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Abstract The stability analysis of sleeve stiffened pin-ended slender hollow columns of pipe or box
sections is performed in the present study. This is accomplished by using energy method, employing three
terms in the assumed approximate deflection function. The lengthy and tedious algebraic manipulations
involved in solving the relevant eigenvalue problem, necessitates employing the “MATHEMATICA™
software. Nevertheless, the final result for the critical load can not be presented 1n a closed from equation,
as it is too long and may occupy several pages. The critical loads are determined for many different box
and pipe sizes. A total of 144 design curves are determined and plotted showing the critical load for
different lengths and thicknesses of the stiffening sleeve. The curves show an increasing trend in buckling
load-carrying capacity up to 90 percent. Minimizing the material volume of the sleeves, the optimal
portions of the design curves are determined. It 1s also found that sleeve stiffening beyond 70 percent of
the length of the column is a waste of material, as it does not significantly contribute to increasing the load
carrying capacity. The possibility of local shell buckling 1s also considered.
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INTRODUCTION

The selection of structural and machine elements is
based on three characteristics; strength, stiffness, and
stability. The pioneer works of Euler [1] on the
stability of compression members dates back to as

early as 1744, Euler‘s work was considered doubtful
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until Shanley [2,3] in 1946 presented an explanation
of the behavior of columns undercompressive forces.
Hoff [4] and Johnston [5] have reviewed the progress
of stability analysis in different periods of time.
Recent investigations involve a wide range of
problems like post buckling of columns, composite

cylindrical shell, and variable-thickness columns,
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among others.. Koiteret. al. [6] focused on the buckling
of cylindrical shells with small thickness variations.
Asymptotic formulas up to the second order of the
thickness were derived by the combination of
perturbation method and weighted residual method.
Results were compared to numerical technique of
finite difference. Ross and Humphries | 7] tested several
partially corrugated circular cylinders to destruction
and observed that some of the cylinders failed by
inelastic general instability and some by local buckling
mode. They concluded that neither the classical shell
instability mode prevailed nor the classical general
instability mode. This behavior was attributed to the
out of roundness initially presented in the cylinders.
Barbero and Tombling [8] investigated Eulerbuckling
of thin walled composite columns and also
experimentally determined the critical loads. The
results were compared and reported 10 show a
reasonably good agreement with these of theoretical
predictions. Wang et. al. [9] researched on elastic
buckling of columns to find approximate formulas
and also design charts. In their work, they sacrificed
accuracy for the sake of simplicity. Development ot a
user friendly powerful software for the design of
columns, beams and plates to withstand buckling was
suggested by them. Lin et.al. [10] derived energy
equatons for lateral buckling and concluded that
theoretical results and those of the experiments showed
good agreement. Serrette | 11] reviewed the European
code for lateral buckling (Eurocod 3) and stated that
the specifications, design considerations and
recommedations provide a consistent and unified
method forsingle, double and nonsymmetric sections.
he compared Eurocod 3 To AISC-LRED to show the
deficiencies in the latter code.

While the problem of general and local buckling
of hollow thin columns been considered by some
investigators, the problem of stiffened hollow columns
seems to be remained untouched. This is in part due

to the uncertaintics in distinguishing between long
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and short columns on one hand, and thin and thick
columns on the other [12,13], and in part due to the
complexities inexact analysis of the stability problem.
However, the analysis may be performed employing
the approximate methods of energy such as the Ritz
method. This method is used in the present paper to
analyze sleeve-stiffened hollow columns. The
columns are assumed to be long and slender, so that
general Euler buckling mode prevails over local shell
buckling [ 12]. Bothrounded and box section columns
are considered inthe analysis. To use energy methods,
it is necessary 1o assume an approximate deflection
curve which must satisfy the essential boundary
conditions. For pin ended columns, the appropriate

deflection curve takes on the form:
y = Asin X (a)
!

where A is the coefficient to be determined via

analysis and/is the length of the column. When the

P
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Figure 1.Stepped column with variable moment of inertia.
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above deflection form is used to find the critical load
for a pin-ended stepped solid column, as shown in
Figure 1, the results shows an error of 33 percent
compared to that of the exact solution [12]. Assuming
a two-term delfection curve of the form;

y = Asin X + Bsin 3lﬂ (b)

The error decreases to 13 percent [12]. However, for

a three-term deflection curve, as:
y = Asin ”l—x + Bsin 3ZX 4 Csin 57x ©
l

the algebra involved is so lengthy and tedious to
perform that manual computation seems indomitable
and has not been attempted in the classical works.
With the development of powerful software
packages like “MATHEMATICA”, itisnow possible
to approach such problems. Actually this latter form
for the deflection function was assumed by the authors
of the present paper to find that the error reducesto 2.5
percent for the above-mentioned column. Nevertheless
itshould be noted thatevenusing “MATHEMATICA”,
the computations take a relatively long time on the
computer and the end results are so lengthy that
occupy several monitor screens.

Hollow columns are favorable in structures over
solid columns of the same bending stiffness because
not only the columns themselves are made lighter but
also the overall weight of the structure is reduced.
Thisis atwo-fold material saving. Forthe compression
members in machines, a three-fold saving will be
made as the lighter the machine, the lowerthe energy

consumption.
STABILITY ANALYSIS

Consider a stepped hollow column of the total length
of L as depicted in Figure 2. The column (box or
tubular) with bending stiffness of E1,, is stiffened at
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the mid-length by a sleeve of length /to EI, as shown
in Figure 2. The column is assumed to be pin-ended
with the axial compressive force P applied on it.
For such a column without any stiffening, the
deflection function may be assumed to be of the form
y = C, sin(mx/L). To account for the mid-length
flatness due to the stiffening sleeve, then, two other
sinusoidal terms are added to the above mentioned

deflection function to yield:
y= C,sinZX + C sin 32X 4 C sin 32X (1)
L L L

Due to the symmetry, the deflection energy is:

n /)
U=2EL" yyrax+E2| " (yrydx )
2 ' 2 'n

and the potential energy:

V=:L| )y ax 3

‘F.:I-

Figure 2. Geometry of the stiffened hollow column.
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Differentiating Equation 1 to obtain y' and y" and
substituting into Equations 2 and 3 yields:

U= ELr’ “ah ZLgin2zmh Ble, mn .
> 2L 4 L 2 L
2 2 2
27 ¢, sin 67Tl 625 ¢; nl 125 ¢; sin 107”1] N
4 L 2 L 4 L
2 .2 2
Elr® (Ciale-ly ¢ g 2n-1) 816 na-1y
L} 2 L 4 L 2 L
2 2 2
27 ¢, sin 6n(la-1) N 025¢; m(ly-1) i 125 ¢ 9
L 2 L 4
sin 107‘[(/2'[1)] _ 18E12C|62L [Sin(l—lﬂ) COS(ZLT[)} _
L r L

sin(l—'lt)cos(b—n') sin(l—zﬂ)cos([ln)3+
L L L L

sm([iﬂ) cos (l—zft)] + £l { 200L cics
L L 2

sin (Ll T) X
L

In
cos Ly + [- M sin (11 2yt 625L cics
L 3m 6m
sin(lL )l cos (2 n)-w_fl_% sin (1_2 mycos 2y +
L L 3n L L

[gUOL c1e3 Sin(llf[)} 4+ 025L cics
3n L 6n

cos(2my|j+ 25 EDLeacs 66 (L
L 2r L

sin(27)] x
L

T)Cos (D- m) -
L

8 xsin (1—‘ m)+(2sin (Ll 7i)*+3)cos (lvl )’ +sin ([—1 7T)X
L L L L

(8 x sin(L‘ )X+ 11) cos(l—I )? - sin (i—l n')(sin(LI T+
L L L L

3) X cos (L‘ m)- 16 sin (1—2 ) COS (l—2 ) + 8 sin (l—2 T)

L L L L

X (2sin(-ll )Y +3) cos(L2 )% - sin ([—2 )(8 sin (l—2 )+

L L L L

11) x cos(2 m)*+ sin (2 7)(sin(2 )2+ 3) cos(2 7))
/ L L L

; @)

And:

p=-Pm( i+ 9cim + 25¢im) 5
4L ;

For the column to take a stable buckled shape, the

totalenergy (U + V) which is a function of the three

coefficients ¢, ¢, and ¢, should satisfy the
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equations:

AU+Y) _

dci

and i=1,2,13 6)

Inserting U and V from Equations 4 and 5 into
Equation 6, performing the mathematical operations
with the aid of the “MATHEMATICA” software
package and simplifying the results, a set of three

equations is obtained as:

¢, (A+PF)+cA+cA=0
B, +c,(BHPF)+cB=0 @A)
oL +c,E4c(EAPF)=0

where:

A =Ehm zmh 1

1

3 (-
sin 27y 4 Ebr [ﬂ(L h)
L3 L 2 L L3 L
2n(b- 11)]

L

1 sin

A= 18E 1L [sin (1—1 ) Cos (l—1 )*-sin (L' H)C()S(l—l T)-
2 L L L L

sin ([i ) Cos ([l ) + sin ([l ) COS (1_2 )]
L L L L

A}=El2|2()()LSin([—]7Z)IC()S(-lL 7r)5—(200Lsin([l7r)’+
2 3nrm L L R4 L

625L in (L1 7)) cos(L ) - 200L sin(2 )] x
T L L RE/4 L

cos(ll )Y + 200L gin (b— )+ 625L in (l_2 m)) X
L in L orn L

cos (liﬂ)]
L

B= 1BELL [sin (Ll ) Cos (l—' )’ - sin ([—1 717)cos([—l )-
2r L L L L

sin (2 7) cos (2 )" + sin (2 7) cos (2 7)]
i i i ;
B{_—M[xl mh 27 G 67l Ebr’ gy 7(l-h)

L’ L 2 L L’ L
orn(h- li)]
L

2 Sin———<_

B, = “2;#]1(”&&111(1’ ) (8 xln(“ )+ 1)x
n

cos (l—l m)*-sin (f[L ) (sin (L' Y +3)cos (I—l ) -
L L L L
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16sin ([l 7) cos ([l n)7+83in(—b— ) (2sin (Il )+
L L L L
3) cos (Ilfr)5 - sin (ll 1) (8 sin (’ln)2+ 11) x
L L L

cos(lz- )+ sin (’i ) (sin(li )+ 3) cos(l—2 m)}
L L L L

E, =ElL (200L (sin Ly cos (L) - [200L
2 RY 4 L L 3n

(sin (-ll-ft)“ +025L gin (l—l )] cos (l—‘ ) - 200L
L 6rn L L In

sin(iz- ) Cos (ll nys + [200L sin(’i )+ 625L
L L 3n L 6r

sin(ll m)] X cos (li )
L L

E= H2SELL [16 sin (1—l m)Cos (’—l m)-8sin (’—' )+
- 2n L L L
(2sin ()L 7)2+3) cos(lL m)s+sin(lL 7)(8sin(L )+
L L L L
11) cos(’—' 7)’-sin (1—l ) (sin(’—l 7)%+3) cos(’—' n)-
L L L L
16 sin (Il ) CoS (ll )"+ 8sin (ll ) (2sin (-’l )+
L L L L
3) cos (’l 7)® - sin (ll ) (8sin (ll )+ 11) x
L L L
cos(22 )3+ sin (2 1) (sin(22 7)%+ 3) cos(2 7))
L L L L

E=EI|7(3 [625ﬂ- 125 sin 10zl ]+Elz7t3 x
oo L 2 L L}

l6257‘l’(12-1|) _msinlon’(lz-h)]
L 2 L

F =1

FE =

2L

F=i7i
roaL

2
F=: 25~ ®)
2L

The solution to Equations 7 resultsin aneigenvalue
problem of the from:

A+F,.P A» As ’Cl\
B\ B,+F;.P B3 c‘zf=0 )
E\ E: Es+Fy.P|'©
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With the characteristic equation:
k,P+ k. P+ kP+k,=0 (10)
where;

k=FFF,

k=FFE +AFE +BFF,

k=AFE +EBF+ABF -EFA -EBF, -
BAF,

k=EAB,+ABE, +AEB -EAB,-EBA,-
BAE, amn

The characteristic Equation 10 yields three
eigenvalues of which the smallest answer represents
the critical load P_:

P =-2+4-scos @ (12)

cr

where s and 0 are defined in terms of k, through to k,, as:

s=k3 _ ko
3k 9k
=l_ 2L
where

- 263 _koks , ka
27k 3k ki

Because of the tremendous lengthy algebra
involvedinevaluating P_ from Equation 12, all of the
mathematical manipulations in Equations 8 to 13 are
performed using the “MATHEMATICA™ software
package. The final result for the critical load P is too
lengthy to present here, as on the computer’s monitor,
the answer occupies twenty screens . However, in
order to determine the design curves, it just suffices
to evaluate the results for P__ numerically.

NUMERICAL EVALUATION

To pot the design curves, a wide range of hollow
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columns with round section (pipe) and square section
(boxj have been considered, as tabulated by Stahl
Im Hochbau[ 14]. Forthe pipe columns, the diameter
“d” ranges from 21.3mm up to 558.8mm and the
thickness s of the main body (column without
stiffener) ranges from 2mm to 8.8mm, while the
thickness “t 7 of the sleeve (stiffening portion)
varies from Immi 1o the thickness “‘s” of the main
body in each case. For the box columns; the side “a”
ranges {rom 40 mum to 260 mm, the thickness “s”
from 2.9 mm to 7.1mm and the variable thickness
“t” from Imm up to “s” in each case. With these
data, Equations 1 throughto 13 are solved employing
the *“MATHEMATICA” package to yield the critical
load P_ for different values of /L. The results are
plotted as design curves in non-dimensional form
as typically depicted in Figures 7 to 9 for the pipe
(tubej section, and 3 to 6 for the box section. A total
of 25 diagrams for the pipe section and 14 diagrams
for the box section are prepared in this manner.
Eachdiagramcontains 2 to 8 design curves, covering
the whole range of the available profiles in “Stahl
Im Hochbau™. This sums up to 97 design curves for

the pipe-columns and 47 for the box-columns.
THE OPTIMAL DESIGN CURVES

Typical design curves are shown in Figures 3 to 9.
The dimensions of the main column are presented
at the top of each diagram. The abscissa denotes the
dimensionless ratio //L, where L is the length of the
main column and [ is the length of the stiffening
portion (sleeve). This ratio obviously ranges from
0 to 1. The ordinate denotes the dimensionless
ratio P/P_ , where P is the Euler buckling load for
the main column (without the sleeve) and P is the
critical load for the stiffened column (including the
sleeve). The thickness t of the sleeve shown on the
right side of the diagrams, t ranges from 1mmto the
nearest integer to the thickness of the main column.
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This means that the thickness of the sleeve does not
exceed that of the main column in each case. All of
the design curves show a general trend of increasing
with the increase in the ratio of /L. The degree of
increase in P/P_ ranges from 6 percent up to 90
percent, depending on the thickness t of the sleeve.
Comparing the curves in each diagram with cach
other, two interesting points can be observed. The
first point is that for values of I/L > (.7, the increase
in P/P,, is negligibly small. In other words, the
curves flatten out as the length of the stiffening
sleeve, I, approaches 70 percent of the length of the
main column L. In terms of material savings, this
means that about 15 percent of the material may be
saved by limiting the length of the sleeve, without
imposing an appreciable decrease in the buckling
loud-carrying capacity of the column. This point
may also be used in the design of non-stiffened
columns, provided that the capacity is checked for
yielding too. The second interesting point is that in
the useful range of O <l/L <0.7, as the thickness t of
the sleeve increases, the slope of the curves increases
progressively. This leads to a more beneficial point
in material saving as follows. In each diagram
containing serveral design curves, for any desired
ratio P/P_ ,it is possible to pinpoint a portion of the
curve for which the amount of material used is a
minimum. This is carried out by minimizing the
volume of the stiffened columns. The optimum
portions of the curves are marked on them by bold
lines. Considering the design curves for the box and
the tube sections, it is observed that for acomparable
area-moment of inertial, I, the columns with tube
sections show a superior increase for P/PE.. over
box sections. For instance, comparing the design
curves for the box sections as in Figure 6 where I =
62.7cm* with those of pipe sections as shown in
Figure 9 with I =79.2cm?, the maximum increase
in P/P,, is about 50 percent versus 90 percent,
respectively.
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Figure 3. Design curves for box section.
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Figure 4. Design curves for box section.
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Figure 5. Design curves for box section.
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| Box Sectron
75 a=260 mm
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Figure 6. Design curves for box secuon.

SHELL- BUCKLING CONSIDERATIONS

The stability analysis conducted in this study is based
on the Euler-buckling theroy of long and slender
columns. Howerver, since the columns are hollow,
the analysis should be checked against shell-buckling
theory wherever there is an uncertainty about the
slendemess of the column to ensure that local buckling
does nolt result in a collapse of the column before the
Euler buckling load is reached.
For hollow thin columns, the classical theory of
cylindrical shell buckling states thal local buckling
Pige Seciian
18 | d=S08 e

| =il & e
/7. Fed N o

/6

14/

7/

Ratio (P /R )

124 x - A

, &

00 07 02 03 04 05 06 07 08 09 10
Mt (¢ /L)

Figure 7. Design curves for pipe section.
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Figure 8. Design curves for pipe section.

may prevail Eulerbuckling [12]. Inordertodistinguish
between short and long shells, the dimensionless

shape factor z is defined as [12]:

=Ll vyn (14)

r

-~

where v is the poison’s ratio and /, r and t are the
length , radius and thickness of the cylindrical shell,
respectively. Taking v as 0.3, Equation 14 takes on
the form:

2
2=095 L (15)
rt

The critical load P__ is then determined as:

P, =06 EAl if  z>285 (16)

P =(|+l222)2r7r2A if

z - z2<2.85 (7
T tl

where A is the section area, E is the Young ‘s modulus
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Figure 9. Design curves for pipe section.

and other quantities are as defined beofre.

Equations 16 and 17 are employed to determine
the critical load for shell buckling and compared with
those of Euler buckling. Precautions are given on the
diagrams for the cases where shell buckling may
prevail Euler buckling.

For the box-columns, the local plate buckling
considerations does not seem necessary, as the
thickness of the profiles often inhibits this (5]. From
a practical point of view, it is possible to increase the
load carring capacity of hollow columns, or equally
well to decrease the possibility of local buckling, by
filling the column with a cheap material such as
compacted soil.

CONCLUSIONS
The stability analysis of sleeve stiffened pin-ended
slender hollow columns of pipe or box sections is

performed in the present study. This is accomplished
using energy method of Ritz, employing three terms
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in the assumed approximate deflection function, to
account for the mid-length flatness due to the stiffening
effect of the sleeve. The lengthy and tedious algebraic
manipulations involved in computing the resulting
integrals and also in solving the relevant eigenvalue
problem necessitates employing the powerful and
reliable “MATHEMATICA” software. Nevertheless,
the final result for the critical load can not be presented
in a closed form equation, as it is too long and may
occupy pages. Instead, the
“MATHEMATICA” is used again to compute the
critical loads numerically for many different box and

several

pipe sizes. In this way, a total of 144 design curves
are determined and plotted showing the dimensionless
ration P/P_ versus//L for different thicknesses of the
stiffening sleeve. The curves show an increasing
trend in buckling load-carrying capacity up to 90
perecent. Minimizing the material volume of the
sleeves, the optimal portions of the design curves are
determined and marked on the curves as bold lines. It
is also found that sleeve stiffening beyond 70 percent
of the length of the column is a waste of material, as
it does not significantly contribute to increasing the
load carrying capacity.

For the columns which may not be taken as long
and slender, the possibility of local shell buckling is
considered. Depending on the shape factor, two
different equations are employed to evaluate the
critical loads. The results are compared to the critical
loads found from the general Euler buckling and

precautions are made.
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