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Abstract Bysummarizing Khachiyan’s algorithm and Karmarkar’s algorithm for linear program (LP)
a unified methodology for the design of polynomial-time algorithms for LP is presented in this paper. A
key concept is the so-called extended binary search (EBS) algorithm introduced by the author. It is used
as a unified model to analyze the complexities of the existing modern LP algorithms and possibly, help

designing new algorithms with polynomial-time iterations for problems in other areas.
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INTRODUCTION

The presentation of Khachiyan’s algorithm[1,2] and
Karmarkar’s algorithm[3] not only solves the long-
standing open problem in the history of mathematical
programming, i.c., the existence of polynomial-time
algorithm of LP, but also establishes a new method-
ology fordesign of combinatorial optimization prob-
lem algorithms. Ourinterestisto investigate method-
ologies implied in these excellent pieces of research
and discuss the possibilty to apply them to general
class of optimization problems even with continuous
variables.

A general optimization problem can be expressed
as a pair (F.C) where 17 is the set of feasible solution,
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tion with F as it’s domain. For a
combinatorial problem, F is a discrete sct, and C(F7)
is a discrete setin R L. The discreteness of a feasible
set and a cost function value set is a4 combinatorial

character of the problem. For a continuous optimiza-
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tion problem, such as a nonliner programming prob-
lem, the feasible setis generally a subset of R” and the
cost function C maps F to a subset in R'. Although
traditional algorithms of nonlinear programming are
iteration-type algorithm and generate a sequecnc
(discrete!) of points which aproaches to a desired
optimal solution, we can not make the cost function
values of these points being embeded into a prepointed

theory of nonlinear programming it is difficult to
introduce combinatorial characters into the problem’s
feasible set or value set of the cost function.

LP 1s a class between combinatorial and continu-
ous optimization problems. Traditional format to LP
is to optimize alinear function on a polyhedron. If we
resirict ourseives to search the optimal soiuiion in the
vertex setof the pol yhedmn, then we combinatorialize
the feasible set of an LP. But the traditional LP
algorithm-Simplex Method-dose not effectively use

this combinatorial character to solve any instance of
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LP in ploynomial time except some classes of
problems which satisfy Hirsch conjecture (see [4], p
160). Hirsch defines the diameter of a polyhedron as
the maximum, over all pairs of vertices, of the
minimum length of an  edge-path joining these
vertices and claims that the diameter of a bounded
polyhedron with dimension n and m facets does not
exceed (m-n). Because the lower bounds on maxi-
mum diameters provide bounds on the number of
iterations required by the best simplex-type method
applicd to the worst problem of a given size, some
classes of LP problems[5] which satisfy Hirsch’s
conjectures certainly make Simplex-method a poly-
nomial-time method. The reason that the simplex-
type method doces not effectively solve all instances
of LP is that the algorithms in nonlinear program-
ming simplex method do not reduce the cost function
value according to precombinatorialized ratios.

Todevlop LP’s polynomial algorithm Khachiyan
and Karmarkar discarded the traditional LP format
which, as metioned above, only posesses nomial
combinatonial characters, and adopt respectively the
linear strict inequalities (LSI) and a special linear
incqualities (SLI) as follows:

LSI: Given an mxn integer matrix A and an m-
vector H, there is an n-vector x such that Ax<b.

SLI: Given an n-integer vector ¢ and an mXxn
intcger matrix A satisfying Ae= 0, where e is an n-
vector with every component equal to one, there is an

n-vector x such that

Ax=0,¢x=1, x=20. ¢™x<0

To outward seeming problems LSI and SLI have
no apparent combinatorial characters. They seem-
ingly are classes of continuous problems. Therefore,
it is interesting o investigate how Khachiyan or
Karmarkar introduce combinatorial characters into
these two types of problems. Such a research may

help us to apply the principles of combinatories to the
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research of continuous optimization problems.
1. EXTENDED BINARY SEARCH

Binary search is a basic algorithm in combinatorics
[6]. Supose we wish to determine an unknown integer
x between 1 and B (B>1) by asking questions of the
form “Is x>n?" for some 71 of our choice. We can do
this by first asking whether x is in the upper or lower
half of the interval [ 1, B ], then by asking whether x
is in the upper or lower half of the remaining smaller
interval, and so on, until the interval in which x lies
contains exactly one integer. This will happen after
[ log Blsuch questions (By[ x ] we denote the smallest
integer y such that y > x). Because the size of the
problem is| log B, then binary searchis a linear-time
complexity algorithm.

We now extend this basic combinatorial method

as follows: Let T be an integer such that T > 2.

Algorithm EBS
begin
givenT, X:=1,Y.=8B
step if Y -X< 1 then stop
else =X+ -X)Torn=X+((T-1)
Y-X)/T
if x > 17 then X: = n go to step
else Y:=n go to step
end

For Algorithm EBS we have the following
theorem:

Theorem 1. Suppose integer T'> 2, the Algorithm
EBS determines an unknown integer x between 1 and
B afterK=[logr B unestions of the form “/s x>n?".

Proof. By B'T ;ve denote the length of the current
remaining interval. Note that either =X +(Y - X)/T
orn=X+(1-1) (Y -X)/Tthe length of next remaining
interval does not exceed (T - 1)B'/T. Thus, by induc-
tion, the remaining length of the interval after K

Journal of Engineering, Islamic Republic of Iran



questions is (L=L )KB. It is equivalent to applying a
common binaryTsearch (BS)tointerval[ 1, ok (Iil- )k B]
with the same iterations. In other words, applying
EBSto[1,B]and applying BS to [ 1,2q=1 )k B],one
has the same remaining length after & iterations. This
suggests that the number of iterations as one uses
EBS 1o [1, B] can be estimated by the number of
iterations of BS to [ 1,2k (% )k B]. Therefore,

K =[log 2"(% Y Bl =K + [og (1%_1)’(31

[og d-L*Bl=0
T

that 1s,
0<d=L¥p<
T

then we take K = [log,,.. , B<1] to prove the theorem.

Corollary 1. Theorem 1 is valid for any 7>2.

Corollary 2. Theorem 1 is valid forany T such that
2> T> 1. Butin this case K = rlogr Bl

Proof . In this case one iteration of EBS reduces
an interval of iength B’ to length BY/T, then after K
iterations the remaining length does not exceed B/T*.
It is equivalent to applying BS to [ 1, (;)kB ]. By the
similar calculation of Theorem 1, we have K =

[log B1.
Remark 1. When T has the value 2 >7>1. T'is the

ratio of lengths of two successive remaining
intervals.

Khachiyan and Karmarkaradopted respectively
LSI and SLI to solve LP problems, but both LSI
and SLI seem to be continuous-type problems. How
they use potential combinatorial characters of these
problems and develop polynomial time algorithms?
We will gain an insight into this question from the
view of above described algorithm-EBS.

A research mechanism that we suggest to answer
the question consists of the following steps:

(1) For a given optimization problem, choose one

zlement related to /7 or ¢ in the pair (/7,¢) as the object
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to be combinatorialized. We call this element as a
potential combinatorial character quantity (ccq in
short). For example, as we will see, in Khachiyan’s
method the volume of feasible set in the ellipsoid is
taken as the ccq; in Karmarkar’s method the left side
value of inequality ¢"x<0 is taken as the ccq. Note
that it is necessary that there is a one-to-onc
correspondence between an approximate solution
and a value of the ccq. Then finding the optimal
solution is equivalent to finding the correspondent
value of the ccq.

(i1) Design an iterative-type algorithm for the
given problem such that the corresponding value of
the ccq for the generated sequence of approximate
solutions be covered by a pre-defined domain with
upper and lower bounds. Without loss of the general-
ity we suppose that the domain is an interval like
[1, B].

(iii) Design the algorithm with one more require-
ment that each iteration makes the ccq change in the
interval [ 1, B] according to the nature of an EBS with
some T of our choice, so that in some sense finding
the optimal solution for the primal problem is
equivalent to finding a determined value of the ccq
in [1, B] by using EBS. Therefore, by theorem 1 or
corollary 2, the algorithm will terminate after at most
rbg{_lB—l or rlogT B iterations.

The following theorem 2 states that if we can

restrict the ccq in an interval [1, B] with B= c.d 7%
where ¢>0, d>1 and p(L) is a polynomial function of
the problem size L, then EBS with a proper parameter
T will terminate in a finite number of iterations that
are bounded by a polynomial of L.

Theorem 2. Let p(x) and g(x) be polynomials of x
with positive coefficients in the first term. a, b, ¢, d,
are constants larger than one. If the parameters B and
Tintheorem 1 are: B= a.b?®, T=c.d"*™ and 2>T>1,
then the iteration numberof EBS applied to [ 1, B] has
a polynomial of L as the upper bound.
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Proof. By corollary 2

K=[log, Bl= |’q(L) logaa+p (L)g(L) lOgdb'I
: gLylogac+1

It is reasonable to assume that g(L) log, ¢20 for

sulficiently large L, then we have
K < [p(L). ¢(L). log abl. Q.ED.

2. COMPLEXITY ANALYSIS OF
KHACHIYAN'S AND KARMARKAR'S
METHOD BY USING THE ABOVE
METIONED RESEARCH MACHANISM

Khachiyan discussed problem LSI, he implicitly de-
fined the volume of the set { xIAx<b} as the ccq. With
the definition of problem size L= O(m.n + [ logiWl])
where W=T1A.[15, (Here we use symbol [1x to write
the product of the nonzero component of x(vector or
matrix)), Khachiyan gave the upper and lowerbound
ol the ceq.

Lemima 1 [2]. If an LSI system of size L has a
solution, then the set of solutions within the sphere
ILcli<n2t has volume V at least 2-*+2L,

In other words, the set of solutions within the
sphere llxll<a.2t has volume V in interval [270+2F
(2n. 25y 1 we Tet 2024y be the ceq of the problem,

then it has domian in | 1, 2032 nlog2n) = |

From the initial ball lxll<n.2%, the cllipsoid
algorithm  constructs  a sequence of volume-
decreasing ellipsoids which contain the solution set
until it finds an ellipsoid, of which the center is a
solution of the problem. When the algorithm iterates
form one ellipsoid to the next ellipsoid, it is equiva-
lent to applying EBS to the ccq in the interval 1. By
theorem 1 and 2 we nieed only to show that the ratio
of two successive cllipsiods satisfies the parameter
requirment in theorem 2. If so, the algorithm will
lerminate after polynomial (in L) iterations. Other-

wise 1t will contradict to lemma 1.
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By remark | and theorem 2 if T= cd V", then we
will have the expected result. In fact, Khachiyan’s
ellipsoids have the described property that can be
seen from the following rewritten lemma of {2].

Lemma 2 [2]. Denote the volumes of two succes-
sive ellipsoids E and £, by Vo](EJ) and Vol (£, )
then

V()l(_Ej.)/ Vol(E , ) > Di2(n+ 1y = Qilal) = T

there g(L)=2(n+1)1salow-order polynomial of L and
apparently 2>T>1.

This lemma explains that if the volume of current
ellipsoid is B’, then calculating the volume of next
ellipsoid is equivalent to finding the remaining length
of [1, B’] by using an EBS with n= B/T and T= 2%
where g(L)= 2(n+1).

Now we turn to discuss Karmarkar’s method.
There are many variants of Karmarkar’s method as
summarized in [7]. We limit in this paper to the basic
form of Karmarkar’s method (BKM) as in [8]. The

algorithm is as follows:

Algorithm BKM
begin

given x° = 711—6’ r=¥n/(n-1), Ax°=0, k=0
step  if ¢ Tx ¥<0, then return x*

else itk >N = [(—2—)n 2In(nR)] then
1-In2
answer “‘no”

else set

D:= diag(x £, ..x %)

y = (I-DAT(AD *A") "V AD-n""e. ¢NHDC
z K= e- Lpy &gy o)

x ML= Dz M Dz Y

k = k+1 go to step

end

Firstly Karmarkar implicitly uscs the value
¢Tx/(T1x)" as the ccq. The following lemma 3 and 4

lescribe an interval of the ccq. Now the size L of the

Ly FAwY &
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problem is O(m.n+ [ m.n log R ) where R= max {la,
I, I(‘}.I} which is also appearing in Algorithm BKM. -

Lemma 3. (Thecorem 15.1 of [8]) If SLI has
solution, then the successive xts generated by the
BKM satisty

((\Txki-l)” <; ((‘-7' xk)”

nkatl 4 nxk

that ts
L(in 2
ceg*t! /(.‘cq"<(%) h_ om0 2 pligity

where ¢(L)= n/ (In2 - 1) is a low-order polynomial
ol [,

Lemma 4. Supposc the initial point is
x'= (,lT - ,%)T . then the sequence {x*} generated by
the algorithm BKM has values ¢’x */(ITx Y in
interval /= [1/R"n "', nR).

Proof. Since ¢'x" < %(n.max{ci}) < R and by
lemma 3, ceq * is a decreasing sequence, then n.R is
an upper bound of ¢’x */(TTx %) ". On the other hand,
consider problem ¢"x*= min {¢"x | Ax= 0, ¢"x= 1,
Az0}. If the primal SLI has no solution, then ¢”x*>(0).
In this case, for any feasible x such that x>0, it is
from the basic theory of LP that there is an optimal
basic feasible solution x* such that ¢’x > ¢"x* > 0.
Therefore, by using Cramer rule, we know that the
denominate of the basic feasible solution is of abso-
lute value at most n"R". By integrality, the value of ¢'x
with xsuch that ¢’x>01is not possibly less than 1/n"R".
Hence the lower-bound of the interval is 1/a™!. R™,

From these lemmas we can sce the algorithm
BKM iterates the cecg= n"'. R. ¢"x/(I1x)"" in interval
[ {,n"R™ 1. Now we need only to show that this can be
cquivalent to an EBS that satisfies the condition of
thcorem 2 in order to prove the polynomial conver-

gence. First we can see

np ntl __ , nln n+(n+1) InR P(L)
n"R = ¢

=e
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where P(L)is alow order polynomial of L. Secondly,
tlemma 3 shows that the algorithm BKM is exactly
operating according to the pattern pointed by theo-

rem 2.

CONCLUSION

The discussion in sections 1 and 2 reveals that
Khachiyan’s method and Karmarkar’s method look
very different in the form and mathematical tech-
niques, but they have inherent coincidence. Both
authors combinatorialize their problem that looks by
appearance as a coutinuous problem. The inherent
process of algorithm design consists of choosing a
potential combinatorial character quantity to be
combinatorialized, determining an interval, with up-
per bound of at most an exponential function ot a
polynomial of L, that covers the domain of the ccq.
finally designing an algorithm operating parallel 1o
an EBS on the interval.

We hope that this unified methodology can be
used to handle other types of continuous problems,
cspecially to study the iteration complexity of gen-

eral algorithms for continuous problems.
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