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Abstract The calculation of the load carrying capacity of variable thickness circular plates
subjected to arbitraryrotational symmetric loading is presented. The analysis considers plate
materials that obeyeither the square or the Tresca yield criterion. By using upper and lower
bound theorems of limit analysis, corresponding estimations for the load carrying capacity of the
plate are obtained. It is shown that these two bounds are identical. Therefore, the obtained
solution would represent the exact amount of the load carrying capacity of the variable thickness
circular plate. Finally, in order to obtain solutions for some special cases, plates having step
changes in thickness and those with linear thickness variation are considered and corresponding
results are illustrated.
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INTRODUCTION

In many practical situations, the correct
prediction of the load carrying capacity of
structures has been a subject of great
importance. However, the traditional elastic
design has proved unable to present realistic
estimations for the load carrying capacity of
structures. This is due to the logic behind elastic
design according to which a structure would fail
if it yields at some point. Nevertheless, it is clear
that some relativelyconsiderable reserved load
carrying capacity still exists in a structure that
has failed according to the elastic design. That is
why the structures that have been manufactured
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according to elastic design principles are
typically too heavy and expensive.

In order to obtain more accurate estimations
for the load carrying capacity of structures, limit
analysis theorems have been proposed and
widelyused. This method doesnot possess the
above-mentioned shortcomings of the elastic
design and solutions are usually obtained
somewhat easily. Application of the limit
analysis approach results in the design of lighter
structures than those obtained through the
elastic design. Lighter structuresnot onlyneed
less constructional material and manufacturing
effort (and thus are less expensive) but also are
frequently requested, especially in the
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aerospace transportation technology.

Limit analysis theorems and some of their
applicationsin the structural analysis were first
introduced in 1950's. Among the most
fundamental works on this subject references
1-4 are noteworthy. These include plastic
behavior analyses of some structures carrying
specific types of loadings. Comprehensive
reviews of the work done on the limit analysis
and design of plates, shells, and other
mechanical or structural members were
presented in [5] and [6].

So far, little attention has been paid to the
analysis of the plastic behavior of plates
subjected to some general kinds of loadings. As
one of the few exceptions, in [7], the present
author considered constant thickness circular
plates obeying either the square or Tresca yield
criterion and derived exact solutions for the
case of rotational symmetric loadings. The
plates were assumed to be either simply
supported or clamped.

Quite recently, several attempts have been
made in order to obtain estimations for the load
carrying capacity of constant thickness circular
plates obeying the so-called unified yield
criterion [8,9]. While in [8] the plate has been
assumed to resist a uniformly distributed load,
the case of arbitrary rotational symmetric
loading has been considered in [9]. It should be
noted, however, that in more complex problems,
analytical solutions with the unified yield
criterion are difficult to obtain. Nevertheless,
this criterion has the advantage of numerical
implementation because its yield surface does
enable linear programming methods.

Asfurther research in the above-mentioned
field, in the present paper, the load carrying
capacity of simply supported circular plates with
general radially varying thickness has been
determined. The obtained results are applicable
to the analysis of circular plates subjected to
arbitrary rotational symmetric loadings provided
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Figure 1. Plate with Rotationally Symmetric Loading and
Thickness.

that the plate material obeys either the square
or the Tresca yield criterion.

STATEMENT OF THE PROBLEM

Figure 1 demonstrates a variable thickness
circular plate ofradius R and radially varying
thickness t(r) subjected to an arbitrary
rotational symmetric loading f(r) per unit area.
It is assumed that the plate, in its undeformed
shape, has a plane middle surface with respect
to which the upper and lower surfaces of the
plate are at equal distances.

Rewriting the loading function as uf(r) ,
where u is called the load factor, the main
purpose of this paper isto obtain critical values
of u, 1e. WYy, which cause the collapse
mechanism (which is not necessarily unique) to
be generated. When u,, is evaluated, the load
carrying capacity of the plate would then
become ., f(r).

In the limit analysis, it is commonly assumed
that all deflections are negligibly small until the
collapse mechanism is fully formed. Accordingly,
the material is supposed to be rigid-perfectly
plastic. This assumption implies that the
sequence of formation of the yield lines prior to
collapse is not significant in the results.
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Figure 2. Square (continuous) and Tresca (dashed) yield
diagrams.

Furthermore, it is assumed that the material
obeys either the square or the Tresca yield
criterion, as illustrated in Figure 2. In this
figure, m,, m, and m, stand for the radial,
tangential and ultimate (fullyplastic) bending
moments per unit length, respectively.

It is well known that the ultimate bending
moment per unit length for a plate with
constant thickness t and yield stress Oy 18,

My = iayz 2 )

For the case of a variable thickness plate, the
ultimate bending moment per unit length can be
computed in a similar manner. Considering an
arbitrary radius r, a circular yield line
corresponding to a fully developed plastic
region across the plate thickness would be
formed only if,

my(r)=0, X [1>< ﬂzﬂ} : [ﬂﬂ}

2
or,

M) = iayt 2(r) @)

The first bracket is the area per unit length
of the radial yield line on which tensile and
compressive components of the fully plastic
couple apply. The second bracket is the distance
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between the resultant forces that generate the
couple equal to the ultimate bending moment.

Since my,(r) is no longer a constant, if the
yield criterion is expressed in terms of the
bending moment components per unit length,
the yield diagram for different points of the
plate would not be the same. However, as may
be observed from Equation 2, the yield criterion
pattern remains unchanged if it is demonstrated
in terms of mr/t2 and mo/t2 . This
presentation, being depicted in Figure 2, is used
throughout this paper.

CRITICALLOAD FACTOR FOR
SIMPLY SUPPORTED PLATES

For a simply supported plate under transverse
loading, it may be examined that the
corresponding stress states lie on the line AB in
Figure 2, along which the two yield criteria are
identical. Hence, the analysis would result in the
same outcomes if either of the two criteria is
applied.

Considering Koiter's rule [1], the collapse
mechanism should be compatible with the
assumed yield criterion. It may be easily verified
that the frustum collapse mechanism is
compatible with the segment AB of the two
yield criteria in Figure 2. Hence, regarding these
yield criteria, it can be assumed that the frustum
collapse mechanism would be generated in the
plate.

Figure 3 illustrates the geometric parameters
of the frustum shaped collapse mechanism. It
should be noted that this mechanism is a
generalization of the simple conical one (with
Iy =0).

Upper Bound Solution Assuming that the
center of the middle surface bears a
displacement  w,, during deformation, an
investigation of Figure 3 results in,

w* W 3)
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Figure 3. The frustum collapse mechanism.

or,
wo=w"(1-1:/R) 4)

where R is the radius of the plate.

The total internal (dissipative) work is the
summation of the work done in the inner
circular hinge at A, ie. W, and that of the
conical part of the mechanism, I/Vl.2 thus,

W,=W, +W,, 5

The dissipative work done in the inner
circular hinge equals the product of the limit
radial bending moment, its length of action, and
the jump in the slope of the plate at the hinge.
Therefore,

*
W, =mu(r,)(2ar,). "
R
For the dissipative work done in the conical
part of the mechanism, by the application ofa
hodograph [1], one can write it as the product
ofthe totalrelative rotation of all infinitesimal
radial plate elements which rotate relative to
each other along radial yield lines being equal
to

2m(w*/R)

and the ultimate bending moment integrated
along a radial yield line. Therefore,
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For the external work done by the applied
loading, being equal to the integral on the plate
surface of the product of pressure, surface plate
element and plate deflection, one obtains,

m;ﬁf[f%WMWWW}w ©

where w(r) represents the deflection function of
the plate. For a frustum collapse mechanism,
Equation 6 can be rewritten as,

We=2m X
't R * r

|:f uf(rwgrdr + f uf(rw™(1- —)rdr:| (7)
0 I R

or using Equation 3,

We=2muw" X

g R—l’f R r
[ fo for(—L)drs frf f(r)(l—E)rdr} ®)

Considering the virtual work principle and
the upper bound theorem of limit analysis, an
upper bound estimation for the critical load
factor maybe obtained byequating Equations
5 and 8. After some simplifications, the
following upper bound value for the critical load
factor is obtained,

Ile |:rfm“(rf)+ er mu(r)dr}

f

= — p - )
g [ g Fyr

Lower Bound Solution The lower bound
theorem of limit analysis is based on the
application of the equation of equilibrium of
the plate. Furthermore, it requires the
introduction of a compatible stress field which
never violates the assumed yield criterion. The
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equation of equilibrium for circular plates with
rotational symmetric geometry, loading, and
boundary conditions is as follows [1],

!

(rmy) =my- [ "r[ufr )i (10)

0

Integration of Equation 10 gives,

my(r)= %I rmo(r*)dr*—’%J r

0 0

Ty ¢ (11)
|:J rf(rdr *:| dr+ 71

0
where, ¢, is the
Consideringthe finite requirement at r= 0, this
constant vanishes.

integration  constant.

For simply supported boundary conditions
and either of the two yield criteria, the frustum
shape ofthe collapse mechanism is compatible
with a discontinuous m,

my(r) ,Tp<r<R
unknown ,0<r<r f

In fact, since in the region r,<r<R radial yield
lines are generated, m, is equal to my,(r). But
nothing can be said about the values of m,
inside the circle r=re, except that they should
satisfy the yield criterion under consideration.

For r>r,, the first integral in Equation 11
can be subdivided in two integrals. Therefore,
one obtains,

s ’
J my(r )dr " + J my(r")dr*(13)

L” 0 Ty

r 71
- EI |: rf(rdr *:| dr,
r ] J ]

In the first integral, according to Equation 12,

m, 1s unknown. However, in order to evaluate
thisintegral, one may calculate Equation 13 at
r=r; which results in,
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1 s s
mu(rf):—J my(r")dr —rﬁj

I rf(rdr *:| dr, (14)

|:I 1r*f(r*)dr*:| dr, (15)

Substitution of Equation 15 in Equation 13
gives,

m,(r)= % {rfmu(rf)+,u I

0

ry { r
|:I rf(r)dr *:| dr+ m(r*)dr*
J

0 e

_I%I |:I rif(rdr’ | dr, (16)
0 0

Finally, the plate boundary conditions may
be applied to the obtained formulation. Since
the plate is simply supported, the radial bending
moment at the plate edge is zero, i.e.,

m,(r=R)=0 (17)

Using Equations 16 and 17, the following lower
bound for the critical load factor may be
obtained.

R
rfmu(rf)+ f my(r)dr
= R (18)

f: |:f0r rf(r *):| dr

It may be verified that for the special case of

the conical collapse mechanism with Iy =0,
Equation 18 reducesto the corresponding one
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in [7].

The foregoing derivation reveals that
Equation 18 has been obtained through the
application of the plate equilibrium Equation
10. However, it can be considered as a complete
lower bound solution onlyifthe satisfaction of
the corresponding yield criteria and existence of
a rigid inner disc is confirmed.

A necessary condition to satisfy the yield
criteria, and hence to insure that Equation 18 is
a lower bound solution, is that the integral of
m, over the inner circular disc of the plate
should not exceed the plate load carrying
capacity in this region. Hence,

rfmu(rf)+,uJ {J r*f(r*)dr*} X

"t
drlsJ my(r¥)dr* 19)

Clearly, if the inner circular disc is rigid
(corresponding to frustum collapse mechanism)
then Condition 19 will be satisfied. That is, it is
a necessary condition for rigidity of the inner
circular disc.

Searching for an Exact Solution A f t e r
calculatingupper and lower bound estimations
for the critical load factor as stated in Equations
9 and 18 respectively, it is interesting to check if
these results can be equal for some specific kind
of loading.

Applying integration by parts to the
denominator of Equation 18 results in,

(R (r
I r*f(r*)dr*:| dr=
Jr Lo
T R R
ro| e dr *:| - I r2f(r)dr (20)
L Yo o
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which can be re-written as,

[ R r
|:I r*f(r*)dr*:| dr=[(R-r;)+r]. X

rf 0

L.

I rf(r)dr+I rf(r)dr

L* 0 Ty
ry R
I I rf(r)dr - I r2f(r)dr
0 Ty
or finally,
R r Ty
I |:I r*f(r*)dr*:| dr:(R—rf)J (21)
re 0 0
R
rf(r)dr + I (R-r)rf(r)dr
s

Comparing Equations 9 and 18 and applying the
above equation reveal that the lower and upper
bound estimations obtained for the critical load
factor are identical.

Since for the frustum collapse mechanism,
the upper and lower bound estimations
obtained for the critical load factor have been
proved to be equal, it may be concluded that for
simply supported circular plates made of
materials that obey either the square or the
Tresca yield criteria and subjected to arbitrary
rotational symmetric loadings this mechanism is
exact. The exact value of the collapse load
factor can then be obtained from either
Equation 9 or 18. Evidently, the solution would
be feasible only if the adopted yield condition is
satisfied all over the plate.

CASE STUDIES
Stepped Plate

circular plate, shown in Figure 4, under uniform

As a special case, a stepped

pressure p and with the following values of
ultimate bending moment is considered:

kM , 0<r<AR
my(r)= { (22)

M ,AR<r<R
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Figure 4. Stepped plate geometry.

r
Assuming A= El, substitution of the loading and

thickness functions in the upper bound
estimation of the critical load factor, i.e.
Equation 9 results in,

s @
p —

or,

"0 *

Application of the lower bound estimation,
i.e. Equation 18 provides the same results.
Therefore, the obtained upper and lower
bounds of the critical load factor coincide and
the exact solution of the problem (for r;=AR)
is obtained.

While this solution has been obtained
through the application ofthe equilibrium and
virtual work equations, as stated earlier, to
ensure that an exact solution has been obtained,
the satisfaction of the yield criteria should be
verified. Recalling Condition 19 with strict
inequality (for rigidity of a central disc in the
plate) and utilizing the information given by
Equation 22, result in,

|:I r*pdr *:| X (25)

R
/1RM+,uJ
0

0
R
dr < J kM dr*

or, 0
3

JRM +up @_’éL ARIM (26)
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Substitution for u from Equation 23 gives,

<k (27)

Since k is a measure of the inner disk
reinforcement, this condition can also be
interpreted as the necessaryreinforcement at
the inner disk so that a frustum collapse
mechanism can be viable. Using Equation 1,
Equation 27 may be rewritten in terms of plate
thickness as follows,

1+ (28)

)

1-(ry/R) L2

If Conditions 27 or 28 are not satisfied (e.g.
if k < 1 which corresponds to a plate with a less
stiff inner region), the inner disk necessarily
yields and a conical collapse mechanism may be
expected.

Linearly Varying Thickness Plate A s a
second case, a plate with linear variation of
thickness which bears some constant pressure p,
is considered. The thickness function is assumed
to be,

ts—tc

tr)=tc+ F (29)
Where, f. and ¢, are the plate thickness at its
center and side. Substitution of this thickness
function in Equation 2 for ultimate bending
moment results in,

4

With  the p, and
above-mentioned function for the ultimate
bending moment, the following value of the
critical load factor may be obtained from
Equation 18,

_ 2
my(r)= lay [tc+ tthc .r] (30)

constant  pressure
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3_ .3

R -
where, parameter s is defined as follows,
s=lsle (32)

R

The actual shape of the collapse mechanism
can be characterized by finding the r, value
which minimizes the quoted critical load factor.

Differentiation with respect to Iy results in the

|:stcr];°’ +3(s %R 3.sR’t. +th2)rf +2st.R 3:|

For the case of s > 0, this equation has only
the zero root and no other root can be positive
and hence it is physically meaningless. Thus, if
the thickness of the plate at its side is more
than its thickness at the center, the plate can
have only the conical collapse mode.

Fors< 0, however, positive real roots may
exist. These roots can be found by the
application of well known equations for the
solution of third order algebraic equations. The
true root which correctly specifies the collapse
mechanism, isthe one that corresponds to the
minimum (and not a local maximum) value of
the critical load factor.

CONCLUSIONS

Load carrying capacity of simply supported
circular plates with radially varying thickness
and subjected to arbitraryrotational symmetric
loadings has been discussed. In this way, lower
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and upper bound theorems of limit analysis
were implemented and corresponding solutions
for the critical value of the load were obtained.
The plate material was assumed to obey either
the square or the Tresca yield criterion. It was
shown that the calculated lower and upper
bounds coincide to yield the exact solution. The
method was illustrated for the cases of a
stepped plate and a plate with linear variation
of thickness.
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