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In this paper we study two echelon mult i-server tandom queueing systems whereAbstract
customers arrive according to a poisson process with two different rates. The service rates at
both echelons are independent of each other. The service times of customers is assumed to be
completed in two stages. The service t imes at each stage are exponentially distribu ted. At the
first stage, the customers may balk (i.e. reject to join the waiting line) when all servers are busy.
The higher echelon has a limited buffer space. The steady state queue size distribution has been
obtained for both stages. We invest iga te the propert ies of a H essenberg mat rix which is
required for the complete specification of the generating function for ready use.
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INTRODUCTION

The problem of tandem queue with finite buffer
has received the attention from the early stages
of queueing theory. The earliest study made by
Avi-Itzhak and Yadin [4] dealt with two single
se rver stat ions without in te rmediate queue
wh e r e cu st ome r s fo llowe d t h e p o isso n
dist r ibu t io n an d t he se rvice t ime s we re
arbit rar ily dist r ibuted in both stations. This
study was extended to a sequence of se rvice
stations with arbitrary input and regular service
time by Avi-Itzhak [3] to derive waiting time
distribution. A two stage single server network
with finite intermediate buffer and blocking was

at t empted by Neuts [16]. H e assumed t hat
service times had a general distribution at the
first stage and an exponential distribution at the
second stage.
Konhe im and R e ise r [12] obt a in e d an

algorithmic solution to the state probabilities of
the ne twork having fin ite wait ing room and
block ing unde r Ma rkovian assump t ion s.
G e r shwin [8 ] p r o vi d e d a n e f f ic i e n t
decomposit ion method for tandem queue with
f in i t e s t o r a ge sp a ce a n d b lo ck in g b y
approximating the single K machine line by a
se t o f K-1 two mach ine lin e s. A lt iok [5]
pre sented an approximate analysis of single

International Journal of Engineering Vol. 14, No. 2, May 2001 - 131



serve r queues in ser ie s having fin ite wait ing
room and blocking under the assumption that
se rvice time follows phase -type dist ribut ion.
Langaris [13] developed the finite set of balance
equations for a two stage service system having
single server at each stage, finite waiting space
in both stages and blocking. Gun and Makowski
[10] provided a matrix geometric solution for a
two node tandem queueing system with phase
type servers subject to blocking and failure.
Chao and Pinedo [7] obtained an expression

for expected waiting time in the system for two
single se rve r st a t ion s in t an dem wit hou t
intermediate buffer where customers arrive in
groups and arbitrary service is provided at both
stat ions. G reen [9] analysized mult i-se rve r
system with two types of servers (primary and
auxiliary) and two types of customers. The first
type of customers are those who are satisfied
with a se rvice rende red by a primary se rve r
whereas second type customers request for
combined se rvice of p r imary and auxilia ry
toge the r . R e cent ly, Z uta and yechia li [18]
studied a two echelon multi-server Markovian
queueing system with a limited in te rmediate
buffer. Abou-El-Ata and Showky [2] studied the
single server for longer queues. Furthermore,
Abou-El-Ata and Kotb [1] derived the solution
of the state dependent queue M/M/1/N with
gene ra l ba lk funct ion , r e fle ct ing ba r r ie r ,
reneging and an addit ional serve r for longer
queues. Recently, Mohanty et al. [15] analysed a
multi-server queueing system with balking and
reneging.
We consider a two stage multi-server queue

in tandem with a limited intermediate buffer in
which an arriving customer who finds all servers
busy may balk or reject to join the queue. There
are Sk servers at stage k (k = 1, 2). The service
times of customers are exponentially distributed
with mean rate mk (k = 1, 2) at stage k. We
fu rthe r a ssume that the re exist s unlimit ed

waiting capacity at the first stage but a finite
buffer of size M-S2 is provided at the second
stage . At the first stage a customer is served
separately at each queue and leaves the system
with the probability of q while at the second
stage a customer is forced to leave the system
with the probability of 1 if the buffer is full.
The two dimensiona l con t inuous t ime

Markov chain model has been developed. The
co-ordinates of the system state (i, j) represent
the number of customers waiting and being
served at the corresponding stage respectively.
The technique developed by Levy and Yechiali
[14] and by Bocharov and Al Bores [6] has been
employed to solve the problem.
We obt a in e xp re ssion s fo r t h e p a r t ia l

generating functions to

de t e rmin e t h e st e a dy st a t e qu e u e size
distribution Pi,j (i= 0, 1, 2, ...; j= 1, 2, ..., M). M
being the maximum total number of customers
at the second stage. To dete rmine the part ial

generating function we apply

Hessenbu rg matr ix approach which can be
ob t a in e d from a se t o f l in e a r e qu a t io n s
[A(z) p(z) = b(z)] in the unknown generating
functions. To investigate the properties of the
Hessenburg matrix, we use M+ 1 roots of the
determinant of A(z) lying in interval (0, 1) and
the remaining M+1 in (1, È).

THE MODEL

Assume a two echelon multi-server queue ing
system, where customers arrive to the first lower
echelon according to a poisson process with the
arrival rate given by

(1)

The arr iving custome rs are se rved by S1
identical servers at first echelon and the service

132 - Vol. 14, No. 2, May 2001 International Journal of Engineering



t ime s a re e xponen t ia lly dist r ibu t e d wit h
parameter m1. After being served first at lower
echelon, a customer leaves the system with the
probability q or moves on and request s for
additional service at the second higher echelon
with the probability of p = 1-q and are served
by S2 identical serve rs. The se rvice t imes of
customers at second echelon are exponentially
distributed with parameter m2.
The in te rmediate buffer between the two

stages is limited to M-S2. If a customer who
requests for service at the higher echelon and
finds that the buffer is full, leaves the system
with the probability 1. We formulate the system
as a two dimensional birth and death process.
Le t P i ,j ( i = 1, 2, ...; j = 1, 2, ..., M) be the
probability that there are i( j) customers at the
first (second) echelon.

THE BALANCEEQUATIONS
GOVERNING THE MODEL

For j = 0 :

(2a)

(2b)

(2c)

(2d)

For :

(2e)

(2f)

(2g)

(2h)

For :

(2i)

(2j)

(2k)

(2l)

For j = M :

(2m)
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(2n)

(2o)

(2p)

The solu t ion o fThe Generating Functions
t h e se t o f E qu a t ion s 2 de p en ds on t h e
knowle dge o f t h e va lue s o f t he boundary
probabilit ie s {P i, j}. To obtain the boundary
probabilit ies, we shall use the following partial
generating function:

which is the marginal generating function of the
number of customers at stage 1, when there are
j customers at stage 2 for . Thus

gives the marginal probability of j customers at
the second stage.
First we consider j= 0. On multiplying 2a-2d

by zi and summing for all i, we get

(3a)

where

(3b)

For , using 2c-2h, in similar
manner, we get

(3c)

where

(3d)

Similarly for , we obtain

(3e)

where

(3f)
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Finally, for j= M,

(3g)

where

(3h)

There are S1(M+ 1) "boundary"probabilities
{Pi,j} (i = i, 2, ..., S1-1; j = 0, 1, ..., M) which are
to be determined in order to get the expressions
for bj(z). Once these probabilities are obtained,
we have (M+ 1) unknown generating functions
pj(z)( ). The solution of these (M+1)
un kn own e qu a t ion s give s t h e r e su lt fo r
pj(z)( ) which provides the entire
probability distribution {Pi,j}( ).
To con st ruct S1(M+ 1) e qua t ion s wit h

S1(M+ 1) unknown, we use the se t of balance
equatins 2a, 2e, 2i and 2m where i= 0;
a n d E qu a t io n s 2, 2f , 2 j a n d 2n , wh e r e

; which provide a set of
(S1-1)(M+ 1) linear equations with S1(M+ 1)
unknown. We also ne ed addit ional (M+ 1)
equations in the above unknown probabilit ies
{Pi, j}.
Equations 3a, 3c, 3e and 3g can be written in

matrix form as

(4)

where p(z) is a vector of the (M+1) generating
function pj(z), ; A(z) is an (M+1)
dimensional square matrix and b(z) is an (M+1)
dimensional vector whose component s are
defined by Equations 3b, 3d, 3f and 3h.
The coe fficie n t s o f t he ma t r ix A( z) in

Equation 4 are represented in Figure 1, where
. The column or

rows numbered from 0 to M represent the
number of customers.
Applying Cramer's rule , for each value of z

such that A(z) is non-singular, we obtain

(5)

where the matrix Aj(z) is derived from A(z) by
replacing the ith column of the matrix by b(z).
For eve ry àzà À 1, the system A(z) p(z)=

b(z) always yie lds a solu tion . I t fo llows that
whenever A(z) is singular, and therefore, Aj(z)
and Equation 5 hold good in this case as we ll
for any root of A(z)= 0 and for each j. Hence
we can write = 0 which is a linear
equat ion in the unknown probabilit ies {P i, j}
(0<i<S 1-1; 0<j<M).

N o w we so l ve u n k n o wnThe Solution
probabilities {Pi, j} as
follows:
A set of (S1-1)(M+1) independent equations

in the above S1(M+ 1) "boundary"probabilit ies
a r e a lr e ady de r ive d . We will in ve st iga t e
addit ional (M+ 1) equations byconsidering the
equation in àA(z)à = 0 and will show that the
polynomial in z, àA(z)à = 0 has (M+1) distinct
roots in (0,1) . Le t us denote these roots by
zk(M+1), k = 1, 2, ..., M+1 where zM+1 (M+1)
= 1. Note that each root zk = zk(M+1) results
Equation 5 in , in
the unknowns {Pi,j} .
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MM-1M-2---S2+1S2S2-1---210

q(z)0 0000000

1 q(z) 000000-2

+

02 000000q(z)

+2

|

q(z)000S2-1 0000-S2

(S2-1)

000S2 q(z) 000-S2

+S 2

0000S2+1 000q(z)

+S 2

|

q(z)000000M-2 0S2

+S 2

000000M-1 q(z) -S2

+S 2

0000000 q(z)

M +S 2

Figure 1. The coefficient matrix A(z)

The e qu a t io n ob t a in e d fr om t he r oo t
zM+ 1(M+ 1) = 1 is r edundant . This can be

verified by examining the matrix AM(z) obtained
from A(z) by replacing its last column with the
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vector b(z). Indeed, for z = 1, the sum of all
terms in each column of A(z) is zero. Also the
sum of the elements of b(1) is zero. Therefore

is the zero polynomial, so that the
equation isredundant. Thus we
need an additional equation in order to find
solution for the required {Pi, j}.
The first e che lon can conside r classical

queue where one-dimensional probabilities for i
customers, are the marginal probabilities of our

two dimensional system, that is ,

. From Equations 2a to 2p, for

, we have

.and
The well known result for classical M/M/S1

queue with balking (Hiller and Liberman [11])
gives

(4a)

since , therefore Equation 4a with

on the left hand side completes

the set of S1(M+ 1) equations in the S1(M+ 1)
boundary probabilities {Pi,j}.

Aft e r calculat ing "bounda ry" {P i ,j} and

expressions for we can determine

the mean total number of customers L1 and L2
at the two echelons as:

(4b)

where and

and P0 is given by Equation 4a and

(4c)

Illustration: Set S1 = 3, S2 = 2, M = 2. In this
case there are six "boundary" probabilities {Pi, j}
{i = 0,1,2; j = 0,1,2}. Also Equations 2a, 2b, 2m
and 2n reduce to

(4d)

(4e)

(4f)

(4g)
Equation 4a get the form

(4h)

Also

A(z) =
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Putting z = z0 in b(z), we obtain

(4i)

(4j)

(4k)

where

Replacing the th ird column of A(z0) by b(z0)
yie ld s t h e ma t r ix A 1 ( z) . T h e e qu a t io n

provides

(4l)

E quat ions 4d, 4e , 4f, 4g, 4h and 4i give the
solution of desired "boundary"probabilities for
this case.

We t r an sfo rm theThe Interlacing Theorem:
basic A(z) into an equivalent matrix H(z) called
Hessenberg form (Wilkinson [11]). To obtain
H e sse n b e r g ma t r ix H ( z ) , we p e r fo rm
elementary operations on the rows of the matrix
A(z) as fo llows: We add the mth row to the
(m-1) st row, then we add the m-1st row to the
(m-2)nd and so on up to the first row, thus we
obtain its ith row as the sum of the rows
from i to M in the original mat r ix A(z) . The
resulting matrix is characterized by the fact that
the elements below the secondary diagonal are
all zero. This type of matrix is called an upper
H e sse nbe rg ma t r ix se e F igu re 2. A ll t h e
e lements of th e 0th row of t he He ssenbe rg
matrix obtained from A(z) are the same, and
equal to

Le t us denote the de te rminant of the square
sub-matrix of H(z) to comprise its first n rows
and n columns (i = 0, 1, ..., n-1 and j = 0, 1, ...,
n-1) by B(z). Let Gn(z) denote the determinant
of the above n-dimensional sub-matrix with the
exception that the lower right element is P(z)
instead of where kn= min(n, S2).
Now we have

(5a)
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(5b)

Using 5a and 5b, we get
(5c)

and

(5d)

Putting the value of Cn-1(z) in Equation 5a, we
have

(5e)

Rewriting Equation 5e as

(5f)

where

(5g)

(5h)

By factorizing P(z), we write

where Dn(z) is the determinant of the matr ix
determining Bn(z) with all elements of the first
row equal to 1. Thus dividing Equation 5f by
Pn(z), we can obtain a recursion formula for
Dn(z) given by

(5i)

Our aim is to prove that

has M+ 1 real roots in the in te rval (0,1) . I t
indicates that P(z) has a single root in (0,1) .

I t is noted that P(z) has two roots z1= 1 and

since z1>1; therefore P(z) has a single

root in (0, 1], so that DM+1 (z) has M real roots
in (0, 1]. This shows that BM+ 1(z) has (M+ 1)
real roots in that interval.
The re fore , we will p rove that fo r eve ry

, Dn(z) provides n-1 real roots in (0,
1] and will indicate that all n roots are different.
D n(z) is a rational funct ion with zn-1 as its

denominator and a polynomial of degree
2n-2 as its numerator, such that

it will be proved that Dn(z) has its (n-1) roots in
the open in te rval (0, 1) while the remain ing
(n-1) roots are in (1-È).

Theorem: , where all

d i ( z) a r e o f t h e same sign and nonze ro .
F u r t h e rmo r e , fo r a n y t wo su cce ss ive
polynomials of and , the
coefficients do(n-1) and do(n) will have opposite
signs.

Proof: Since B1(z) = P(z), we have .
Also B2(z) = P(z) f1(z), so that we have

It is clear that has alternating signs, no
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MM-1M-2---S2+1S2S2-1---210

p(z)p(z)p(z)p(z)p(z)p(z)p(z)p(z)p(z)0

1 p(z)p(z)p(z)p(z)p(z)p(z)p(z)p(z)

+

02 p(z)p(z)p(z)p(z)p(z)p(z)p(z)

+2

|

p(z)p(z)p(z)p(z)p(z)p(z)000S2-1

(S2-1)

000S2 p(z)p(z)p(z)p(z)p(z)

S2

0000S2+1 p(z)p(z)p(z)p(z)

+S 2

|

p(z)p(z)p(z)000000M-2

+S 2

000000M-1 p(z)p(z)

+S 2

0000000 p(z)

M +S 2

Figure 2. The Hessenberg matrix H(z)

zero coefficients, and has an

opposite sign to that of do(1) = 1.

Now Equation 5g can be rewrit ten for f1(z)

as

(5j)
The validity of the theorem for n > 2 can be
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proved by induction principle on the same line
as done by Zuta and Yachiali [18].

CONCLUSION

In this study, two echelon multi-server tandom
que u ing syst em whe r e cu st ome r s a r r ive
acco r ding t o a po isson fash ion wit h two
diffe rent rates, is developed. The analysis is
done by exploiting the properties of Hessenberg
mat rix whose determinants yield polynomials
with inte rest ing in te r lacing prope r t ie s. The
se rvice o f cu st ome r s a re a ssumed t o be
completed in two stages. At the first stage the
customers may balk when all se rvers are busy
while the second stage has a finite buffer. Such
type of situation may occur in communication
and computer systems wherein jobs need service
of two kinds by primary and secondary auxiliary
servers with a provision of intermediate limited
buffe r . The incorporat ion of balking at first
stage of service make our model more feasible
in realistic situations.
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