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Abstract  An efficient technique is presented for optimum design of structures with both natural
frequency and complex frequency response constraints. The main idea s to reGace the number of dynamic
analysis by introducing high quality approximation. Eigenvalues are approximated using the Rayleigh
quotient. Eigenvectors are also approximated for the evaluation of eigenvalues and frequency responses.
A two point approximation is used to approximate the functions under consideration. After the
substitution of the approximate functions into the orginal optimization problem, the dynamic analysis of
the structure is not necessary in the specified move limits. The sensitivities of the eigenvalues and
eigenvectors are calculated analytically. In the problems under consideration repeated eigenvalues occur.
Thus the sensitivities are evaluated for repeated eigenvalues.
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INTRODUCTION

Numerical optimization methods are usually iterative
and a greatnumber of function evaluations are required
to reach the optimum solution. Modem optimization
techniques employ some sort of approximation
concepts. The functions that are cemputationally
expensive to evaluate, are approximated in each
design iteration. The method of approximation is
vital as the number of iterations in the optimization
process is based on the quality of approximation. A
survey of approximation techniques was presented in
[1]. In particular, optimum design of structures with
approximate frequency constraints requires accurate
estimation of the frequencies. This is due to the fact
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that the eigenvalues and eigenvectors are highly
nonlinear functions in terms of the design variables.
A review of the methods with frequency constraints
was presented in [2].

A hybrid frequency constraint approximation was
presented in [3] using the Taylor serious expansion.
Reference [4] employed the approximation of
frequencies with respect to some intermediate design
variables. Because of the inherent nonlinear
characteristics of natural frequency constraints,
reference [5] employed a second order Taylor series
approximation of the eigenvalues in each design
cycle. However, the computational procedures were
similar to those of the first order approaches. To

enhance the quality of approximation, the Rayleigh
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quotient approximation was developed in [6] by
constructing first order approximations of the modal
strain and kinetic energies, independently. This
approach was extended in [7] to consider the effects
of changes in the eigenvectors during each cycle. A
linear approximation was used for both natural
frequency and dynamic responses [8,9]. Then alinear
programming method was employed to solve each of
the optimzation problems under consideration. This
method requires many cycles to converge and thus
the total number of dynamic analysis will increase.

In the present study, the Rayleigh quotient
approximation is used to approximate the
eigenvaluesusing atwo point functionapproximation.
Topredictthe values ofeigenvalues, the eigenvector,
stiffness and mass matrices are approximated
independently. In addition, by employing the
approximate relations of the eigenvalues and
eigenvectors, the approximate functions are
established forthe frequency responses. The gradients
of the functions including repeated eigenvalues are
evaluated analytically and implemented in the
computer program. Examples of two and three
dimensional structures with static and dynamic
constraints are solved and the results are compared
with those of published work.

APPROXIMATE PROBLEM
PRESENTATION

The optimization problem with frequency and
frequency response constraints is mathematically
formulated as: Find the vector of design variables

X=[X,.X,..., X_,], that will

minimize W(X) (weight) (1a)
subject to:

AF < A< AP (frequency constraints) (1b)
Agj <A< A}jJ (frequency response constraints) (1¢)
Xk<X,<XY  (Side constraints) (1d)
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The subscriptsi, j and k represent the response degree
of freedom, force input degree of freedom and design
variable. respectively. The superscripts U and L
indicate the upper and lower limits, respectively.

For a general structure, the eigenvalues and
associated eigenvectors are obtained by the following
equation:

Ko, =\, Mo, )

where K and M are the stiffness and mass matrices of
the structure, respectively. A, is the ith eigenvalue
obtained from this equation through ecigenvalue
analysis and ¢, is the associated eigenvector of the ith
eigenvilue.

Premultiplying Eqation2 by ¢"; and evaluating A,

we have
2, = SKO: 3)
C oM

Equation 3 is known as Rayleigh quotient.

In the present work, the vector ¢ and matrices K
and M are approximated interms of some intermediate
variables Z. The intermediate variables are chosen as
the vector of cross sectional properties (area and
moment of inertia) or their reciprocals. These
approximate relation are expressed in the following

form:

¢ (2) = §(Z,) +VH(Z,). 5Z (4a)
K (2)~K (Z,)) + VK (Z)).8Z (4b)
M(Z) =M (Z) + VM (Z)). 8Z (4c)

in which Z is the point about which the Taylor series
expansion is created and 6Z=Z-Z .

To enhance the quality of approximation, the
following intervening variables are used [10].
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y=z,i=1,nd &)

where r represents the nonlinearity index, which is
different at each iteration, but is the same for all
variables. The nonlinearity index is determined by
matching the function value of the current design
point with the previous design point. On the other
hand, r is numerically calculated such that the
difference of the exact and approximate functions at
the previous point Z_becomes zero. For example, for
the function ¢(Z), we have

0 @) - (62Z) + 13 230@) ¢ 3y g
T o1 1,1 aZi , B (6)

r can be any positive or negative real number (not

equalto zero). Then the two point approation for ¢ (Z)
can be expressed as

0@ =0z)+ 157702 5 3 (g
rS vt 9y ’

Although, the

function is based on alinear approximation, it

creation of the approximation

has the property of the higher terms, which
increases the quality of approximation. The same
approximate relations are established for k and M
matrices.

The other constraint used in this study is the
frequency response of the structure. The complex
frequency response function is expressed as

H, (Q) =R, (Q) +il, () (8)

where Hij(Q) is the complex frequency response
function, Rij(Q) is the real part and Iij(ﬂ) is the
imaginary part of the frequency response function.
The magnitude of this frequency response function
used in Egation 1c is

A, =VR}+I} ©)
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The expressions for R, (©2) and L, () are as follows:

N z
Rij (Q) = 2 ¢ir¢jr( A;-Q 2 \ (10)
r=1 (A:-0Y) +4 8 x,sf’

and

28 QA°
A-Q)’ 4482007

N
R, (@ =3, dubi an

where ¢, is the ith element of the rth eigenvector,¢, is
the jth element of the rth eigenvector, A _is the rth
eigenvalue, Q is the excitation frequency in radians
per second and { is the rth modal damping ratio.
The quantities A and ¢ in Eqations 10 and 11
should be obtained from the dynamic analysis. Again
the approximations of these relations are employed,
thus a nonlinear explicit relation is obtained for A,
With these approximation, an approximate
nonlin_ear explicit optimization problem is stablished
whichcanbe solved without carrying outthe dynamic
analysis of the structure. Since the constraints are
approximate, a move limit should be imposed to
control the quality of approximations. The solution
of this approximate problem is one design cycle and
the result is a starting point for the next iteration. The
process is repeated until the design problem converges.

SENSITIVITY ANALYSIS

The sensitivities of A, ¢, K and M are obtained
analytically. The structures under consideration
produce repeated eigenvalues, the sensitivities of
which are different from those of nonrepeated
eigenvalues. The details of evaluating all these
sensitivities can be found in the literamre and the
method used in the present work to evaluate the
eigenvalues and eigenvectors is briefly explained.

Non Repeated Eigenvalue
By differentiating Equation 2 with respect to Z,we
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have [11]

OK o+ kI% = Fhingg o x Mo+ A MD0i
0% 0z 0% zy FY

(12)
Premultiplying Equation 12 by ¢”, and using Equation
2 and the normalization property that

o7, Mo=1, (13)

the following expressionis obtained for the eigenvalue

sensitivity

s 9K . OM

= [Zae a4)
9Zy 0Zy  9Zy

The eigenvector sensitivity is assumed to have the
form [11]

9% _p +c o, (15)
0Zy

where P, and ¢, are two unknowns to be
determined. Substituting Equation 15 into Equation
12 yields

FP=-2Ti, (16)

where F=K - AM

Since the matrix F, is singular, P, can not be
found by solving the linear Eqations 16. However,
if therow and the column associated with the largest
component of the eigenvector ¢, are deleted from
the matrix F, and the same row deleted from the
vector of right hand side of Equation 16, then the
system of Equations 16 can be solved for P,.

Takingthe derivative of the orthogonality condition

13 with respect to z,results in the value of c,
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c,=-¢T MP,-1¢7 Mg, a7
2 5z,

The Repeated Eigenvalue

Theeigenvalue sensitivity forthe repeated eigenvalue
A, with multiplicity n is found from the following
eigenvalue equation [12]

G o

where giis composed of then eigenvectors associated
with the repeated eigenvalues A, through A, ; A.'is
the eigenvalue of Equation18 and is also proved to be
the eigenvalue sensitivity for A ;the matrix Irepresents
the unit matrix with dimensions of nxn; and a, is the
eigenvector associated with the eigenvalue A

If the eigenvalue obtained from Equation 18 is not a
repeated eigenvalue, then the unique eigenvector ¢,
associated with A, is determined from

0i=0,a (19)

The eigenvector sensitivity for the repeated eigenvalue
is found from Equation 15 if ¢, is replaced with 65 and
¢, is considered as a vector. P, can be evaluated from
Equation 16 provided n appropriate rows and columns
are omitted from both sides of Equation 16. The
elements of the vector ¢, can be found by taking the
derivative of Equation 13. The ith element of c, is

C=—¢" (m_d. 1+Mpi) (20)
2 0zx

The other elements in vector c, are evaluated as [12]

2 2 .
z Z i
6= o2 o -:k-—f’_z‘% @D
afdh  dig
oz, an
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Evaluationof VK and VM

The only unknown quantities in these relations are
the derivatives of K and M matrices. These derivatives
are normally calculated at the element level, i.e.,

oK _y 9k

22
0Zx "¢ 0Zk oo
QM:EE“_ (23)
0Zx "*0Zk

where k and m are element matrices and ne is the
number of finite elements. These elementderivatives
canbe either calculated analytically or by using first
order finite difference approximations.

NUMERICAL EXAMPLES

The method was implemented in acomputer program
and the results of three examples are presented here.
The DOT program [13] was used to solve each of the
approximate nonlinear design problems.

Ten - Bar Truss

The ten-bar truss shown in Figure 1 is chosen from
[8]. The areas of the members are taken as design
variables with initial values of 6.452 cm?® The

material properties are considered as Young's
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Figure 1. Ten-Bar Truss.

International Journal of Engineering

modulus E = 68.95 Gpa; Possions's ratio w=0.3 and
the mass density p = 0.0277 kg/cm’. The modal
damping ratio is assumed to be zero. The structure
is assumed to take two static loadings of 444822
Newtons each at nodes 2 and 4 in the negative y
direction. For dynamic loading, the structure is
subjected to a harmonic force with magnitude of
4.45 Newtons and an excitation frequency of 20 Hz
atnode 2 in the y direction. The constraints include
both static and dynamic displacements. The static
displacement constraints, considered as the
deflections of nodes 2 and 4 in the negative y
direction, s:ibjected to the previously defined static
loadings, must be less than 94.0 cm and 43.18 cm,
respectively. The frequency response constraints
require that the amplitudes of the responses atnodes
2 and 4 in the y direction be less than 2.28x10cm,
respectively. The lower and upper limits on the
design variables are considered as 0.645 cm? and
12.90cm?, respectively.

The static displacements are also approximated
ineach designcycle with reciprocal design variables,
using a similar relation as in Equation 7.

Totalnumber of designiterations for this problem
was 6 and for each design iteration only one static
and free vibration analysis was carried out. However,
this problem was solved in [8] and 19 iterations
completed the optimization process. Although, in
the present approach, a nonlinear problemis solved
in each design cycle, the computational cost of
optimizationis negligible as compared tothe cost of
analysis. The results are presented in Table 1 together
with those of [8].

Five-Storey Plane Frame

This frame is shown in Figure 2 and is chosen from
[8]. The design variables considered are the cross
sectional areas and bending moments of inertia of the
elements. The variables are linked as indicated in

Table 2. The initial areas and moments of inertia are
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TABLE 1: Results for Ten-Bar Truss.

Present method

Element no Ref. 8
(cm?) (cm?)
1 10425 10.501
2 0.669 0.645
3 9371 9.289
4 4.848 4.850
5 0.645 0.645
6 0.645 0.645
7 5.375 5.290
8 7.048 6.459
9 6.859 7.012
10 0.707 0.645 |
No. of cycles 19 6
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Figure 2. Five- Storey Plane Frame.

taken as 6.452 cm? and 41623 cm®, respectively for
all the horizontal members. For vertical members,
the initial areas and moments of inertia are 12.90 cm?
and 83246 cm*, respectively. The material proerties
are Young's modulus E = 68.95Gpa; Possions's ratio
#=0.3 and the mass density p = 0.0107 kg/cm?. The
rotational mass moment of inertia at each free node is
0.565 N-cm-s%. The modal damping ratio is assumed
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TABLE 2. Design Variable Linking of Frame.

Design variable no | Variable Element no

1 A 1.2

2 L 6,7

3 A 11,12

4 L 16,17

5 A 21,22

6 L 1,2

7 A 6,7

8 | 1 11,12

9 A 16,17 [

10 L 21,22 [

11 A 3,4,5,8,9,10,13,14,15,18
19,20, 23,24,25 |

12 I [ 3,4,5,8,9,10,13,14,15,18,

| 19,20,23,24,25
to be zero.

The structure is subjected to two static loaings of
2224 1Newtonseach atnodes 1 and 4 inthe x direction.
The dynamic loading is a harmonic input force with
a magnitude of 4.45 Newtons and an excitation
frequency of 20 Hz acting atnode 1 in the x direction.
the static displacement constraints, specified to be
the static deflections at nodes 1 and 4 in the x
direction, are less than 3.175 cm and 2.54 cm,
respectively. The frequency response constraintneeds
the response atnode 1 in the x directionto be less than
1.27x10% cm. The side constraints for design variables
1,3, 5,7 and 9 range from 0.645 cm? to 12.904 cm?.
For design variables 2, 4, 6, 8 and 10, the lower and
upper limits are 4162 cm* and 83246 cm*respectively.
The bounds for design variable 11 are 1.29 cm? and
25.81 cm?. The allowable change for design variable
12 is between 8325 cm* and 166492 cm*.

The static displacement are also approximated in
this problem. A total of 8 design cycles is needed to
obtain the optimum solution. However, the optimum
solution of this problem was obtained in [8] with 22
iterations. The results are presented in Table 3.

72-Bar Space Truss
Figure 3 shows the configuration of this structure
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TABLE 3: Results for Five-story Frame,

Design variable no. Ref. 8 Present method

(cm?) (cm?) (cm?)
1 1424 1391
2 83246 83246
3 0.645 0.645
4 83246 | 83246
5 0.645 0.645
6 83246 83246
7 0.812 0.802
8 83246 83246
9 0.645 0.645
10 83246 83246
11 11.917 12.040
12 166492 166492

No. of cycles 22 8

which is chosen from [9]. Two cases are considered
by choosing two different dimensions in the y
direction. The length of 120 in. along the y direction
forms a geometrically symmetric structure which
produces repeated eigenvalues; the other dimension
of 200 in. constructs an unsymmetric structure.

Case 1- Non Repeated Eigenvalue

This case is the unsymmetric 72-bar space truss with
48 translational degrees of freedom. No repeated
eigenvalues are found in the structure. The cross
sectional areas of the members are the design variables
with the initial value of 1.0in ? for all members. The
design variables are linked to have 16 variables as
indicated in Table 4. The lower and upper limits on
the design variables are 0.1 and 2.0 in respectively.
The mass density of the material is assumed to be
0.0002588 1b-s¥in* and the mass of 0.001 1b-s/in is
lumped at each free node. (The U.S. units are used in
this example to compare the results).

Both natural frequency and frequency response
constraints are considered. Two natural frequency
constraints are specified. It is assumed that the 3rd
natural frequency would be less than 27 Hz and the
4th natural frequency greater than SO Hz. A unit
harmonic force with excitation frequency of 30 Hz is

International Journal of Engineering
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Figure 3. 72- Bar Space Truss

TABLE 4. Design Variable Linking of 72-Bar Truss.

Design variable no Element no

1 14
2 13-16
3 5-12
4 17,18
5 19-22
6 31-34
7 23-30
8 35,36
9 3740
10 49-52
1 4148
12 53,54

| 13 55-58
14 67-70

15 | 59-66
16 71,72

applied at node 1 in the y direction for the forced

response input. Four frequency response constraints
are specified. Only magnitudes are considred. The
frequency response amplitude at nodes 1,2, 3 and
4 in they direction must be less than 0.9 x 10,
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TABLE 5. Results for 72-Bar Truss.

: Case - 1 (in?)

Case - 2 (in?)

D.V.no. | Ref.9 | Present | Ref.9 | Present

1 0. 422 | 0.390 0.229 0.312
2 0.122 0. 100 0. 902 1.012
3 0. 100 0. 100 | 0.615 0. 589
4 0.100 0. 100 1.212 1. 215
5 0. 186 2.020 0. 165 0. 166
6 1. 689 1.710 0. 158 0. 160
7 0. 100 0. 100 0. 853 0. 841
8 0. 663 0.719 0.175 0. 180
9 0.323 0.311 0.141 0. 138
10 0. 100 0. 100 0.136 0. 140
11 0. 100 0. 100 0. 683 0.711
12 0. 100 0. 100 0. 149 0.138
13 0.212 0.221 0. 138 0. 137
14 0.100 0. 100 0. 136 0. 137
15 0. 100 0. 100 0.593 0. 602
16 0. 100 0.100 | 0.148 0.144
[
No. of 18 7 13 6
cycle .

0.8 x 10%, 0.8 x 10*and 0.9 x 10*in., respectively.

The number of required dynamic analysis was 7
while 18 iterations was required by the method
presented in [9]. The final results are presented in
Table 5. The optimum weight was found to be 255.5
1b.

Repeated Eigenvalue

This case has a configuration similar to the first case
except that the dimension in the y direction is 120 in.
Since the structure is completely symmetric in the x
and y directions, repeated eigenvalues occur. The
loading is the same as that of case 1. The natural
frequency constraints require that the 2nd natural
frequency which is repeated be less than 27 Hz and
the 3rd natural frequency be greater than 32 Hz. Four
frequency response constraints are chosen atnodes 1,
2, 3 and 4 with the degree of freedom in the y
direction. The amplitude limits are set as 0.75x10%,
0.9x10, 0.9x10* and 0.75x10* in., respectively. A

total of 6 iterations needed to complete the
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optimization of this case as compared to the 13
iterations required by Reference 9. The results are
given in Table 5. The optimum weight is 437 Ib.

CONCLUSIONS

The main aim of the present approach was to reduce
the number of required dynamic analyses in the
optimization process. The quantities that were
obtained through the analysis of the structure, were
approximated in such a way that the approximate
functions would be close to the actual functions. The
results clearly showed that the number of dynamic
analysis required to complete the optimization was
reduced substantially. The reduction in the number of
cycles was basically due to the creation of the high
quality approximations for the dynamic responses.
Although the approximate problems were nonlinear
as compared to the linear problems created by
previous researches the overall cost of optimization
was  greatly reduced. For practical design
problems, when the cost of analysis is a great portion
of the overall cost, the computational work will be
reduced.
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