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Abstract A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by
additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order
section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center
frequency of the self-tuning filter. The bandwidth and the convergence factor of each section is adjusted
nonadaptively by a deterministic simple method which results in a stable and accurate regulation of the
adaptive parameters. The step-by-step detection of sinusoidal signals prevents the convergence difficulties
encountered in adaptive parallel IIR filters. Computer simulation results are presented to show the noise
canceling performance of the proposed algorithm. Some comparisons with a new adaptive lattice notch
filter for detection of multiple sinusoids are also provided.
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INTRODUCTION

The adaptive line enhancer (ALE) is a device or
algorithm that detects and traces a moving spectral
line in broadband noise while enhancing the signal-
to-noise ratio (SNR). Adaptive line enhancers have
applications in sonar, detection and others areas.
Both finite impulse response (FIR) and infinite
impulse response (IIR) line enhancers have been
proposed by researchers [1,2].

An adaptive IIR filter is preferable to adaptive
FIR filters inmodeling systems whose outputs contain
sinusoid or near sinusoid signals, since an IIR filter
can produce high resonant modes [3,4].
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The parallel form of an adaptive IIR filter is
derived from a partial fractionexpansion of the pole-
zero filter, resulting second-order sections [5]. The
gradient components of this form are easy to compute
because the sections are independent. Stability
monitoring of an adaptive IIR parallel filter is trivial
[6]. A disadvantage of the parallel form is that there
are different global minima which canbe obtained by
reordering the poles among the different sections.

In this paper, an adaptive line enhancer using an
IIR filter with a step-by-step algorithm is employed
for estimating periodic signals highly contaminated
by additive noise. In each step of the algorithm the
center frequency of a bandpass filter is the only
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parameter under adjustment and at the end of the
adaptation, if the variance of the error signal does not
satisfy the required level, a new section is added in
parallel to previous ones, in order to complete the
tuning function of the adaptive system. This method
have the advantages of parallel form but due to the
step-by-step behavior of the proposed algorithm the
convergence probelms of adaptive parallel IIR filters
mentioned in [5] are not observed.

This paperis organized as follows. In Section I the
simple second-order bandpass filter is introduced. In
section II the method of step-by-step estimation of
center frequencies is presented. Section III explains
the adaptive algorithm. Section IV demonstrates
some computer simulation results and finally section
V provides the conclusions.

1. SIMPLE BANDPASS FILTER

The transfer function of a single-parameter lowpass
filter in z-domain can be considered as follows [7]:

-l_ 1
H, ___._1,2"' 1
.'p(z) 2 Ty ()

where lyl<1 is the only coefficient used to change the
characteristics of the filter. To find the frequency-
domain performance of this filter we substitute z = ¢
which yields

|Hip (e”)f:ﬂ f__kl&s_@_,_ )
2 1+y2-2ycos®

where we have used T=1 as the sampling period of
the filter for simplicity. We note that the magnitude
of the frequency response (2) is unity and zero at
frequencies w =0 and @ = «, respectively. Figure 1
demonstrates different magnitude curves according
to (2) as 7y varies.

To calculate the bandwidth of the filter we find the
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Figure 1. Different magnitude curves of a lowpass filter.

3-dB frequency of the magnitude function (2) as
follows:

L=1"}' 2 + 2 cos0; (3)
vz 2 Vi ¥? - 2¥cos6.

where 6_denotes the cutoff frequency of the lowpass
filter. Solving (3) for 8 yields

8. = cos? 2 @
1+ 92

which shows the inverse relationship between y and
the bandwidth of the filter.
Using the transform [8]

zl - z? -Az'i + Q (5)
Bz2-Az'+ 1

alowpass digital filtercan be converted to a bandpass

one, where
A= 2k cosw. (6)
k+1
B=k-1 (7
k+1 )
and
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k = cot wz_é@_!. tan g_ ®)

Inthese equations @ is defined as the centerfrequency
of the bandpass filter, and , and , are the lowerand
the higher cutoff frequencies, respectively.
Substituting (5) into (1) yields

H {Z): (1'7’) (I'B) . 1 - Z'2
2 B+y)z2- A (y+1)z7! + (1+By)

)

which has the magnitude

|H(€f‘“)‘ - |{1"}’) (1-B) | ’2-2 CosQ (10)
2 D} + D}

where

D = (B+y)cos2w - A(Y+1) cos@ + (1+By)
D= (B+y)sin2w - A(y+1) sinw

We note that as @, and @, are determined, the
value of @, can be computed according to

cosw. = cos L1 ; @2 / cos L1 2 @2 an

There are now two parameters that can determine the
bandwidth of the filter, i.e., Y and A, defined as

A= w,- @ (12)
Since we are mostly interested in the minimum
number of adjustable parameters, we choose y= 0.8,
noting that any other values between 0 and 1 could be
taken as well. The value of A is also considered as a
nonadaptive parameter and the center frequency, @,,
is the unique adaptive coefficient of the filter. As we
are mostly concemed with detecting periodic signals,
itseems that a proper value for A should be very close
to zero. On the other hand a very small A can destroy
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the stability of the adaptive filter because the poles of
(9) move very close to the unit circle. Another
parameter that affects the determination of a fixed A
is the convergence factor i which controls the rate of
convergence and stability of the adaptive algorithm.
An strategy that can solve these problems is:
decreasing both A and gnonadaptively. At the startof
the adaptation arelatively larger value for A and gcan
accelerate the convergence without producing
unstability because the initial value of A is normally
chosen so that the stable poles are far from the unit
circle. Near the end of the adjustment, as the adaptive
coefficient @, is in the neighborhood of its correct
value, we can use a relatively smaller value for A and
i which leads to a more accurate adjustment of @_.
Substituting ¥ = 0.8 into (4), we have

an & = nan[(oos-l 3%;2]:1 (13)
2 1+08 9

and using (12) and (13) in (8) gives

=
I

(14)

O |
[N ] 1>

Now, substituting (6), (7) and (14) into (9) yields

HG) = bod-2?) (15)

l-aizl-azz2

where we have defined

b(}=——-—--—2-- (16)

i:“=20t:us @D a7
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tand -1
az=; (18)
tan-é+1
2

It should be mentioned again that there are only one
adjustable parameters, i.e., the center frequency @,
which has appeared in (17).

II. STEP-BY-STEP ALE

It should be noted that, only second-order ALE’s are
considered in our approach because the cascade of
second-order ALE’s provides better results for
detection of multiple sinusoids than that of the higher-
order ALE’s [9]. Figure 2, shows the adaptive IIR
self-tuning filter in the adaptation step I; I=1.2,... .
The signals x(n) and v(n) are the undistorted signal

Broadband
interference
v(n)
+ reocooos .
z(n)+%\ y(n) 1: () Ezl(n)
Periodic : :
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Figure 2. Adaptive IIR self-tuning filter in the adaptation
step L.
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and noise, respectively. The signal y(n) is the input to
all adaptive sections. The output signal of the section
i;i=12...,I;is denoted by X; (n). The transfer function
of the i’th section from (15) is

2
Hi(g)=—_bo0-z%) (19)
l-aiizt-as2z?
where b, and a, are defined in (16) and (18),
respectively, and a , is rewritten from (17) as follows:

@i = 2 COS Wei (20)

A
tan —+ 1
2

where the dependence of the section to the center
frequency @ is reflected in the coefficient a, of
H,(z). We have

bo(l - g2)

i (n) = Hi(g) y(n) = y (n) (21)
1-aig! -azq?

where g denotes the shift operator. The output signal
of the system, X (n), is the sum of the intermediate
outputs of the sections, i.e.,

I
X(m)= Y %in) (22)
i=1

The error signal ¢,(n) is defined as
e(n) =y(n)-% (n-1) 23

Here %(n-1)isused instead of ¥(n), otherwise the error
can be minimized, in fact it can be made zero, by
choosing X(n)= y(n), i.e., by choosing the signal
estimate identical to the measurement, which amounts
to making the transfer function X H(z) identical one.

In the first step, /= 1, and we have only a single
adjustable parameter, @,,. At the end of this step, @,
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is near the main frequency of the input signal x(n).
This frequency should be normally the lowest
frequency of x(n) which reduces the mean-squared-
error (MSE) to its minimum value in the first
adaptation step. In the second step, we have two
adjustable coefficients, i.e., ®_and @,,. Normally @,,
will be only fine tuned toward its exact value and @,
will be determined at the end of this adaptation step.
This procedure is continued until a satisfactory MSE
is obtained.

It may be interesting for the readerto referto [10],
which also uses a step-by-step algorithm for time-
delayestimation and parameter adjustment of adaptive
IIR delay filters.

ITII. ADAPTIVE ALGORITHM

The well-known Least-mean-squares (LMS)
algorithm [11] is used to adjust the parameters @_.
To compute the gradient components we define for
i=12,...J

ai(n)= (24)

der(n) _ 9% (n-1)
aa)ci &ﬂri

and because of the independence of parallel sections
we have

i) = - B @) 25)

i

Using (21), we can write

a [ . y(n)]

1-aiq?! - a2 q?

Oani

=bog? (@2 ——22 __y(m)  (26)
(1- a,; qd -az ffi)
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where :_‘“*'_ can be calculated from (20) which yields
Wei

-2sin Wei
tan A—+ 1
oi(n) = bo 72(q 1) 2 > ¥(n)
(l‘ﬂll'q‘l -dz 4'2 )
28N @i
@an ‘.5_+ 1
=—2 ___Ri(n-2) @7

- 1-aiigt-axq?
which can be written as
a.-(n)=aI;ai(n-1)+azﬂ;(n-2)+2¥j"—@£'ﬁ(n-2)
tan —+1
2

(28)
Since the bandwidth of the filter, i.e., A is small
throughout the adaptation process, the term tan (A/2)
in the denominator of (28) can be neglected and we
will have the simplified gradient as follows:

a(n)= a,o(n-1) + a,a(n-2) + 2sinw, X (n-2) (29)
Now the LMS algorithm is written as follows:

@ (n+1)= o (n) - 2n IJ.(.i"t) af(n)e(n) (30)

where p “.{ n) represents the step size or convergence
factor and will be chosen a function of 1, I and n.

IV. SIMULATION RESULTS

The periodic signal x(n) used in our computer

simulation is

x(n)= %[sin (0.057n) + sin(0.27tn) + sin(0.57n)]

3D
and the noise is additive zero-mean white gaussian
distributed with a variance of o= 0.375; thus the
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signal-to-noise ratio is unity. The convergence factor
i, (n) is calculated as follows:

() =3 (109 -8 po (32)

wherei=1,2,....1; 1, is a constant (u = 0.0006 is used
in the simulation); and n__ denotes the number of
iterations in each adaptation step. This ad hoc relation
is derived by trial and error and has the following
properties:

e The convergence factor decreases by » in order to
compensate for the decrease of A and maintain
stability.

e The new section has a larger convergence factor
because, as mentioned in section I, in each step the
center frequencies of previously adapted section do
not require a large convergence factor and just need
to be trimmed toward their exact values.

e The convergence factor of any parallel section
decreases in each step as well, and helps the fine
adjustment of previously adapted coefficients.

The value of the bandwidth A decreases linearly
from 0.1 at n = 0 to 0.02 at n= n__. The number of
iterations in each step is n__= 10000.

Figure 3 shows the convergence characteristics of
@_(n) in the first step. Figure 4 demonstrates the
adaptation of @_(n) and @_(n) in the second step.

Iteration, n

Figure 3. Convergence curved of @_(n) as afunction of the
iteration in the first step.
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Figure 4. Convergence curved of @ (n) and @_,(n) as a
function of the iteration in the second step.

Figure 5 shows the convergence of @_,(n), @_,(n) and
@_(n) in the third step. It is obvious from these
figures that the main adjustment of every center
frequency @_(n) is done during its first adaption step.
Figure 6 shows the MSE defined as

MSE =E [¢f (n)] (33)

as afunction of iteration, n. We note that the minimum
attainable MSE is the noise variance, i.e., 0.375.
Figure 7 illustrates the disturbed signal y(n) along
with the estimated signal X(n) in the last step and
shows the considerable noise cancellation properties
ofthe proposed method. Finally Figure 8 demonstrates
the frequency response of LH (z) at the end of the
third adaptation step. These magnitude curves show

2.0
: wes(n)
] ]
1.5 1
1.0 4
] Wc?(n)
0.5 3
] we(n)
[]‘0 . T T T T T T T T T I L T T T T T T T T
0 5000 10000
[teration, n

Figure 5. Convergence curved of @ (n), ®_(n) and @ ,(n)
as a function of the iteration in the third step.
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Step 3

Al

T

0 10000 20000 30000
Iteration, n

Figure 6. Mean-square-error curve vs. iteration during
three steps.

three resonances at frequencies @_,(n)=0.158, @_(n)=
0.635 and w_(n)=1.597, which are very close to the
ideal values 0.05m, 0.2x and 0.5w, respectively.

As a comparison with other new schemes of
adaptive detection of multiple sinusoids, we canrefer
to [12], in which a cascade of second-order adaptive
notch filters in three different approaches is proposed.

z(n) —— y(n)

—Ji| T T T T T T T T T
29900 29950

[teration. n

30000

Figure 7. Disturbed signal y(n) and estimated signal g(n) at
the end of the third step.
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The first approach employs the linear cascade structure
whereas the second and the third algorithms are based
on the triangular cascade structures [ 13]. Comparing
these algorithms with our proposed one, there are
some differences and important points which can be
summarized as follows:

@ The formulations of [12] are based on cascade
structures, whereas here, we use a parallel IIR
structure, which according to [6] has better
convergence properties and less gradient complexity.
® The adaptive algorithm used in [12] is the stochastic
Gauss-Newton algorithm [14], which employs the
gradient vector for updating the coefficients. This
algorithm requires matrix multiplications and the
improved behavior is not comparable with the
simplicity of the LMS algorithim which is used in this
paper.

e In every stage of the proposed algorithm, the
previously adjusted coefficients are trimmed toward
their best values whereas this property is not seen in
[12].

& To improve the performance of the LMS algorithm
in this particular structure, we have used a variable
step size which depends on iteration and step indices.
By running the stochastic Gauss-Newton algorithm
we have found that the convergence properties of the
variable step-size algorithm is comparable to the

. Wep = 0158 i =y
:‘ wep = 0.633 ¢ :

0.0

1 } I
0 m/4 7/2 3w/ x

Frequency. w

Figure 8. Frequency response of the parallel sections at the
end of the adaptation.
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stochastic Gauss-Newton algorithm, however, the
computations are much less than this algorithm.

@ [t should also be mentioned that the frequency bias
of [12] is better than our algorithm. This can be
further investigated in future.

V. CONCLUSIONS

In this paper we proposed a step-by-step algorithm
for detection of periodic signals that are highly
contaminated by additive noise. Each section of the
adaptive configuration employs a bandpass second-
order parallel IIR filter which has merely a single
adjustable coefficient. In each step of the proposed
algorithm the center frequency of the last section is
estimated and the center frequencies of the previous
sections are fine tuned toward their exact values. The
bandwidth and convergence factor are adjusted
nonadaptively based on a deterministic relation. The
step-by-step procedure prevents the convergence
problems of adaptive parallel IIR filters, The
convergence properties and complexity of the
proposed algorithm is superiorto the cascade structure
but needs further investigations regarding to the bias

in frequency detection.

NOMENCLATURE

ALE adaptive line enhancer

FIR finite impulse response
IIR infinite impulse response
LMS least-mean-square

MSE mean squared error

A b,k constants

a,a, feedback coefficient of the bandpass filter
b, forward coefficient of the bandpass filter
H(z) transfer function of the bandpass filter

H!p(z) transfer function of the lowpass filter
n discrete time and iteration index

v(n) noise source
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x(n) input signal

Ax(n) estimated signal

y(n) input signal of the adaptive filters
X variable of the z-transform

@, B gradient components

parameter of the lowpass filter
bandwidth of the bandpass filter
convergence factor

noise variance

frequency

B

cutoff frequencies of the bandpass filter

center frequency of the bandpass filter

2 B B B Q F B =

cutoff frequency of the lowpass filter
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