easily verified
t h a t t h e fr u st um co lla p se mechan ism is
compatible with the segment AB of the two
yield criteria in Figure 2. Hence, regarding these
yield criteria, it can be assumed that the frustum
collapse mechanism would be generated in the
plate.
Figure 3 illustrates the geometric parameters

of the frustum shaped collapse mechanism. It
shou ld be no t ed t h at t h is me chan ism is a
generalization of the simple conical one (with

).

Assuming t ha t th eUpper Bound Solution
ce n t e r o f t h e midd le su r fa ce b e a r s a
displacement during deformation, an
investigation of Figure 3 results in,

(3)
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Figure 3. The frustum collapse mechanism.

or,

(4)

where R is the radius of the plate.
The total internal (dissipative) work is the

summat ion o f t he work done in the inne r
circular hinge at A, i.e. and that of the
conical part of the mechanism, thus,

(5)

The dissip at ive work done in t he inne r
circular hinge equals the product of the limit
radial bending moment, its length of action, and
the jump in the slope of the plate at the hinge.
Therefore,

For the dissipative work done in the conical
part of the mechanism, by the application of a
hodograph [1], one can write it as the product
of the total relative rotation of all infinitesimal
radial plate elements which rotate relative to
each other along radial yield lines being equal
to

and the ultimate bending moment integrated
along a radial yield line. Therefore,

For the exte rnal work done by the applied
loading, being equal to the integral on the plate
surface of the product of pressure, surface plate
element and plate deflection, one obtains,

(6)

where w(r) represents the deflection function of
the plate . For a frustum collapse mechanism,
Equation 6 can be rewritten as,

(7)

or using Equation 3,

(8)

Consider ing the virtual work principle and
the upper bound theorem of limit analysis, an
upper bound est imation for the cr it ical load
factor may be obtained by equating Equations
5 and 8. Aft e r some simp lifica t ion s, t h e
following upper bound value for the critical load
factor is obtained,

(9)

T h e lowe r bou n dLower Bound Solution
t h eo rem of limit ana lysis is base d on the
application of the equat ion of equilibr ium of
t he p la t e . F u r t h e rmor e , it r e qu ir e s t h e
introduction of a compatible stress fie ld which
never violates the assumed yield criterion. The
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equation of equilibrium for circular plates with
ro tational symmet ric geometry, loading, and
boundary conditions is as follows [1],

(10)

Integration of Equation 10 gives,

(11)

where, is the integration constant.
Considering the finite requirement at r= 0, this
constant vanishes.
For simply supported boundary condit ions

and either of the two yield criteria, the frustum
shape of the collapse mechanism is compatible
with a discontinuous ,

(12)

In fact, since in the region radial yield
lines are generated, is equal to . But
nothing can be said about the values of
inside the circle , except that they should
satisfy the yield criterion under consideration.
For , the first integral in Equation 11

can be subdivided in two integrals. Therefore,
one obtains,

(13)

In the first integral, according to Equation 12,
is unknown. However, in order to evaluate

this integral, one may calculate Equation 13 at
which results in,

(14)

or,

(15)

Subst itu t ion of Equat ion 15 in Equat ion 13
gives,

(16)

Finally, the plate boundary conditions may
be applied to the obtained formulation. Since
the plate is simply supported, the radial bending
moment at the plate edge is zero, i.e.,

(17)

Using Equations 16 and 17, the following lower
bound fo r t h e cr it ical lo ad facto r may be
obtained.

(18)

It may be verified that for the special case of
the conical collapse mechanism with ,
Equation 18 reduces to the corresponding one
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in [7].
The fo re go ing de r iva t io n re ve a ls t h a t

E quat ion 18 has been obtained through the
application of the plate equilibrium Equation
10. However, it can be considered as a complete
lower bound solution only if the satisfaction of
the corresponding yield criteria and existence of
a rigid inner disc is confirmed.
A necessary condit ion to satisfy the yield

criteria, and hence to insure that Equation 18 is
a lower bound solu tion, is that the integral of

over the inner circular disc of the plate
shou ld no t excee d the p la te lo ad ca rrying
capacity in this region. Hence,

(19)

Clea r ly, if t h e inne r cir cu la r d isc is r igid
(corresponding to frustum collapse mechanism)
then Condition 19 will be satisfied. That is, it is
a necessary condit ion for rigidity of the inner
circular disc.

A f t e rSearching for an Exact Solution
calculating upper and lower bound estimations
for the critical load factor as stated in Equations
9 and 18 respectively, it is interesting to check if
these results can be equal for some specific kind
of loading.
App lying in t e gr a t ion by p a r t s t o t h e

denominator of Equation 18 results in,

(20)

which can be re-written as,

or finally,

(21)

Comparing Equations 9 and 18 and applying the
above equation reveal that the lower and upper
bound estimations obtained for the critical load
factor are identical.
Since for the frustum collapse mechanism,

t h e u ppe r an d lowe r boun d e st ima t io n s
obtained for the crit ical load factor have been
proved to be equal, it may be concluded that for
simp ly suppor t e d cir cula r p la t e s made o f
mate ria ls that obey e ither the square or the
Tresca yield criteria and subjected to arbitrary
rotational symmetric loadings this mechanism is
exact . The exact value of the collapse load
fact o r can t he n be obt a in e d from e it h e r
Equation 9 or 18. Evidently, the solution would
be feasible only if the adopted yield condition is
satisfied all over the plate.

CASE STUDIES

As a special case, a steppedStepped Plate
circular plate, shown in Figure 4, under uniform
pressure p and with the following values of
ultimate bending moment is considered:

(22)
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Figure 4. Stepped plate geometry.

Assuming , substitution of the loading and

th ickne ss fun ct ion s in t h e upp e r bou nd
e st ima t ion o f t h e cr it ical lo ad fact or , i.e .
Equation 9 results in,

(23)

or,

(24)

Application of the lower bound estimation,
i.e . E quat ion 18 provides the same resu lt s.
The re fore , t he obt aine d uppe r and lowe r
bounds of the crit ical load factor coincide and
the exact solution of the problem (for )
is obtained.
Wh ile t h is so lu t ion has be e n obt ain e d

through the application of the equilibrium and
vir tual work equat ions, as stated ear lie r, to
ensure that an exact solution has been obtained,
the satisfaction of the yie ld cr iteria should be
ve r ified. R ecalling Condit ion 19 with st r ict
inequality (for rigidity of a central disc in the
plate) and utilizing the informat ion given by
Equation 22, result in,

(25)

or,

(26)

Substitution for from Equation 23 gives,

(27)

Since k is a measu re o f th e inne r disk
re info rcement , t h is condit ion can a lso be
interpreted as the necessary reinforcement at
t h e inne r d isk so t hat a fru stum co llap se
mechanism can be viable . Using Equation 1,
Equation 27 may be rewritten in terms of plate
thickness as follows,

(28)

If Conditions 27 or 28 are not satisfied (e.g.
if k < 1 which corresponds to a plate with a less
st iff inner region), the inner disk necessarily
yields and a conical collapse mechanism may be
expected.

A s aLinearly Varying Thickness Plate
second case, a plate with linear var iat ion of
thickness which bears some constant pressure
is considered. The thickness function is assumed
to be,

(29)

Where, and are the plate thickness at its
center and side. Substitution of this thickness
funct ion in Equat ion 2 for ult imate bending
moment results in,

(30)

With the constant pressure and
above -mentioned funct ion for the ult imate
bending moment, the following value of the
cr it ical lo ad facto r may be obta in e d from
Equation 18,
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(31)

where, parameter s is defined as follows,

(32)

The actual shape of the collapse mechanism
can be characterized by finding the value
which minimizes the quoted critical load factor.
Differentiation with respect to results in the

(33)

For the case of s > 0 , this equation has only
the zero root and no other root can be positive
and hence it is physicallymeaningless. Thus, if
the th ickness of the plate at it s side is more
than it s th ickness at the center , the plate can
have only the conical collapse mode.
For s < 0, however, posit ive real roots may

e xist . Th e se r oo t s ca n be fo un d by t h e
applicat ion of we ll known equat ions for the
solution of third order algebraic equations. The
true root which correctly specifies the collapse
mechanism, is the one that corresponds to the
minimum (and not a local maximum) value of
the critical load factor.

CONCLUSIONS

Load carrying capacity of simply supported
circular plate s with radially varying thickness
and subjected to arbitrary rotational symmetric
loadings has been discussed. In this way, lower

and upper bound theorems of limit analysis
were implemented and corresponding solutions
for the critical value of the load were obtained.
The plate material was assumed to obey either
the square or the Tresca yield criterion. It was
shown that the calcu lated lower and uppe r
bounds coincide to yield the exact solution. The
method was illust ra t ed fo r t h e case s o f a
stepped plate and a plate with linear variat ion
of thickness.
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