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Abstract In this paper we studytwo echelon multi-server tandom queueing systems where
customers arrive according to a poisson process with two different rates. The service rates at
both echelons are independent of each other. The service times of customers is assumed to be
completed in two stages. The service times at each stage are exponentially distributed. At the
first stage, the customers may balk (i.e. reject to join the waiting line) when all servers are busy.
The higher echelon has a limited buffer space. The steady state queue size distribution has been
obtained for both stages. We investigate the properties of a Hessenberg matrix which is
required for the complete specification of the generating function for ready use.

Key Words Tandem Queue, Balking, Multi-Server. Finite Buffer, Hessenberg Matrix, Queue
Size Distribution
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INTRODUCTION attempted by Neuts [16]. He assumed that

The problem of tandem queue with finite buffer service times had a general distribution at the

has received the attention from the early stages first stage and an exponential distribution at the

of queueing theory. The earliest study made by
Avi-Itzhak and Yadin [4] dealt with two single
server stations without intermediate queue
where customers followed the poisson
distribution and the service times were
arbitrarily distributed in both stations. This
study was extended to a sequence of service
stations with arbitrary input and regular service
time by Avi-Itzhak [3] to derive waiting time
distribution. A two stage single server network
with finite intermediate buffer and blocking was
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second stage.

Konheim and Reiser [12] obtained an
algorithmic solution to the state probabilities of
the network having finite waiting room and
blocking under Markovian assumptions.
Gershwin [8] provided an efficient
decomposition method for tandem queue with
finite storage space and blocking by
approximating the single K machine line by a
set of K-1 two machine lines. Altiok [5]
presented an approximate analysis of single
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server queues in series having finite waiting
room and blocking under the assumption that
service time follows phase-type distribution.
Langaris [13] developed the finite set of balance
equations for a two stage service system having
single server at each stage, finite waiting space
in both stages and blocking. Gun and Makowski
[10] provided a matrix geometric solution for a
two node tandem queueing system with phase
type servers subject to blocking and failure.

Chao and Pinedo [7] obtained an expression
for expected waiting time in the system for two
single server stations in tandem without
intermediate buffer where customers arrive in
groups and arbitrary service is provided at both
stations. Green [9] analysized multi-server
system with two types of servers (primary and
auxiliary) and two types of customers. The first
type of customers are those who are satisfied
with a service rendered by a primary server
whereas second type customers request for
combined service of primary and auxiliary
together. Recently, Zuta and yechiali [18]
studied a two echelon multi-server Markovian
queueing system with a limited intermediate
buffer. Abou-El-Ata and Showky [2] studied the
single server for longer queues. Furthermore,
Abou-El-Ata and Kotb [1] derived the solution
of the state dependent queue M/M/1/N with
general balk function, reflecting barrier,
reneging and an additional server for longer
queues. Recently, Mohanty et al. [15] analysed a
multi-server queueing system with balking and
reneging.

We consider a two stage multi-server queue
in tandem with a limited intermediate buffer in
which an arriving customer who finds all servers
busy may balk or reject to join the queue. There
are S, servers at stage k (k = 1, 2). The service
times of customers are exponentially distributed
1, 2) at stage k. We
further assume that there exists unlimited

with mean rate m, (k =
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waiting capacity at the first stage but a finite
buffer of size M-S, is provided at the second
stage. At the first stage a customer is served
separately at each queue and leaves the system
with the probability of q while at the second
stage a customer is forced to leave the system
with the probability of 1 if the buffer is full.

The two dimensional continuous time
Markov chain model has been developed. The
co-ordinates ofthe system state (i, j) represent
the number of customers waiting and being
served at the corresponding stage respectively.
The technique developed by Levy and Yechiali
[14] and by Bocharov and Al Bores [6] has been
employed to solve the problem.

We obtain expressions for the partial

ZP -zl 1o

determine the steady state queue size
distribution P, (i= 0, 1,2, ..;j= 1,2, .., M). M
being the maximum total number of customers

generating  functions

at the second stage. Tn determine the partial
m

generating  function {y‘t j(Z)} we apply

Hessenburg matrix approacﬁ which can be
obtained from a set of linear equations
[A(z) p(z) = b(z)]in the unknown generating
functions. To investigate the properties of the
Hessenburg matrix, we use M+ 1 roots of the
determinant of A(z) lying in interval (0, 1) and
the remaining M+1 in (1, E).

THE MODEL

Assume a two echelon multi-server queueing
system, where customers arrive to the first lower
echelon according to a poisson process with the
arrival rate given by

lj:{jﬂ

The arriving customers are served by S,

0<j <sy
si+1<j< oo

0<f<1 (1)

identical servers at first echelon and the service
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times are exponentially distributed with
parameter m,. After being served first at lower
echelon, a customer leaves the system with the
probability q or moves on and requests for
additional service at the second higher echelon
with the probabilityofp = 1-q and are served
by S, identical servers. The service times of
customers at second echelon are exponentially
distributed with parameter m,.

The intermediate buffer between the two
stages is limited to M-S,. If a customer who
requests for service at the higher echelon and
finds that the buffer is full, leaves the system
with the probability 1. We formulate the system
as a two dimensional birth and death process.
Let Pi,j (i=1,2,..;j=1,2,..,M) be the
probability that there are i(j) customers at the
first (second) echelon.

THE BALANCE EQUATIONS
GOVERNING THE MODEL

Forj= 0:
APoo=Hy P+ quiPy g (2a)

Pi,o(’1 +144) :lPi-Lo +/‘2Pi, L +q+ 1)/‘1Pi+1,0
1<i<s,-1 (2b)
Pi,O(lﬁ"'Sllul) =AP, 10 tMeP 1+ aS P L
=8 (2¢)

Pi, o8 + Syuy) = 4P, 1,0 +/‘2Pi, 1t qS1M1Pi1+1, 0

Si+1<i< o (2d)
For i<j<S,-1:
P (+jug) =0+ )P +qusP 1 ; +PusPy
(2¢)
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Py (A +jug +iu;) =AP, -1,j +(+ 1)/“2Pi,j +1
+Q(i+1)ﬂ1pi+1,j ol +F 1
1<i<S, -1 (21
Pi,j (3 +jug + Sy u1) :]“Pi—l,j +(+ l)ﬂzpi,j +1
+qs Py Py
=S, (2g)
P; (28 +jug + S ) = 48P, -1,j +(+ 1)/‘2Pi,j +1
+GS 1D 1,5 PSP
S +1<i<oo (2h)
For S,<j<M-1:
Po,j (/1+S2,u2):S2u2P0,}~+1 +W1Pi,j +Pﬂ1p1,j-1
(21)
Pi,j (A +Squy +ip,) :’lpi-u +S?/u2Pi,j+1
+Q(i+1)ﬂ1pi+1,j +p(i+1)u by

1<i<S,-1 (2))
P; i (AB +Sotty + Sty :’lpi-u +SotaP; i
+qS s Py j + PSPy
[=5, (2k)
P; (AB +Sotty + S1tq) :/wpi-u +SotaP; i

+qSu Py DS Py i
S, +1<j (= Q1)
For j= M:
Py A+ Squg) =p Py yp +PMGy yyo  (2m)
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Py A+ Squy +iug) :lPi—l,M +

(i+1)/u1Pi+1,M +P(i+1)/“1Pi+1,M-1

1<i<$,-1 (2n)

P, (AB+Souy+Sipy) = ’1Pi—1,M +

S1M1 Py +D S Py a4
=5, (20)

P oy B+ Sauy +Siuy) :/wpi-LM +
+S1UAP; Ly + PSPy
Si+1<i< (2p)

The Generating Functions The solution of
the set of Equations 2 depends on the
knowledge of the values of the boundary
probabilities {P; ;}. To obtain the boundary
probabilities, we shall use the following partial
generating function:

o]
_ i ;
_ZPi,].z, O<j<m
i=0

which is the marginal generating function of the
number of customers at stage 1, when there are
j customers at stage 2 for O<j<M. Thus

§
i=0

gives the marginal probability ofj customers at
the second stage.

First we consider j= 0. On multiplying 2a-2d
by z' and summing for all i, we get

o(2) : Z)+S1/“1(1—Q/Z):| -~ o7(2)
= by(2) (3a)

134 - Vol. 14, No. 2, May 2001

where
§,-1
bo(z) = (q/z-1)u; Z iPi,OZi +8u4(1-g/2)
§,-1 =1 §,-1
Z Pi,ozi”(l‘ﬁ)(z‘l) Z Pi,ozi (3b)
i=0 i=0

For 1<j<S o -1, using 2c¢-2h, in similar

manner, we get

pS u .
zl ! 7 g+ (Z)B(1-2)+jugy + S (1-g/2)
- (i+1)ﬂ2”j+1(2) :bj(Z) (3c)
where
-1
b(z)=(q/z-1)u; = Z iP; ;z" +(1-q/z)S
i=0
§1-1 54- 5,.-1
i . PSu i
Z()Pizjz Z i,j- 1 - z Z Pi,j—lz
i— -1 i=0

Sy

iz '+ za(1 ﬁ)ZP z!

[_

+A(p-1) Z
(3d)

Similarly for S,<j <u,-1, we obtain

_pSZm 7 4(2) + 7 (2) [43(1‘2) +Syip Sy (l—q/Z)}

= Sougm; . =b;(2) (3e)
where
s,-1
b(@) =i (@fz-1) Y iP, ;2 + Sy (1-q/2)
i—1
§,-1 5,-1
ZPZ+A ZP Z+leﬁZP 71
i=0 i=0
§,-1 §,-1
Pﬂ < PSM < :
— L Py =) Pijazl GO
i=1 i=0
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Finally, for j= M,

pSu
- Zl 17TM 1(2) + (2) |:/1ﬁ(1—z)+S?/u2
+81(1-1/z) = by(2) (g
where

§,-1

bule)= (2 -y Y iP; w2t +(1-1/2) S,

i =

§.-1 - S5-1
D . PSity
Z Wim-1%4 ——3

i=( i =

§,-1

Hz(1-B) ) P 2! (3h)

i=0

There are S;(M+ 1) "boundary"probabilities
{P;t (1= 12,..,S-1;j= 0,1, .., M) which are
to be determined in order to get the expressions
for b,(z). Once these probabilities are obtained,
we have (M+ 1) unknown generating functions
P(z)(0<j<M). The solution of these (M+1)
unknown equations gives the result for
p(z)(0<j<M) which provides the entire
probability distribution {Pi,j}( 0<i <w;0<j (M).

To construct S,(M+ 1) equations with
S,(M+ 1) unknown, we use the set of balance
equatins 2a, 2e, 2i and 2m where i= 0; 0<j <M
and Equations 2, 2f, 2j and 2n, where
1<i<S,-1; 0<j<M which provide a set of
(S,-1)(M+ 1) linear equations with S, (M+ 1)
unknown. We also need additional (M+ 1)
equations in the above unknown probabilities
{Pi,j}~

Equations 3a, 3c, 3e and 3g can be written in
matrix form as
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Az)a(z) = b(z) (4)

where p(z) is a vector of the (M+1) generating
function pz), 0<j<M; A(z) is an (M+l)
dimensional square matrix and b(z) is an (M+1)
dimensional vector whose components are
defined by Equations 3b, 3d, 3f and 3h.

The coefficients of the matrix A(z) in
Equation 4 are represented in Figure 1, where
q(z) :,1/3(1 —Z) +8 41 (1 - q/z) . The column or
rows numbered from 0 to M represent the
number of customers.

Applying Cramer's rule, for each value of z
such that A(z) is non-singular, we obtain

4| 5 (0) = |4)

where the matrix Aj(z) is derived from A(z) by

,0<j <M Q)

replacing the i column of the matrix by b(z).

For every aza A 1, the system A(z) p(z)=
b(z) always yields a solution. It follows that
whenever A(z) issingular, and therefore, A(z)
and Equation 5 hold good in this case as well
for any root of A(z)= 0 and for each j. Hence
we can write ‘A](Zk)
equation in the unknown probabilities {P, ;}
(0<i<S |-1; 0G<M).

= 0 which is a linear

The Solution Now we solve unknown
probabilities {P, .} [(0si<S;-1;0<j<M] as
follows:

A set of (S,-1)(M+1) independent equations
in the above S (M+ 1) "boundary"probabilities
are already derived. We will investigate
additional (M+ 1) equations byconsideringthe
equation in aA(z)a = 0 and will show that the
polynomial in z, dA(z)a = 0 has (M+1) distinct
roots in (0,1). Let us denote these roots by
z(M+1), k=1, 2, .., M+1l where z,,,, (M+1)
= 1. Note that each root z_ = z (M+1) results
Equation 5 in ‘Am(zk)‘ =0,1<k<M+1 | in
the unknowns {P;.} (0<i<S,-1;0<j<M).
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Figure 1. The coefficient matrix A(z)

The equation obtained from the root verified by examining the matrix A,,(z) obtained

zy, (M+ 1) = 1 is redundant. This can be from A(z) by replacing its last column with the
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vector b(z). Indeed, for z= 1, the sum of all
terms in each column of A(z) is zero. Also the
sum ofthe elements ofb(1) is zero. Therefore
‘Am ‘ is the zero polynomial, so that the
equation ‘A Zyr i1 ‘ =0 isredundant. Thus we
need an additional equation in order to find
solution for the required {P, .}.

The first echelon can consider classical
queue where one-dimensional probabilities for i
customers, are the marginal probabilities of our

M
two dimensional system, that is P, = Z Pij ,
j=0
0<i< . From Equations 2a to 2p, for
i<0 ve /1P =N; 1P 14

and N, =Min(i,S,) -

The well known result for classical M/M/S,
queue with balking (Hiller and Liberman [11])
gives

5,-1 -1

AL, Lo, {@fl 1
TR #y B

n=0 : 1 1-=
Sty

(4a)

M
since PO = Z PO ., therefore Equation 4a with

{ 0:1}

the set of S,(M+ 1) equations in the S, (M+ 1)
boundary probabilities {P,}.

on the left hand side completes

After calculating "boundary" {Pi,j} and

M
expressions for {n(Z)}

7 we can determine
0

the mean total number of customers L, and L,
at the two echelons as:

i _p (P1) (le +(P3)nn_1'P0
=1 SH(1-py) '
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where ABjuy =py,AB/S iy =py and Ay =pg
and P, is given by Equation 4a and

M M
L,= Z iP; = Zjnj(l) (4¢)
j=1 j=1

Ilustration: Set S, = 3,S,= 2, M = 2. In this
case there are six "boundary" probabilities {P, ;}
{i=0,1,2;j= 0,1,2}. Also Equations 2a, 2b, 2m
and 2n reduce to

WPy g =ugPo 1 +quP g (4d)

P0,1(/1+/“1) = ’1P0,0 +loPy 1 +2qu Py o (40)

Po,z(“zﬂ) =w Py o +PpurPy 4 (41)

P1,2(’1+2ﬂ2+ﬂ1) =Py o+ 2u Py 5+ 2Duy Py 4

(4g)
Equation 4a get the form

P0,0+P0.1+P1.0+P1.1:

|:1+-
A

-1

1 (81

6 [”] [1—lﬁ/3ﬂl] (4h)

Also

A(z) =

AB(-2)+3u,(1-qf7) 0]

- 3192”1 MB(L-2) + -2,
+3u,(1-g/z)

0 3192”1 AB(1-2) +2u,

+3u,(1-q/2) |
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Putting z = z, in b(z), we obtain
by(zg) = (3D‘C)P0,o+zo(2D‘C)P1,o+Zg(D‘C)P2,0
(41)

+ (3A—C)PO, 1+2g (ZA—C)PL 1 +Z§(A—C)P2, 1
(4))

+(34-C )Po, g+ ZO(ZA—C)PL g+ Zg(A—C)Pz, 9

(4k)

A= {1-%, p="1
2y 2y

C = A1-B)(1-2) D= (1-gfz0),

@i(z0) =A(1-20) +3 1 (1-4/2o)

Replacing the third column of A(z;) by b(z,)
yields the matrix A (z). The equation

[ aro N PN ‘1

-9B” [ 41(z0) + D(3D-C) | Py, + 3By (20)
[ (84-C) - (@1(z0) + 45 | 3Duy 3Py,
-Bzy [ 4(20)3(24-C) - 2(q(2o) + 1y + 6Bug | Py 4
“3B%, [2%(20) " 3(2D-C)} Py,

+(34-C) |:Q1(Zo) (41(z0) +1q) + 3Bﬂ2:| Py,

+2z23B° |:q1(20) +B- 3(D—C)] Py
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+2(24-C) |:‘11(Zo) (@(z¢) +u5) + 3Bﬂ2:| Py,
+2¢B |:‘11(Zo)(%(zo) ) + 3(A‘C):| +3BuylPs 4

+2,%(A-C) |:‘11(Zo) (qlzo) + 1a) + 3BM2:| Py,
(41)

Equations 4d, 4e, 4f, 4g, 4h and 4i give the
solution ofdesired "boundary"probabilities for
this case.

The Interlacing Theorem: We transform the
basic A(z) into an equivalent matrix H(z) called
Hessenberg form (Wilkinson [11]). To obtain
Hessenberg matrix H(z), we perform
elementary operations on the rows of the matrix
A(z) as follows: We add the m'™ row to the
(m-1)s* row, then we add the m-15 row to the
(m-2)"4 and so on up to the first row, thus we
obtain its i row Q<7 <M as the sum of the rows
from i to M in the original matrix A(z). The
resulting matrix is characterized by the fact that
the elements belowthe secondarydiagonal are
all zero. This type of matrix is called an upper
Hessenberg matrix see Figure 2. All the
elements of the 0" row of the Hessenberg
matrix obtained from A(z) are the same, and
equal to

P(z)=m(1-2) + Sy {1— ﬂ =q(z) - Slﬂlg

Let us denote the determinant of the square
sub-matrix of H(z) to comprise its first n rows
and n columns (i= 0,1, ..,n-1and j= 0, 1, ...,
n-1) by B(z). Let G (z) denote the determinant
of the above n-dimensional sub-matrix with the
exception that the lower right element is P(z)
instead of P(Z) + knﬂ2 where k = min(n, S,).
Now we have

DSy

Bu(z) = (P(2) + K, 1u9) B, 1(2) + Cya(2)

(5a)
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PSSy

Gl) =PE) B, 1)+ 2 ¢, ) D)

z
Using 5a and 5b, we get
Cu(z) =Bn(z) -k, 1098, 1(2) (50)
and
Cn—l(Z) :Bn—l(Z) - kn—2 /u2Bn—2(Z) (Sd)

Putting the value of C_,(z) in Equation 5a, we
have

B.(z) =

DSy DSy
[(P(z)+kn-1u2+7)3n-1(z)— L ]
Kn—2 /u2Bn—2(Z) (56)
Rewriting Equation 5e as

Bn(Z) :fn—l(Z)Bn—l(Z)_gn—2Bn—2(Z) (Sf)

where

S
1) =P(2) + knuy + 4 Zl/ﬂ (52)
S
8(0) =" e, (sh)

By factorizing P(z), we write
Bn (Z) = P(Z)Dn (Z),

where D _(z) is the determinant of the matrix

1<n<M+1

determining B (z) with all elements of the first
row equal to 1. Thus dividing Equation 5f by
P (z), we can obtain a recursion formula for
D (z) given by

Du(z)=f,1(2)D, 1(2) -8, 5(2)D, 5(z) GV
Our aim is to prove that

‘A(Z)‘ = ‘H(Z)‘ =B, ,,(z) =P(z)D), ,,(z)

has M+ 1 real roots in the interval (0,1). It
indicates that P(z) has a single root in (0,1).
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It isnoted that P(z) has two roots z,= 1 and

7. — M since z>1; therefore P(z) has a single
27 T
root in (0, 1], so that D,,,, (z) has M real roots

in (0, 1]. This shows that B,,, ,(z) has (M+ 1)
real roots in that interval.

Therefore, we will prove that for every
1<n<M+1, D (z) provides n-1 real roots in (0,
1] and will indicate that all n roots are different.

D _(z) is a rational function with z! as its
denominator and a polynomial p, (2) of degree

2n-2 as its numerator, such that

it will be proved that D (z) has its (n-1) roots in
the open interval (0, 1) while the remaining
(n-1) roots are in (I—E).
2,-2 ,
Theorem: D, (z) = ) (-1) d,(n)z?, where all
i=0
d.(z) are of the same sign and nonzero.
Furthermore, for any two successive
polynomials  of En—l(z) and Bn(z), the
coefficients d (n-1) and d (n) will have opposite

signs.

Proof: Since B,(z) = P(z), we have D,(z)=1.
Also By(z) = P(z) f,(z), so that we have

Dy(z) =f1(z) = P(z) +uy+

DSy

= 3p(1-2) + Sy (1- 1) + 1y +

_’1/522 +2(0p + Syuy +ug) = Syuy + PSyny
N z

{—Aﬂ22 +2(3 + Sy +uy) —CIS1M1} D,[2)
z Tz

D(2)

It is clear that has alternating signs, no
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Figure 2. The Hessenberg matrix H(z)

zero coefficients, and do(z): -8S 11y has an as

2
opposite sign to that of d (1) = 1. f2)= - 2+ Z2(p + Squy + K,y _qu) ‘qS1u(15j)
n- z
Now Equation 5g can be rewritten for f,(z) The validity of the theorem for n > 2 can be
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proved byinduction principle on the same line
as done by Zuta and Yachiali [18].

CONCLUSION

In this study, two echelon multi-server tandom
queuing system where customers arrive
according to a poisson fashion with two
different rates, is developed. The analysis is
done by exploiting the properties of Hessenberg
matrix whose determinants yield polynomials
with interesting interlacing properties. The
service of customers are assumed to be
completed in two stages. At the first stage the
customers may balk when all servers are busy
while the second stage has a finite buffer. Such
type of situation may occur in communication
and computer systems wherein jobs need service
of two kinds by primary and secondary auxiliary
servers with a provision of intermediate limited
buffer. The incorporation of balking at first
stage of service make our model more feasible
in realistic situations.
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