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Abstract This paper deals with the fundamental problem of estimating the distribution function (df) of
the duration of the longest path in the stochastic activity network such as PERT network. First a technique
1s tntroduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this
technique a new procedure is developed for CMCS. Third, a combined approach of simulation and
approximation procedures is introduced for the networks with activity discrete distribution function to
enhance the accuracy of the approximation procedures. Application of the new approach proves that the
error is drastically reduced in comparison with the best existing approximation approach.
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INTRODUCTION

A stochastic network is an acyclic, connected, and
directed graph consisting of N nodes and A arcs in
which the duration of some or all of the arcs are
random variables with known cumulative distribution
functions. The network can have a single starting and
asingle terminating node. The nodes can be numbered
such that an arc (ij)€A leads from a smaller to a
largernumbered node. Therefore, we take the strating
node to be node 1 and the terminating node to be
nodeN.

A fundamental problem in stochastic networks is
the distribution function (df) of the duration of the
longest path in the network. Usually, the duration of
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the longest path designates the completion time of the
project represented by the stochastic network.
Calculating the exact df is generally very difficult;
thedifficulty emanates from the dependency between
the paths in the network.

Many studies have heen carried out to calculate
completion time dfin stochastic networks. In general,
these studies fall into se veral catagories: (i) analytical
procedures to approximate or bound mean completion
time of the project [ 1-6); (ii) analytical procedures to
calculate or approximate network CDF. [7. 12]; (iii)
Monte Carlo sampling procedures to approximate
network CDF [13-16]; and (iv) analytical procedure
to bound network CDF [17,18]. A comprehensive
review of most of the above mentioned refcrences is
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presented in chapter 4 of Elmaghraby [19]. The
following is a shortexplanation on the approximation
and simulation approaches.

Dodin [4] presents an approximating procedure
for large networks. O'Conner [12] develops a
procedure to evaluate network cumulative distribution
function when the arcs have discrete df’s. He develops
an analytical expression for network CDF by
conditioning on most of the common arcs (arcs which
are constituents of more than one path), then uses
complete enumeration to evaluate the simplified
expression.

Van Slyke [16] develops the idea of crude
simulation as a tool for finding the CDF of a PERT
network’s completion time. He also suggests two
methods of potentially reducing simulation
computational times. Antithetic variables,
stratification, control variates and regression have
been suggested by Burt and Garman [13] as ways of
reducing the computational effort required in curde
simulation. Burt and Garman [14] also developed a
new simulation procedure called conditional Monte
Carlo simulation in which certain activity times are
fixed at their original sampled value thus reducing
computational effort and variance.

Burt and Garman [ 13] conditioned on the set of all
common arcs in the network, where they developed
a procedure to identify the common arcs in the
network. They concluded in { 14] that the accuracy of
the approximate df obtained by Conditional Monte
Carlo Sampling (CMCS) increases as the number of
arcs to condition on is reduced; this conclusion is
based on the contention that fewer arcs to sample and
more arcs in the analytical conditional probability
expression leads to greater accuracy. They also
recommend the use of CMCS if the ratio of the
number of arcs not to condition on reaches 20% or
higher.

The above conclusions led to the development of
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other conditional procedures. Garman [20] extended
the concept of series-parallel reduction of stochastic
PERT networks, developed by Marin [9], to CMCS.
He first reduces the networks as far as possible by
series-parallel reductions; if the network is notreduced
to a single arc, then he showed that such a network
possesses anode withonly one arc incident into it and
more than one arc emanating from it and vice-versa.
By the repeated conditioning on one of the single arcs
incidentinto (oremanating from) the node, the network
canbe reduced to a single activity whose distribution
function can be evaluated by Monte Carlo sampling.
Sigal, Pritsker, and Solberg [15] introduced and
applied the concept of maximum directed cutset in
the network to reduce the number of arcs to condition
on. Intheir CMCS proceduire they replace the common
arcs (used by Burt and Garman) by the arcs that are
not elements of the maximum directed cutset.

Dodin [21] discusses the issue of the minimum
number of arcs to condition onin CMCS of stochastic
network. In his paper first he shows that none of the
existing CMCS procedures condition on the minimum
number of arcs. Second, he introduces the concept of
the path index of the arc and develops a procedure to
calculate the path indices of arcs without identifying
the paths. Third, he uses the path indices with the
well-known series-parallel reduction to develop the
new conditional procedure which conditions on no
more than N-3 arcs.

In section 1 of this paper, a new technique is
introduced to reduce variance in CMCS. A new
procedure based on this technique is developed in
section 2. Section 3 introduces a combined approach
for the networks with activity discrete distribution
function. This approach uses crude simulation with
an approximation procedure, which has he benefits
of both approximation and simulation approaches.
Section 4 is a generalization of the subject in section

3, which uses conditional simulation instead of crude
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simulation. This section includes the application of
the new approach. Finally, section 5 is devoted to
summary and concluding remarks.

1. ANEW TECHNIQUE FOR VARIANCE
REDUCTION IN CMCS

Burt and Garman [14] presented the algorithms of
conditional simulationin which one activity is selected
in each run of the simulation. But it is probable that
more thanone qualified activity existto condition on.
This issue which occurs especially when the network
of interest has complex structure and large size, has
not been discussed yet.

The new technique considers the activity which
hasless effect onthe variations of network completion
time. In other words, the activity has low correlation
coefficient with project completion time. When such
an activity is selected and takes a constant value, the
error in the estimation of distribution function of the
project completion time would be decreased. One
advantage of this technique in comparison with the
technique of common arcs or path index is
simultaneous consideration of variance of the activity
distribution and the position of the activity in the
network. Other techniques behave only on the basis
of network configuration and activity position. But
the weakness of the proposed technique is that it
needs correlation coefficient to be computed before
the simulation process can be started.

As an example, consider the Wheatstone Bridge
type of network Figure 1. The activities are
Exponential with parameters 0.20, 0.31, 0.27, 0.50
and 0.50 respectively.

Initial simulationismade for 1000 runs to compute
the correlation coefficient for activities 1 and S
which are shown in Table 1.

Network Figure 1 can be solved in two ways by
CMCS: one way is conditioning on activity 1 and the
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Figure 1. A typical network for study.

other way is conditioning on activity 5. The results of
simulating the network for two cases are given in
Table 2.

It is concluded that conditioning on activity 5§
gives better results than those of conditioning on
activity 1. Activity 5 haslower correlation coefficient,
and hence the proposed technique is efficient.

2. ANEW PROCEDURE FOR CMCS

In the previous section correlation coefficient was
used as a technique to find out which activity is
selected for conditioning in CMCS when more than
one qualified activity exist. Now, a procedure is
presented based on this technique. Namely, the
correlation coefficient of each activity of the network
is provided and instead of providing critical index of
each activity, as Dodin [6] presented they are ordered
in ascending manner. In previous section it was
shown that when conditioning on one activity causes
the network to be solved easier, conditioning on the

TABLE 1. Correlation Coefficient for Network Figure 1.

correlation

Exponential parameter
coefficient
Activity 1 0.20 0.76 [
Activity § 0.50 033 l
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TABLE 2. Crude Simulation and CMCS for Network Figure 1.

i | priTsn pr (T<t|Activity 1) | pr (T<t|Activity §) |
crwdhe simm|wiion simulation simulation
1@ 0 rums 10,000 runs 10,000 runs |
! {
|1 0.00027 0.000237449 0.0002427918 '
| 5 0.11055 0.0884261 0.09566084
10 | 0.48527 | 0.4461597 0.466216 ‘
\ 15 | 0.76595 0.6495118 0.7117353
ih &6 l 0.90409 | 0.8835261 0.89n04171
! 25 0.96230 0.9200181 0.9562413
| = o

activity with least correlation coefficient is preferable.
But using this procedure does not guarantec to solve
the network witit the number of activities fewer than
those required by the path index procedure of Dodin
[6{. If it can be shown that both procedures will solve
the network with the same number of activities to
condition on them, the correlation coefficient
procedure will prove to be advantageous. For this
purposc, some networks with different configuratiors
and sizes are considered in Figure 2. The distribution
of activities 1s Exponcnuial with the parameter
between 0.1 to (.5. Series parallel operation is
accomplished onthe networks. once using the activivy
path index and once e hst of activity correlation
coefficient to idemniity the nurber of activities to
condition on them. In all cases, nua only the number
ot activitics was the same for iwo procedures, but
also, frequently the aciivities ticmselves were the
same. This result especially is apparent in more
complex networks. It appears that the path index
procedure is preferable becausce the computation of
path index is casicr than the computation of

correlation coefficient.

3. COMBINED APPROACH

When the size of a network is very large, even the
activity distributions are approximated by discrete
three-point distributions, series-parallel operations

require the allocation of extensive memory of
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computer. This necessitates the utilization of
approximation procedures which does not need to
perform the operations. But the approximation
procedurcs operate on the basis of unrcasonable
assumptions, like independency of paths, to reach the
solution quickly. Hence, the high error will result
when the network size is large and consequently
many dependent paths exist.

A new approach introduced here, combines the
simulation with an approximation procedure. This
procedure acts in this way that random values arc
given for a reasonable number of activities in each
aun of the simulaton, and the neiwork is solved with
an approximation procedure. So. without any need o
pertorm the series-parallel operation, the dependency
between a number of paths is demolished;
consequently the approximation procedure presents
more accurate solution.

The efficiency of proposed approach can be
enhanced with the cautionin the selection of activities
to condition on them. However, the selection of
aciivities depends on the behaviour of the operation
of the spproximation procedure when it is utilized in

combination with the simulation.

4. GENERALIZATION AND APPLICATION
OF COMBINED APPROACH

By conditioning, it is possible to use the actuai

distributions of some activities to reduce the errordue
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Dodin = {1-2;

New procedure = {3 -4}

Thihin = § 124
o

: M'&:— [t T T T

Desdin = | ] - 2.4

Sow preraleer = | ] -2 8

Dodin={1-2,5-6,3-4}
New procedure ={5-6.1-2,3-4}

Dodin={1-2,5-61}

New procedure = {5-6,1-2}

Figure 2. Different network configurations to identify the number of activities for conditioning (Dodin’s and new procedure).
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to the approximation. But in the network with activity
discrete distribution, there is not a closed formula
like the case where the activities have continuous
distributions. Here there are discrete points, which is
a restriction. For example, suppose a netwrok has
nine activitis and each activity has 3-point discrete
distribution. If conditioning on six activities are
made and the actual distributions of the other three
activities are used, there would be 27=3 x 3 x 3
combinations that N runs of simulation are needed
for cach combination. Now, if a network is complex
and has many activities, at least 50 actual activity
distributions may be needed which require (3)*
combinations.

The combined approach presented in the previous
section can also be used here to utilize an
approximation procedure instead of N runs of
simulation for each resultant combination.

To illustrate the high efficiency of the proposed
procedure, different tests are designed. During the
performed tests, a comparison is also made between
the efficiency of activity correlation coefficient,
activity path index, and activity critical index, in
addition to the test of efficiency of conditional
simulation in networks with activity discrete

distribution. This comparison is vital because here a

further problem is how the activities are identified for
conditioning.

Consider Network Figure 3. Pathindex procedure
identifies the activities 1-2 and 5-6 at the top of the list
of activities. Correlation coefficient procedure
identifies the activities 2-3 and 3-5 with the highest
correlation coefficient. Based on these four activities,
different combinations as pair of activities are made
to consider their actual distributions to be used in the
simulation process of the network presented in
Figure 3.

Network Figure 3 is analytically tractable. The
analytical solution is used as a basis of comparison.
10,000 runs of simulation is considered for each
combination of activities. Simulation results and the
error compared to the real solution are given in
Table 3.

It is observed that the best case is for the
combination of two activites 3-5 and 5-6. Repeating
the same number of simulation but with only one
activity, the results givenin Table 4 are achieved. The
results indicate even when the distribution of one
activity is considered, better solutions than those of
other approximation procedures are obtained.

It is necessary to mention that the best existing

approximation procedure of Dodin solves the network

Figure 3. A network example for combined approach with activity discrete distribution.
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TABLE 3. Prabability Value for Network Figure 3.

The combination of activities to consider their real values |
t real optimum value 1-2,2-3 3-5,5-6 I 1-2,5-6 2-3,3-5
= = e
8 0.001157 0.00118 0.001083 0.00115 96x10* |
9 0.00192902 | 0.00158 0.001783 0.00215 1.72 x 10
10 0.005401_235 0.00556 . 0.0051 0.005716 (;.00554 I
11 0.005015432 0.00507 0.00473 0.0053 000_495_
12 . 0.040509259 0.04066 0.040283 0.04035 | 0.04047 i
i 13 0.038580247 - 0.03886 0.03856 0.037016 0.03773 .I
i 14 0.0625 0.06257 0.06273 0.0623 0.06226 |
:_ 15 T 0.040123457 [ 0.04062 0.0413 0.040083 0.04.013
1_16 0.092592593 0.09131 0.092816 0.09206 0.09251
‘_17__ 0.0401234-57_ 0.0397 0.04076 | _0.039]83 0.4053_
'_18 0.206018519 0.20834 0.20513 . 0.2086 1 0.2067
19 0.040123457 0.0397 0.04076 ] 0.039183 0.0393
_ﬂ 1| 0.018.?]8?]9 0.01883 ) 0.018483 0.017783 0.0ﬂ ]i
21 0.074074074 0.07514 0.073716 0.074883 | 0.07514 :
22 0.111111111 I 0.10961 0.11143 0.112083 1 0.11087 ]
23 0.009259259 0.00914 0.00953 0.00915 0.00925 .
_24 0.0555556 0.5572 0.055816_ 0.05635 0.05648 |
25 0.064814815 0.06378 0.06405 0.063183 0.06393
-
26 0.018518519 0.0187 0.0189 0.0187 0.01845 ;
| 27__ 0.018518519 0.0185 0.01823 0.01896 0.01842
T 0.185185519 =1 0.0179 0.01865 0.01816 0.01867
| 29 0.185185519 0.01893 0.01187 0.01865 0.01854
31 0.185185519 i 0.01848 0.01843 0.17616 - 0.0183
percenaerror ! 1.15% 76% 1.43% 79%
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Figure 3 with 12.8% error. Alsc crude simulation of
the same network with 100,000 runs has the error
about 1%.

What is obvious is that cormrelation coefficient
procedure is advantageous when only one activity is
considered. Again formore evaluation of the proposed
procedure, Network Figure 4 has been simulated of
which the results are given in Table 5.

First the list of activities is obtained based on the
procedures of activity path index, activity critical
index, and activity correlation coefficient. Activities
1-2 and 4-5 constituted the activities of the first and
second ranks in the lists of activity path index and
activity cirtical index respectively. Activities 2-4 and
1-2 constituted the activities of the first and second
ranks in the list of activity correlation coefficient
respectively. The results of each case are then
compared with the real values and the absolute total
error is computed as the accuracy criterion.

As Table 5 indicates, it is observed that the
correlation coefficient procedure has produced better
results. It is necessary to mention that Dodin’s
approximation procedure has the error about 5.9%
which is far from the results produced by 1000 runs
of crude simulation based on activity 2-4. This
simulation has the error of 4.2%.

TABLE 4. Combined Approach Results of Network Figure 3
when the Distribution of only One Activity is Used.

Activity | 23 35 5-6 |
percent 0.80 1.28 134
of error

5. SUMMARY AND CONCLUDING REMARKS

Procedures developed by Garman and Dodin consider
one activity each time asimulation is made in CMCS.
But in the case where there are several qualified
activities to condition on, they have no
recommendation for activity identification to
condition. In this paper the correlation coefficient of
the activity is introduced as a new technique and its
efficiency is shown.

In another study, again the correlation coefficient
concept is developed as an independent procedure to
identify the activities to condition on them in CMCS.
Comparisons are made between this procedure and
the procedure of path index of the arc developed by
Dodin. Finally it is concluded that correlation
coefficient procedure is more efficient, but the path
index procedure is simpler to use.

To enhance the accuracy of approximation

Figure 4. Another network example to apply combined approach.
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TABLE S. The Results of Combined Approach for Network
Figure 4.

The activity (or activities) to percent error of

consider the real distribution simulalin
(or distributions)
1-2 1.44
24 1.29
4-5 1.53
1-2,4-5 1.22

1-2,24 1.17

procedures in the networks having activity discrete
distribution, acombined approachisintroduced. This
new approach has the benefits of both simulation and
approximation procedures and is capable of producing
the solutions much more accurate than those of existing
approximationprocedures. This approach also permits
the use of conditional simulation for the networks
with activity discrete distribution.

In summary, the results of combined approach
prove it is more efficient in comparison with the best
existing approximation procedure developed by Dodin
and can be used for different types of networks even
when they are complex and have large size.
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