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Abstract In this paper instability of planar anisotropic sheet metal during a few forming processes
is investigated for the first time. For this reason components of the constitutive tangent tensor for
planar anisotropic sheets are developed. By using the above tensor location of necking is predicted.
Direction of the shear band is also predicted using the acoustic tensor. A finite element program is
prepared based on large deformations of planar anisotropic sheet metals. In this program rotations of
principal directions of anisotropy are also taken in to account. Results obtained from the presented
model are in good agreement with experimental observations.
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INTRODUCTION

Several models have been proposed in the past to
describe the plastic instability and predict the limit
strains of sheet metals. The limit strains may be
considered as a characteristics of sheet metals,
which express their formability. In other words the
limit strains determine the value of maximum
useful deformation prior to localized necking and
strain concentration. Some times these limit strains
are shown by forming limit diagram(F.L.D.),
which is plotted for various loading conditions.
Several attempts have been made to predict F.L.D.,
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but most of these theories are put forward for
proportional loading conditions.

The problem of diffuse necking has been
analyzed by Swift [1]. His analysis of instability in
tension is based on the condition of maximum load
in two principal directions of strain for a biaxial
state of stress. Hill developed a mathematical
relation for localized necking by considering
velocities in the necking zone [2]. According to his
theory, the necking zone starts in a direction of the
minor strain equal to zero or less than zero. Hence
the limitation of the Hill’s model is that it does not
work in the stretching region where both major and
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minor strains are positive. Marciniak and
Kuczynski proposed a model suitable for stretching
region. Their analysis is based on the idea that
necking develops from local region of initial
nonuniformity [3]. This model is known as M.K.
theory. M.K. model is based on two equations of
equilibrium of forces normal to the direction of
neck and uniform strain along the neck, both for
inside and outside region. Another criterion was
put forward by Drucker [4] or Hill [5], which states
that a necessary condition for all types of
instability (bifurcations and lost of uniqueness) is
that the second order work produced by loads for
any arbitrary kinematically admissible variation of
displacement must be zero or negative. In spite of
the early works in criticism of Hill’s criterion,
Banzant [6,7] put forward thermodynamic
arguments for the wvalidity of Hill’s theory.
Bifurcation at limit point is a special case of Hill’s
general criterion, which can occur when symmetric
part of tangent constitutive tensor obtains a zero
eigenvalue. Another case of material instability
occurs when rate of displacement field of an
elasto-plastic material changes abruptly across a
narrow zone, known as shear band. This type of
instability is some times called discontinuous
bifurcation. Theoretical works of Hadammard [8],
Mandel [9] , Rice [10] and Rudnicki and Rice [11]
have greatly enhanced the wunderstanding of
formation of discontinuous bifurcation. According
to [9] and [10], the necessary and sufficient
condition for discontinuous bifurcation is lost of
positive definiteness of acoustic tensor. Recently
Otteson and  Runeson [12] have made the
eigenvalue spectral analysis of acoustic tensor.
They stated that for a material with symmetric
constitutive tangent tensor the condition of
discontinuous bifurcation is satisfied when the
material is no more hardening. This statement is in
agreement with Runesson and Laresson’s work
[13] which indicates that an associated elasto
plastic material is stable in Hill’s sense when the
material is hardening.
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In the present work based on Runesson’s
statement limits of strains and directions of shear
bands are obtained for a planar anisotropic
material. The components of constitutive tangent
tensor for planar anisotropic material are
developed for the first time. A finite element
program is developed for the simulation of large
deformations of planar anisotropic sheet metals
[14]. In this program rotations of principal
directions of anisotropy are also taken in to
account. By wusing the developed constitutive
tangent tensor the location of necking is predicted
in this program. Direction of shear band is also
predicted using the acoustic tensor. Two sheet
metal forming processes are simulated. As the first
example stretching of a narrow strip by a
hemispherical punch is modeled. As the second
example stretching of a circular blank by the same
punch is simulated. The results obtained from the
present model are in good agreement with the
experimental results.

GOVERNING EQUATIONS

According to virtual work principle:
j SS(dE)dv - j F.8u)ds =0 (1)
\% S

where S and JE are effective stress and
effective strain increment respectively. Based
on the above principle and the Hill’s theory, a
nonlinear finite element program has been
developed for analysis of large deformations
of planar anisotropic sheet metals. Details of
this analysis have been given in [14]. Due to
large deformation encountered Lagrangian
strains have been used. The effective stress
and effective strain increment in the ‘Hill’s
theory’ for the state of plane stress conditions
are defined as follows [15]:

2 2 2
_ [3 FS’+GS’+H(S,-S,)

2 F+G+H
2NS !
t——)? 2)
F+G+H
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FG+GH+ FH
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_ \E ((F +H)dE,” +(H +G)dE,’
3

In the above equations x and y are principal
directions of anisotropy. These directions are
parallel and transverse to rolling direction
respectively before deformation of the sheet. F,G
and H are anisotropic coefficients. Ratios of these
coefficients are assumed to be constant during
deformations. In these simulations rotations of
principal axes of anisotropy are taken in to
account. Yang and Kim have stated that the angle
between principal directions of anisotropy and
principal directions of stains remain unchanged
[16]. This rule is used to obtain principal directions
of anisotropy at the end of each step. The principal
directions of strains are calculated at the end of
each step, using Sowerby method[17].

It should be noted that in the above relations the
anisotropic coefficients do not need to be known,
and only their ratios F/H, G/H and N/H are
sufficient. If the ratio of width strain to thickness
strain in simple tension for strips cut in rolling
direction, 45 degrees to rolling direction and 90
degree to rolling direction are defined by R,Q and
P respectively, then according to the “Hill’s

theory” :

F_1

H P’

G_1

H R’

N 1.1 1
—=—(—+—)20+1
I 2(1D R)(Q )

Therefore these ratios can be evaluated by three
simple tension tests.
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CONSTITUTIVE TANGENT TENSOR

According to the Hill’s theory, the yield function is
defined as following:

f(a)— [F(o, G) +G(0o, 0') +
H(c,-0,)"+2N(c,)’] 4)

The elastic and plastic strain increments are
defined as:

e ij
de,” = 22 —5l.ankk
and,
ge, =L@

do;
But we know that:

E e
dek :ﬁdgkk

In the other hand dg,,° =de,, , because,

dskk" =0. Therefore elastic strain increment is

written as:

B dGij \%
de,” = —517 de
2g 1-2v

The total strain increment is obtained as follows:

do,
de, =201 _5 "V _ge YOy s
7 2g "1-2v 80'4./.
From the above relation:
Jf (o
do; =2glde, - f( )dﬂ.+ 5 dekk] (6)
ij
but from the Hill’s theory:
3do
= (7
20nW(F+G+H)
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where & is the slope of the constitutive curve

_ . . dc
O —& at a certamn point, or,h :d_ From the

E
definition of effective stress we have :
52 = 3f(o)

(F+G+H)

By differentiating the above relation:

3 Jf (o) do.

do =— .
26(F+G+H) do,

Substitution of dG in Equation 7 gives:

_4hG (F+G+H)’
;=
98f(6)
do;

do di (®)

Finally by eliminating dA from Relations 6 and 8
we have:

9 Jdf (o) 1%
do, = 2glde, = a5 T4 O,

J

dgkk )

)

where a 1s defined as follows:

2g|:d8mn +6mn1 v dgkk:laf(a)

Jo

mn

Jf (o) Jf (0)
Jdo,, J0,,

Pq

a =
hG*(F+G+H) +4.5g

Equation 9 can be summarized as follows:

dc:,.j = D,.jk,dsk,

where D, is the constitutive tangent tensor. The

above relation can be written in the following
form:

do = Dde

Where in the plane stress condition do and de¢
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are vectors with 3 elements and D is a (3X3)
matrix. In this case the elements of do and de
are as follows:

do =ldo ,do,,do |

y?

and,
de = [dex,dey,dexy I.

Components of the acoustic tensor can be obtained
from the constitutive tangent tensor:

Ou :niDijklnj

In the above equation, 7 is unit normal vector to
the shear band direction. Components of
constitutive tangent tensor are presented in
appendix.

DISCONTINUOUS BIFURCATION
CHARACTERISTICS

Let’s consider the current state of static
equilibrium with continuous displacement . When
the load is increased a discontinuous bifurcation
may occur. It is assumed that an additional
displacement rate lu J appears due to a jump
across a fixed shear band. According to Hadamard
[8], lu J must be continuous along the shear band,
or:

lat] _ 0 (10)

AE

where & is a local axis along the shear band. If 7
is the axis normal to shear band, then we can write:

o] _ ol ] 9¢ | olu,]on
dx,; d& ox, dn dx,

(11)

But the first term of the right side of the above
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relation is zero, therefore:

Alu,] _ oli,] on

/P P B (12)
dx;  dn ox,

Relation 12 can be written as follows:

dlu.

M =cn,; (13)

where 7 is the unit vector along the 17 axis. If two
sides of the shear band are clarified by / and 17,
then:

/i .7 .

€ =& +[‘94‘/] (14)

where,

)= em, +em) (1)
2

Due to equilibrium, the traction rate across the
shear band surface must be identical. Then:

(6'-6")m=0 (16)
or:
(Dijkl[ékl[ - Dijklﬂéklﬂ n; =0 (17)

Suppose that the material at both sides of the
surface plastically  (plastic-plastic
bifurcation). Then from continuity consideration:

responds

I I
D{/‘kl = Dijkl (13)

Combination of (14), (15), (17) and (18) gives:

n,Dyn.c, =0 (19)
or:
0,c,=0 (20)
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Figure 1 Stress strain curve of the sheet.

Figure 2. Deformed mesh of the strip.

The non-trivial solution of (20) is possible when
acoustic matrix Q, is singular.

RESULTS AND DISCUSSIONS

Two different sheet metal forming processes are
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Figure 3. Variations of h and Det (D) at necking element
versus the punch course.

modeled. For both of examples the constitutive
equation of sheet metal is assumed to be:

0 =627.420€° Mpa £ <0.0467

o =0.0282&° —3983.628° +1593.44¢

+282.986 Mpa £ >0.0467

This relationship is shown in Figure 1.

Strip Stretching As the first example stretching
of narrow strips by a hemispherical punch is
modeled. In these models coefficient of friction is
assumed to be 0.2, width of strips are 12.5 mm,
radius of punch is 50 mm and radius of die throat
is 53mm. Figure 2 shows the deformed mesh of
strip for a case when R,Q and P are 1, 3 and 1,
respectively. Values of 2 and Det (D) are
calculated at each step, for all of the elements.
When £ or Det (D) vanished, necking is occurred.
In Figure 3 variations of 4 and determinant of
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TABLE 1. Effects of Anisotropy Parameters on the Strip
Stretching Process.

R (0] P Punch Angle
course between
at the
necking | Shear
(mm) bands

(deg)

1 1 1 34.8 69.1

1 1.5 1 35.1 68.7

1 3 1 353 68.2

1 4 1 35.8 67.4

1 5 1 36.2 67.0

2 1 2 36.9 78.5

3 1 3 37.4 80.8

4 1 4 38.0 82.5

5 1 5 38.8 83.6

1.9 1.3 1.9 37.4 77.1

1 020

1018

Figure 4. Variations of Det (Q) at necking element in different
directions.

matrix D for the element at necking zone versus
the punch course are shown. This figure shows that
h and Det (D) have similar behavior at the necking
zone.
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Figure 5. Experimental deformed strip.

The sharp decrement of these values at punch
course of almost 34 mm shows that necking has
occurred. In Figure 4 variations of determinant of
acoustic matrix at the above punch course and
necking zone for different directions are shown. In

this figure 0 is the angle between the normal to
shear band and the x-axis, which is the principal
direction of anisotropy. It is obvious that values of

0 . These values are almost —34 and 34 degrees. It
should be noted that in this example the principal
direction of anisotropy is longitudinal direction of
the strip (rolling direction) during the deformation,
because rotations are negligible in this process.
The effects of parameters R,Q and P are also
studied in this work. In Table 1 effects of these
parameters on the punch course at necking and
angle between the shear bands are summarized.

It is obvious from this table that in the first case,
when R and P are constant, variations of O does
not have significant effect on the punch course at
necking and angle between the shear bands. In the
second case, when Q is constant variations of R
and P is more effective than the first case. The
experimental deformed strip is shown in Figure 5.
Parameters R,Q and P of the experimented sheet
were measured by stretching strips cut in different
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Figure 7. Variations of h and Det (D) at necking.

directions. The average values of these parameters
obtained from three experiments, were 1.9,1.3 and
1.9 respectively. The punch course at the onset of
necking in this experiment is 36 mm. It is seen
from Figure 4 that the angle between the shear
bands are about 80 degrees. These results are in
good agreement with theoretical values given in
the last row of Table 1.

Circular Blank Stretching As the second
example a circular blank is stretched by the same
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Figure 5. Experimental deformed strip.

The sharp decrement of these values at punch
course of almost 34 mm shows that necking has
occurred. In Figure 4 variations of determinant of
acoustic matrix at the above punch course and
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shear band and the x-axis, which is the principal
direction of anisotropy. It is obvious that values of

0 . These values are almost —34 and 34 degrees. It
should be noted that in this example the principal
direction of anisotropy is longitudinal direction of
the strip (rolling direction) during the deformation,
because rotations are negligible in this process.
The effects of parameters R,Q and P are also
studied in this work. In Table 1 effects of these
parameters on the punch course at necking and
angle between the shear bands are summarized.

It is obvious from this table that in the first case,
when R and P are constant, variations of O does
not have significant effect on the punch course at
necking and angle between the shear bands. In the
second case, when Q is constant variations of R
and P is more effective than the first case. The
experimental deformed strip is shown in Figure 5.
Parameters R,Q and P of the experimented sheet
were measured by stretching strips cut in different
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Figure 6 Deformed mesh of circular blank.
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Figure 7. Variations of h and Det (D) at necking.

directions. The average values of these parameters
obtained from three experiments, were 1.9,1.3 and
1.9 respectively. The punch course at the onset of
necking in this experiment is 36 mm. It is seen
from Figure 4 that the angle between the shear
bands are about 80 degrees. These results are in
good agreement with theoretical values given in
the last row of Table 1.

Circular Blank Stretching As the second
example a circular blank is stretched by the same
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Figure 8. Variations of Det (Q) at necking element verses the
punch course.

TABLE 2. Effects of Anisotropy Parameters on Circular
Blank Stretching Process.

Punch Angle
course Betwee
R 0 P at n
necking | mer.line
(mm) and
normal
to shear
band
(deg)
1 1 1 23.5 0.2
1 2 1 24.5 1.5
1 3 1 25.1 14.5
1.9 1.3 1.9 22.4 3.7

punch and die of the first example. Deformed mesh
of the blank is shown in Figure 6. For a case when
R,Q and P are 1, 3 and 1 respectively, variations of
h and Det (D) at necking zone, versus the punch
course are shown in Figure 7. Variations of these
values in this case have the same behavior of the
first example. In Figure 8 variations of determinant
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Figure 9. Experimental deformed circular blank.

of acoustic matrix versus 6 are shown. It is
obvious from this figure that determinant of
acoustic matrix vanishes only for one value of 6
(36.6 degrees). The angle between meridional line
passed through the centeroid of necked element
and the rolling direction is 50.9 degrees. The angle
between the normal to shear band and the
meridional line passed through the centeroid of this
element can be calculated from the above values.

This angle is found to be 14.5 degrees for the
above case. For a case when R, Q and P are
assumed as 1, 1 and 1, the above angle is almost
0.2 degrees. This example is solved for four cases
and the results are summarized in Table 2.

The experimental deformed circular blank is
shown in Figure 9. Parameters R, O and P were
1.9, 1.3 and 1.9 respectively as in Example 1. It is
obvious from this figure that the angle between the
normal to shear band and the meridian line is zero.
The punch course at the onset of necking is almost
23 mm. Results obtained from the model for the
above measured values of R, O and P are given at
the last row of the Table 2. These results show
good agreement with experimental observations.

CONCLUSIONS

A finite element program was prepared for
modeling of large deformations of planar
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anisotropic sheet metals. In this model rotations of
principal directions of anisotropy are taken in to
account. By developing the constitutive tangent
tensor for planar anisotropic sheet metal, and using
the Rice theory necking of sheet is predictable in
this model. Direction(s) of shear band(s) can also
be predicted by this model.

Two examples were solved by the model and
the results were compared with the experimental
observations. In the first example stretching of a

narrow strip is modeled and occurrence of two
shear bands is predicted. This prediction is
confirmed by the experiment. In the second
example stretching of a circular blank is modeled
and occurrence of one shear band is predicted. This
prediction is also confirmed by the experiment.
Both directions of the shear bands and the punch
course at the onset of necking obtained from the
model are also in good agreement with the
experimental observations.

APPENDIX

From Relation 11 we can write:

[ 1-v _ of 2 (Y of of Y of af)]
I-v 9 1-2v’ do, 1-2v" do, do 1-2v’" do, do,
do_=2g —— - de,
1-2v 4 A
[ v of . v of of 1-v _ of of
2
l1-v 9 g[(1—2v)(8c7x) +(1—2v Jo, aay)+(1—2v)(8ax 80'2)]
+2g -= de,
1-2v 4 A
2 ¥
9 d0, do,,
+2gl—— y €, (A1)
where A is defined as follow:
A=hG (F+G+H) +4.5g[( A ) +( o )2+(af ) +( A )]
J0, dJo, . dJo,

Permutation of x and y in the Relation A1 gives
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do . Butfor do,, from Relation 11 we have:
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[ 1-v _ of of v of of 1% of of ]
9 2g[(1—2v )(aax J0, )+(1—2v)(80', a0, )+(1—2v)(80'Z 0, )
do, =2g|—— : L *— |de,
4 A
[ 1-v _ of of v of of 1% of of ]
92g[(1—2v)(aa 0, )+(1—2v)(86x J0, )+(1—2V)(862 0, )
+2g|—— - 2 s - dgy
4 A
[ 1-v _of of v of of 1% of of ]
2g[(1—2v)(aaz J0, )+(1—2V)(86x J0, )+(1—2v)(80'Z 0, )
+2g[—— - P - — |de
200y
12g1-2— %% g (A2)
4 4 v

For plane stress condition de. can be eliminated . The above relations can be summarized as
follows:

do, = A.de + A, de + A de. + A de, (A3)
do, = A,de +A, de, + A de, + A, de, (A4)

doxy = Bxyxdex + Bxyydey + Bxyzdez +B dexy (A5)

xyxy

In the other hand we know that for plane stress condition, do_ = 0. Therefore by noting that sum of the
plastic strain increments is zero, we have:

do +do, = %(dex +de, +de.) (A6)
-2v

Substitution of (A3) and (A4) in (A6) gives:
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1-2v

A4, +4,)de, + (4, +4,)de, + (A, + A, )de, |- de, —de,

d Yy Xy (A7)
E, = —

L 4))
Relation A7 is can be written as folows:
de.=Cde, +Cde +C de, (A8)
Finally, substitution of (A8) in (A3),(A4) and(AS5) gives:
do, =(A, +C.A_)de, + (Axy + Cysz )dey + (AW + nysz )dsxy (A9)
dO'y = (Ayx + CxAyz )de + (Ayy + CyAyz )dey + (Ayxy + nyAyz )dé‘xy (A10)
doxy = (Bxyx + CXBxyz)dex + (Bxyy + C},Bxyz)dey + (Bxyxy + nyBxyz)dexy (A11)
The above relations can be written as folow:
do = Dde (A12)

It can be simply proved that matrix D is symmetric.
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