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Abstract   In this paper instability of planar anisotropic sheet metal during a few forming processes 
is investigated for the first time. For this reason components of the constitutive tangent tensor for 
planar anisotropic sheets are developed. By using the above tensor location of necking is predicted. 
Direction of the shear band is also predicted using the acoustic tensor. A finite element program is 
prepared based on large deformations of planar anisotropic sheet metals. In this program rotations of 
principal directions of anisotropy are also taken in to account. Results obtained from the presented 
model are in good agreement with experimental observations.  
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در اين مقاله پديده ناپايداري ورق فلزي ناهمسانگرد صفحه اي در تعدادي از فرايندهاي شكل دهي                    چكيده

 منظور ابتدا اجزاء تانسور متشكله مماسي وتانسور         بدين  .ورق براي اولين بار مورد بررسي قرار گرفته است            
با استفاده از اين دو تانسور محل و جهت          . اكوستيك براي ورق ناهمسانگرد صفحه اي استخراج گرديده است         

يك برنامه اجزاء محدود بر اساس تغيير شكل هاي بزرگ ورق                . گلويي شدن ورق قابل پيش بيني است         
در اين برنامه چرخش جهت هاي اصلي ناهمسانگردي در حين تغيير           . ه است ناهمسانگرد صفحه اي تهيه گرديد    

 .نتايج بدست آمده از مدل مطابقت خوبي با نتايج تجربي دارد. شكل در نظر گرفته شده است
 
 

 
INTRODUCTION 

 
Several models have been proposed in the past to 
describe the plastic instability and predict the limit 
strains of sheet metals. The limit strains may be 
considered as a characteristics of sheet metals, 
which express their formability. In other words the 
limit strains determine the value of maximum 
useful deformation prior to localized necking and 
strain concentration. Some times these limit strains 
are shown by forming limit diagram(F.L.D.), 
which is plotted for various loading conditions. 
Several attempts have been made to predict F.L.D., 

but most of these theories are put forward for 
proportional loading conditions. 
     The problem of diffuse necking has been 
analyzed by Swift [1]. His analysis of instability in 
tension is based on the condition of maximum load 
in two principal directions of strain for a biaxial 
state of stress. Hill developed a mathematical 
relation for localized necking by considering 
velocities in the necking zone [2]. According to his 
theory, the necking zone starts in a direction of the 
minor strain equal to zero or less than zero. Hence 
the limitation of the Hill’s model is that it does not 
work in the stretching region where both major and 
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minor strains are positive. Marciniak and 
Kuczynski proposed a model suitable for stretching 
region. Their analysis is based on the idea that 
necking develops from local region of initial 
nonuniformity [3]. This model is known as M.K. 
theory. M.K. model is based on two equations of 
equilibrium of forces normal to the direction of 
neck and uniform strain along the neck, both for 
inside and outside region. Another criterion was 
put forward by Drucker [4] or Hill [5], which states 
that a necessary condition for all types of 
instability (bifurcations and lost of uniqueness) is 
that the second order work produced by loads for 
any arbitrary kinematically admissible variation of 
displacement must be zero or negative. In spite of 
the early works in criticism of Hill’s criterion, 
Banzant [6,7] put forward thermodynamic 
arguments for the validity of Hill’s theory. 
Bifurcation at limit point is a special case of Hill’s 
general criterion, which can occur when symmetric 
part of tangent constitutive tensor obtains a zero 
eigenvalue. Another case of material instability 
occurs when rate of displacement field of an 
elasto-plastic material changes abruptly across a 
narrow zone, known as shear band. This type of 
instability is some times called discontinuous 
bifurcation. Theoretical works of Hadammard [8], 
Mandel [9] , Rice [10] and Rudnicki and Rice [11] 
have greatly enhanced the understanding of 
formation of discontinuous bifurcation. According 
to [9] and [10], the necessary and sufficient 
condition  for discontinuous bifurcation is lost of 
positive definiteness of acoustic tensor. Recently 
Otteson and  Runeson [12] have made the 
eigenvalue spectral analysis of acoustic tensor. 
They stated that for a material with symmetric 
constitutive tangent tensor the condition of 
discontinuous bifurcation is satisfied when the 
material is no more hardening. This statement is in 
agreement with Runesson and Laresson’s work 
[13] which indicates that  an associated elasto 
plastic material is stable in Hill’s sense when the 
material is hardening. 

     In the present work based on Runesson’s 
statement limits of strains and directions of shear 
bands are obtained for a planar anisotropic 
material. The components of constitutive tangent 
tensor for planar anisotropic material are 
developed for the first time. A finite element 
program is developed for the simulation of large 
deformations of planar anisotropic sheet metals 
[14]. In this program rotations of principal 
directions of anisotropy are also taken in to 
account. By using the developed constitutive 
tangent tensor the location of necking is predicted 
in this program. Direction of shear band is also 
predicted using the acoustic tensor. Two sheet 
metal forming processes are simulated. As the first 
example stretching of a narrow strip by a 
hemispherical punch is modeled. As the second 
example stretching of a circular blank by the same 
punch is simulated. The results obtained from the 
present model are in good agreement with the 
experimental results. 

GOVERNING EQUATIONS 

According to virtual work principle: 

∫ ∫ =−
v s

dsufdvEdS 0)(.)( δδ                        (1) 

where S  and Ed  are effective stress and 
effective strain increment respectively. Based 
on the above principle and the Hill’s theory, a 
nonlinear finite element program has been 
developed for analysis of large deformations 
of planar anisotropic sheet metals. Details of 
this analysis have been given in [14]. Due to 
large deformation encountered Lagrangian 
strains have been used. The effective stress 
and effective strain increment in the ‘Hill’s 
theory’ for the state of plane stress conditions 
are defined as follows [15]: 
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and, 
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In the above equations x and y are principal 
directions of anisotropy. These directions are 
parallel and transverse to rolling direction 
respectively before deformation of the sheet. F,G 
and H are anisotropic coefficients. Ratios of these 
coefficients are assumed to be constant during 
deformations. In these simulations rotations of 
principal axes of anisotropy are taken in to 
account. Yang and Kim have stated that the angle 
between principal directions of anisotropy and 
principal directions of stains remain unchanged 
[16]. This rule is used to obtain principal directions 
of anisotropy at the end of each step. The principal 
directions of strains are calculated at the  end of 
each step, using Sowerby method[17].  
     It should be noted that in the above relations the 
anisotropic coefficients do not need to be known, 
and only their ratios F/H, G/H and N/H are 
sufficient. If the ratio of width strain to thickness 
strain in simple tension for strips cut in rolling 
direction, 45 degrees to rolling direction and 90 
degree to rolling direction are defined by R,Q and 
P respectively, then according to the “Hill’s 
theory” : 
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Therefore these ratios can be evaluated by three 
simple tension tests. 

CONSTITUTIVE TANGENT TENSOR 
 
According to the Hill’s theory, the yield function is 
defined as following: 
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The elastic and plastic strain increments are 
defined as: 
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The total strain increment is obtained as follows: 
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From the above relation: 
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but from the Hill’s theory: 
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where  h   is  the  slope  of  the  constitutive   curve  

εσ −  at a certain point, or,
ε
σ

d
dh = . From the 

definition of effective stress we have : 
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By differentiating the above relation: 
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Substitution of σd  in Equation 7 gives: 
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Finally by eliminating λd  from Relations 6 and 8 
we have: 
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where a is defined as follows: 
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Equation 9 can be summarized as follows: 
 

klijklij dDd εσ =  
 
where ijklD  is the constitutive tangent tensor. The 
above relation can be written in the following 
form: 
 

εσ Ddd =  
 
Where in the plane stress condition σd  and εd  

are vectors with 3 elements and D is a ( 33× ) 
matrix. In this case the elements of  σd  and εd  
are as follows: 
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and, 
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Components of the acoustic tensor can be obtained 
from the constitutive tangent tensor: 
 

jijklikl nDnQ =    . 
 
In the above equation, n  is unit normal vector to 
the shear band direction. Components of 
constitutive tangent tensor   are presented in 
appendix. 
 

DISCONTINUOUS BIFURCATION 
CHARACTERISTICS 

 
Let’s consider the current state of static 
equilibrium with continuous displacement u. When 
the load is increased a discontinuous bifurcation 
may occur. It is assumed that an additional 
displacement rate [ ]u&  appears due to a jump 
across a fixed shear band. According to Hadamard 
[8], [ ]u&  must be continuous  along the shear band, 
or: 
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where ξ  is a local axis along the shear band. If  η  
is the axis normal to shear band, then we can write: 
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But the first term of the right side of the above 
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relation is zero, therefore: 
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Relation 12 can be written as follows: 
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where n is the unit vector along the η  axis. If two 
sides of the shear band are clarified by I and  II , 
then:  
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Due to equilibrium, the traction rate across the 
shear band surface must be identical. Then: 
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Suppose that the material at both sides of the 
surface responds plastically (plastic-plastic 
bifurcation). Then from continuity consideration: 
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Combination of (14), (15), (17) and (18) gives: 
 

0=lkijklj cnDn                                                   (19) 
 
or: 
 

0=lilcQ                                                            (20) 

The non-trivial solution of (20) is possible when 
acoustic matrix ilQ  is singular. 
 
 

RESULTS AND DISCUSSIONS 

Two different sheet metal forming processes are 
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Figure 1 Stress strain curve of the sheet. 
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Figure 2. Deformed mesh of the strip. 
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Figure 3. Variations of h and Det (D) at necking element 
versus the punch course. 

 

modeled. For both of examples the constitutive 
equation of sheet metal is assumed to be: 
 

2.0420.627 εσ =     Mpa                     0467.0<ε  
 

εεεσ 44.159362.39830282.0 23 +−=  

986.282+     Mpa                        0467.0>ε  
 
This relationship is shown in Figure 1. 
 
Strip Stretching   As the first example stretching 
of narrow strips by a hemispherical punch is 
modeled. In these models coefficient of friction is 
assumed to be 0.2, width of strips are 12.5 mm, 
radius of punch is 50 mm and radius of die throat 
is 53mm. Figure 2 shows the deformed mesh of 
strip for a case when R,Q and P are 1, 3 and 1, 
respectively. Values of h and Det (D) are 
calculated at each step, for all of the elements. 
When h or Det (D) vanished, necking is occurred. 
In Figure 3 variations of h and determinant of 

TABLE 1. Effects of Anisotropy Parameters on the Strip 
Stretching Process. 
 

R Q P Punch 
course 
at 
necking 
(mm) 

Angle 
between 
the 
Shear 
bands 
(deg) 

1 
1 
1 
1  
1    

1 
1.5 
3 
4 
5 

1 
1 
1 
1 
1 

34.8 
35.1 
35.3 
35.8 
36.2 

69.1 
68.7 
68.2 
67.4 
67.0 

2 
3 
4 
5 

1 
1 
1 
1 

2 
3 
4 
5 

36.9 
37.4 
38.0 
38.8 

78.5 
80.8 
82.5 
83.6 

1.9 1.3 1.9 37.4 77.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Variations of Det (Q) at necking element in different 
directions. 
 
matrix D for the element at necking zone versus 
the punch course are shown. This figure shows that 
h and Det (D) have similar behavior at the necking 
zone. 
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Figure 5. Experimental deformed strip. 
 

The sharp decrement of these values at punch 
course of almost 34 mm shows that necking has 
occurred. In Figure 4 variations of determinant of 
acoustic matrix at the above punch course and 
necking  zone for different directions are shown. In  
this  figure θ  is  the  angle  between  the normal to  
shear band and the x-axis, which is the principal 
direction of anisotropy. It is obvious that values of  
θ . These values are almost –34 and 34 degrees. It  
should be noted that in this example the principal 
direction of anisotropy is longitudinal direction of 
the strip (rolling direction) during the deformation, 
because rotations are negligible in this process. 
The effects of parameters R,Q and P are also 
studied in this work. In Table 1 effects of these 
parameters on the punch course at necking and 
angle between the shear bands are summarized. 
     It is obvious from this table that in the first case, 
when R and P are constant, variations of Q does 
not have significant effect on the punch course at 
necking and angle between the shear bands. In the 
second case, when Q is constant variations of R 
and P is more effective than the first case. The 
experimental deformed strip is shown in Figure 5. 
Parameters R,Q and P of the experimented sheet 
were measured by stretching strips cut in different  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Deformed mesh of circular blank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Variations of h and Det (D) at necking. 
 
directions. The average values of these parameters 
obtained from three experiments, were 1.9,1.3 and 
1.9 respectively. The punch course at the onset of 
necking in this experiment is 36 mm. It is seen 
from Figure 4 that the angle between the shear 
bands are about 80 degrees. These results are in 
good agreement with theoretical values given in 
the last row of Table 1. 

Circular Blank Stretching  As the second 
example  a  circular  blank is stretched by the same  
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Figure 7. Variations of h and Det (D) at necking. 
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necking in this experiment is 36 mm. It is seen 
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Figure 8. Variations of Det (Q) at necking element verses the 
punch course. 
 
TABLE 2. Effects of Anisotropy Parameters on Circular 
Blank Stretching Process. 
 

 
 
R 

 
 
Q 

 
 
P 

Punch 
course 
at 
necking 
(mm) 

Angle 
Betwee
n 
mer.line 
and 
normal 
to shear 
band 
(deg) 

1 
1 
1 

1 
2 
3 
 

1 
1 
1 
 

23.5 
24.5 
25.1 

0.2 
1.5 
14.5 

1.9 1.3 1.9 22.4 3.7 

 
 
punch and die of the first example. Deformed mesh 
of the blank is shown in Figure 6. For a case when 
R,Q and P are 1, 3 and 1 respectively, variations of 
h and Det (D) at necking zone, versus the punch 
course are shown in Figure 7. Variations of these 
values in this case have the same behavior of the 
first example. In Figure 8 variations of determinant  

Figure 9. Experimental deformed circular blank. 
 
of acoustic matrix versus θ  are shown. It is 
obvious from this figure that determinant of 
acoustic matrix vanishes only for one value of θ  
(36.6 degrees). The angle between meridional line 
passed through the centeroid of necked element 
and the rolling direction is 50.9 degrees. The angle 
between the normal to shear band and the 
meridional line passed through the centeroid of this 
element can be calculated from the above values. 
    This angle is found to be 14.5 degrees for the 
above case. For a case when R, Q and P are 
assumed as 1, 1 and 1, the above angle is almost 
0.2 degrees. This example is solved for four cases 
and the results are summarized in Table 2. 
     The experimental deformed circular blank is 
shown in Figure 9. Parameters R, Q and P were 
1.9, 1.3 and 1.9 respectively as in Example 1. It is 
obvious from this figure that the angle between the 
normal to shear band and the meridian line is zero. 
The punch course at the onset of necking is almost 
23 mm. Results obtained from the model for the 
above measured values of R, Q and P are given at 
the last row of the Table 2. These results show 
good agreement with experimental observations. 

CONCLUSIONS 

A finite element program was prepared for 
modeling of large deformations of planar 
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anisotropic sheet metals. In this model rotations of 
principal directions of anisotropy are taken in to 
account. By developing the constitutive tangent 
tensor for planar anisotropic sheet metal, and using 
the Rice theory necking of sheet is predictable in 
this model. Direction(s) of shear band(s) can also 
be predicted by this model. 
     Two examples were solved by the model and 
the results were compared with the experimental 
observations. In the first example stretching of a 

narrow strip is modeled and occurrence of two 
shear bands is predicted. This prediction is 
confirmed by the experiment. In the second 
example stretching of a circular blank is modeled 
and occurrence of one shear band is predicted. This 
prediction is also confirmed by the experiment. 
Both directions of  the shear bands and the punch 
course at the onset of necking obtained from the 
model are also in good agreement with the 
experimental observations.  

 
 
 
 

APPENDIX 

From Relation 11 we can write: 
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where A is defined as follow: 
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Permutation of x and y in the Relation A1 gives ydσ . But for xydσ  from Relation 11 we have: 
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For plane stress condition zdε  can  be eliminated . The above relations can be summarized as 
follows: 
 

xyxxyzxzyxyxxxx dAdAdAdAd εεεεσ +++=                                                                                      (A3) 

 
xyyxyzyzyyyxyxy dAdAdAdAd εεεεσ +++=                                                                                     (A4) 

 
xyxyxyzxyzyxyyxxyxxy dBdBdBdBd εεεεσ +++=                                                                                (A5) 

 
In the other hand we know that for plane stress condition, 0=zdσ . Therefore by noting that sum of the 
plastic strain increments is zero, we have: 
 

)(
21 zyxyx dddEdd εεε
ν

σσ ++
−

=+                                                                                                      (A6) 

 
Substitution of (A3) and (A4) in (A6) gives: 
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Relation A7 is can be written as folows: 
 

xyxyyyxxz dCdCdCd εεεε ++=                                                                                                                 (A8) 
 
Finally, substitution of (A8) in (A3),(A4) and(A5) gives: 
 

xyxzxyxxyyxzyxyxxzxxxx dACAdACAdACAd εεεσ )()()( +++++=                                                        (A9) 
 

xyyzxyyxyyyzyyyxyzxyxy dACAdACAdACAd εεεσ )()()( +++++=                                                     (A10) 
 

xyxyzxyxyxyyxyzyxyyxxyzxxyxxy dBCBdBCBdBCBd εεεσ )()()( +++++=                                              (A11) 
 
The above relations can be written as folow: 
 

εσ Ddd =                                                                                                                                                   (A12) 
 
It can be simply proved that matrix D is symmetric. 
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