SAFETY VERIFICATION OF REAL-TIME COMPUTING
SYSTEMS SERVING PERIODIC DEVICES

M. Naghibzadeh

Department of Computer Engineering
Faculty of Engineering
Ferdowsi University of Mashud
Mushad, Iran

Abstract Inreal-time systemsresponse to arequest from acontrolled object must be correct and timely.
Any late response to a request from such a device might lead to a catastrophy. The possibility of a task
overrun, i.e., missing the deadline for completing arequested task, must be checked and removed during
the design of such systems. Safe design of real-time systems running periodic tasks under the rate
monotonic preemptive (RM) scheduling strategy is considered in this paper. A safety verification
procedure that is an improvement over previously developed procedures is presented.

Key Words Real-Time Systems, Scheduling, Rate-Monotonnic, Safety Verification

SC':M"\"l)LQJ"‘“’IP)‘J L§‘)‘>‘ LQ,J)JASWJ‘OQ; A..!JUQA') LE)JWS&)J»LSM Jlas LJ"‘)Q Os)ab‘
2L ,J/‘_gj&" e _\;i pre; 6,‘3;\41’. c’}q- aol> el US.,:..A waf ol (':99"’" ‘51_..»|5>')> a Ql,ii }fl R ey
2L 3 a8 08 (b (5500 Gleetuss menlyS o adlie ()35 S 83, § 5 e > A el
1t esiiee il ol aisile) 5 001 (6o lyaslys o (oykaban ool) 09 ozl o UVl oo 51 b g o
RERYIEE PRURANEPA Fi-TRPE PR S PV EDRLN SR IL S S SRttt § T PSS LR) FRESWN Lo SRLAN Y PG ISI o

INTRODUCTION

In rcal-time applications needed for air-traffic
control, avionics, process control, patient monitoring
and other mission critical computations, execution of
time-critical tasks must be correct and timely. Failure
of the computer system to execute service tasks
within deadlines might lead to catastrophic situation
and must be prevented. Any possibility of task overrun
must be detected and eliminated during the design of
the system. | 13,8, 10].

In this paper we consider uniprocessor systems
that control periodic time-critical devices. Each
device, U, i= 1,2, ..., n, makes service requests
repeatedly at a fixed rate and each request must be
accepted by the processor and the corresponding
service task must be executed. Each device U, =12,

... N, is characterized by three paramcters R, E, and

Journal of Engineering, Islamic Republic of Iran

RGIOM PRVRC) g

D.. R, represents the request interval of U, i.c., the
amount of time that the device waits between
generating successive service requests, E represents
the maximum execution time required for eiach
service task requested by U. and D, represents the
deadline parameter, i.c., the amount of time that U
allows for the system to complete the exccution of its
requested service task. In this paper, the deadline
parameter for each device is considered to be cqual to
its request interval (D1 = R]). i.e., the deadline for a
service request generated at time t by device U, is at
time t+R. The inverse of R i= 1.2, ... nis a fixed
value and itis called the request rate of device U.The
devices are thus cyclic and the request rates are fixed
[7.8.9].

The rate monotonic preemptive (RM) scheduling
strategy [4,5,8] is used to schedule tasks for execu-

tion. Under the RM strategy the tasks requested by

Vol. 7, No. 3, August 1994 - 133

the devices are assigned priorities on the basis of R 's
of the devices; a task requested by a device with a
shorter R is assigned a higher priority than a task
requested by a device with longer R.. Moreover, a
lower priority task in execution is preempted upon
arrival of a request for a higher priority task.

The RM scheduling strategy is perhaps one of the
most widely practiced strategics intime-critical com-
puter control applications due to its simplicity in
implementation. One question of practical impor-
tance about the RM or any other time-critical task
scheduling is whether or not a given set G of devices
can be served sately, i.e., without any tailure of the
processor to execute every requested task within the
associated deadline. This question is dealt with in the

following sections.
SOME BASIC PROPERTIES

In this section some basic properties of the rate
monotonic scheduling strategy that are used in real-
time systems for schedulig tasks, requested by peri-
odic ime-critical devices, are discussed. These prop-
ertics form the basis fordeveloping an efficient safety
determination procedure.

A uniprocessor system that controls a set G, of n
periodic time-critical devices using the RM strategy
will be represented by a three-tuple (1, G, RMP)-
system, Without loss of generality, itis assumed that
devices i a given system are ordered such that
R1£Rz<—: ... s R”.

It was shown by Liu and Layland that the RM
strategy is anoptimal tixed priority strategy [8]. They
also demonstrated that a (1, G . RMP)-system is safe
it F<n (2'-1), where F is the processor utilization

defined as
F=E/R +E/R,+...+E/R.
This condition is only a sufficient condition, not a

134 - Vol. 7, No. 3, August 1994

necessary one. There are still many systems with
processor utilization greater than n(2'* -1) that are
safe under the RM strategy. One such case which
consists of four devices will be given later in this
paper (see example 2).

Definition. The critical instamt for a device is a
time point in the system operation at which a request
for a service task by the device will have the longest
response time.

Liu and Layland [8] found that the critical instant
for a device U, i= 1.2, ... , n, occurs whenever a
request by the device is made simultancously with
requests from all higher priority devices. Therefore,
the following corollary could be stated.

Corollary 1. A (1, G, RMP)-system is safe if and
only if whenever all devices start simultancously at
time 0, there is no task overrum either before or at
time R .

This corollary provides the basis for an overrun
possibility detection procedure. Again the detection
should be done off-line during the system design. It
also suggests that in order to make sure that a (1. G |
RMP)-system is safe. i.c., without the possibility of a
task overrun, the system could be simulated for the
duration of R . This simulation method will perform
well whenever the ratio R /R, is rcasonably small.

A different approach is taken by Lehoczky, et. al,
[6]. Inthis approach, the devices are checked for their
safety one at a time starting from device U, to device
U, . In order to make sure that device U ,i= 1.2, ..., n
can be served safely, they checked to see if a certain
linear inequality condition is met at any of the tinite
number of time instances whitin the interval [0, R |
These time instances are request-pointsof devices U |
Jj= 1.2, ..., 1. The check is made for all request-points
ofdevicesU,,U,, ... and U within the intecrval [O,R].

In this paper, given a (1, G , RMP)-system. the
devices are also checked one at a time starting with
device U and continuing towards device U . I a

device is safe, it will be included in set S as a new

Journal of Engineering, islamic Republic of irar

member. Device set S represents the setof all devices
for which we have already made sure that there wili
be no overrun; it is originally a null set.

Definitions.(a) Given a (1, G,. RMP)-system, a
processor idle period (PIP) for device set S within a
given interval [t , t,] is defined to be a period [a, b],
if any, in which the processor is not needed by any of
the devices in the set S.

(b) A time point T at which there are no incom-
plete tasks requested by the devices in set {U,U,, ...
.U}, except those that might have been requested at
time T, is called a fully served point (FSP) of the
device set.

(¢) The last tully served point (LFSP) of the
device set {Ul, U, ..., U} within the interval [t]
is denoted by LESP ({Uw Uz, e U;}’ [t,, t,D.

If interval [T, T, lis a PIP of device set {u, U,
.~ U} and all requests generated by the devices
before time T are completed prior to their deadlines,
any pont within this interval is an FSP of the devices.

Example 1. Consider a (1, G,. RMP)-system for
whichRI:2,E1=().5,R2:3,E2=().7,R}:4.5,E3: 1.3,
R,= 16 and E ;=2.0. Figure 1 shows the behavior of
the (1, G,. RMP)-subsystem when it starts at time 0
and runs for R (= 16) time units. There are 6 PIPs of
deviceset{U .U, U, } withinthe testinterval [0, 16].

Allrequests generated by the devices in the device set

0 —» lime

R“:lﬁ time units

* PiPs of device set {U L UL, U} within the interval [0, 16]
+ Last PIP of device set {U,, U,, U } wathin the interval [0, 16]
#The last fully served point (LESP) within the interval [}, 16]

Figure 1. Test execution of (1, G, RMP)-subsystem showing
PIPs and the LFSP.

Jeurnal of Fnaineering, Islamic Republic of Iran

{U,.U,, U, } within the testinterval are executed prior
to their deadlines. Therelore, any time point within
any PIP of this device set is also a fully served pomt
(FSP) of the device set. Besides, time O'is also a fully
served point of the devices in the set. The last fully
served point (LFSP) of the device sct {U,. U.. U}
within the testinterval is at time 13.5 as itis shown in
Figure 1.

Lemma 1.Givena (1, G ,RMP)-system started at
tme 0, the device U, i= 1.2, ... n,is safe if and only
ifattime T, the LFSPof devices U, U,.....U_ within

the interval [0, R 1,
[T/R FE +[T/R,FE,+ ... +[TRTFE <T (1)

Proof. The sufficiency is obvious. As a maltter of
fact, if Condition 1 is satisfied at any time instant t.,
within the interval [0, R1.1=1.2,....n the device U
is safe. Since devices are checked one at a time.
starting from device U and continuing towards de-
vice U . when device U, is being checked all lower
indexed devices are already checked and they are
sate. Within the interval [T, R | the processor will not
be available forexecuting the task which is requested
at ime O by the device U .. Therefore, it is concluded
that Condition 1 is necessary, 0o,

Notations. (a) [(R) denotes the Tast request
point of device U which is not later than R | .

(< R |) denotes the next-to-last request point
of device U which is not later than R | .

Definition. The maximum processor demand
(MPD) ol adevice U.i=1.2.....n, within an interval

[0, t] is denoted by MPD (10, t}) and defined as:
MPD (10, th={ /R FE + min{E . 1-LUR FR 1. (2)

where [x| represents the largest integer that is not
greater than x and min{y.z } represents the minimum
of y and z values.

Lemma 2. The cxecution time consumed by de-

Vol. 7, No. 3, August 1994 - 135

vice U i= 1.2, ..., n, within the interval [0,t] cannot
exceed MPD ([0, t]).

Proof . Suppose [(<t) is the last request point
ofthedevice U which is not later than t,i.e.. [(St)=
LI/RIJ*RI. The maximum exccution time that can be
consumed hy the device within the interval [0, [(£0)]
IS LI/RIJ*EI. Smce there is only one request that is
made by the device within the interval [/(<t), t] the
maximum cxccution time that can be consumed by
thedevice withinthe interval cannotexceed E . Atthe
same time, the cxecution time consumed by the
device within the interval [L(<0), t] cannot exceed the
length of the interval, i.e., t—Ll/Rl_l*Ri. Theretore, the
exccution time consumed by the device within the
mterval [/ (1)t cannot exceed min{ E.C-I/RI*R }.
And forthe whole interval [0, U] the maximum execu-
tion time consumed by the device cannot exceed
LR FE + min{E. t- LUR * R }= MPD ([0, t)).

SAFTY DETERMINATION OF REAL-TIME
SYSTEMS

The following corollary shows that the amount of
exccution time that is consumed by the first device.
r.¢.. the device with the highest priority, within any
given interval is easily computable.

Corollary 2. Let ET ([0, t]) denote the exact
amount of ¢xecution time that will be consumed by
the device U, within any given intcrval [O. t]. ETl([(').
t]) is equal to MPD (0. t]), the maximum processor

demand of the device within the same interval. i.e.,

ET (10, 1) = MPD ([0. t]) =LyR FE + min{E .t
-Lyr J*R} (3)

Proof. Any request from the device U, will im-
mediately be picked up and executed without any
preemption; therefore,

ET, (10, th= MPD (10, th=Ly/R *E + min{E
-LyR R}

136 - Vol. 7, No. 3, August 1994

Consequently the exact amount of execution time
needed by the device U, within an interval [t.Lle.,

ETI([tI, ()N is equal 10
ET (It,, ,D=ET, (10. ,)- ET (10, t]).

Two Device Systems
Since it is easy to compute ET (0. R,) as stated in
Corollary 2, the safety determination of a 2-device
system is easy to accomplish.

Theorem 1. A (1, G, RMP)-system is safe if and
only if

ET (0.R)) +E=[R/R I*E, + min{E . R,
-[R/R ¥R } + E, <R, (4)

Proof . Within the interval [0, Rz] whenever the
processor is not needed by the device U, it can
execute the task that is requested by the device U, at
time 0. The execution time used by the device U,
withinthe interval [0, R 1S ET, (0,R,). Therefore the

system is safe if

ET,(0.R)) + E=|R /R, FE, +min{E R,
-LR/R R }+E <R

If the Inequality 4 is not satistied, it means that the
cxecution time needed by devices U, and U, within
the interval [0, R, |, in order for the device U, to be
safe, is greater than the length of the interval. But, this

is not possible,

N- Device Systems

Suppose that devices U, U, ..., U_ are all safe and
the safety of the device U is being considered. The
following theorem shows that it is not necessary o
check Condition 1 for all request-points within the

mnterval [0, R.]. In Reference 6 it was suggested that

Journal of Engineering, Islamic Republic of Iran

the Condition | be checked for all request-points
within the interval.

Theorem 2.11 devices in the set{U, U,, ..., U
,} are safe, the LFSP (U, u, .., U 1[0, R D is
always later than /' (<R), i.e., the next-to-last re-
quest point of U, | that is made within the interval
[0.R .

Proof. 1t is sufficient to show that there exists at
least one FSP of device set {Ul, U, ..., U, |} which
is later than /7 (<R). The request generated by de-
vice U | attime " (R)) must be completed by time
I' (€R)+R_ .SupposcTis the time at which the task
requested by device U, iscompleted. Attime T there
doesnotexistany incomplete task foradevicein { U,
U, U Jand thus T is an FSP of {U]. u,, ...,
U} whichis later than /(<R).

[t can be concluded from the above theorem that
only the request points of all devices within the
imérvul Il’H(éRI). R] may be used as test-points for
Condition L. This is the main source of improvement
overthe methodsin[6,8]. Yetfurtherimprovementis
discussed below . In order to find the request-point
that is the LFSP ({U, U, ..., U_} [0, R.]), two
searchintervals, located within the interval [/ " (ER)),
R].arc first determined. The first search interval
is within the interval [/, (sR),R], and the second
one is within the interval (' (sR), [, (€R)]. Both,
the complete intervals [/ (<R). R and [l’i_l(SRl).
[(<R))] can be used as search intervals. In such a
case, all request-points falling within the intervals
may have to be checked to see if Condition 1 is
satistied. But, it is useful to narrow down the scarch
intervals by using an efficient procedure. The test-
points are request of device set {U,,U,, ... U} that
tall within the scarchintervals. The test-points within
the first search interval are considered first and only
if Condition @ is not satisfied forany of the test-points
within this scarch interval, the test-points within the
second search interval are considered.

Theorem 3. Suppose that the safety of device U

Journal of Engineering, Islamic Republic of Iran

=34, ..., n, in a (I, G, RMP)-system is to be
checked. Consider one of the two initial search
intervals and let T, represent the lower bound of the
interval,i.e., [(5R) orl’ (R)),and T represent the
upper bound, i.e., R or [(SR).

(1) The search interval can be shortened from [T,
TJw[T,T,], where T,=T+E |.Thatis,if the LFSP
({u,, U, ... U, 110, R]) falls within the interval [T,
T I, then it is never earlier than T,.

(2) In addition, the search interval can be short-
ened by the iterative application of the following

derivation formula until either T>T orj=i-2.

T, =T,+[T/R *E - MPD [0.T,))
=T, +[T J/RJ*E). - (LT(/RJJ*EJ +min{E. T,
-LT/R R D (5)

Proof. The task that is requested by the device
U, at time T is represented by t_ . The execution
time needed for this task is E . If[T, T I is the
original search interval, the execution time that is
necded for the task t_ will shorten the search
interval to [Tr TX], where T, = T, + E .re.aPIP
{S, [T

completed.

» L1} cannot begin until task t_ is

To prove the second assertion, itis clear that since
devicesU,,U,, ..., U, have higher priorities than the
device U, ,, the task t_ might not be completed hy
time T,. The completion of the task {,, will be delayed
by all higher priority tasks that are requested by these
devices while the task t,_ is notcompleted. Specially.
the completion time of the task t_, will be delayed by
all tasks from the device U, that are either incomplete
attume T or requested after time T, and prior to time
T,. That, is all tasks requested by the device U, prior
to time T, will be completed before the task L, 18
completed. The total execution time needed by these
tasks 1s I‘TI/RJ*EI, of which exactly ET, (10.T h=
MPD, ([0, T]) is consumed by time T,. The differ-

ence, 1.e.,

Vol. 7, No. 3, August 1994 - 137

[T/R TE, - MPD_ ([0, T,)

will be consumed after time T, and prior to comple-

tionof the task t_ . Therefore, the task t | will not be

I 1

completed prior to time T,, where
T.=T +[T/R E - MPD ([0.T,])
Substituting MPD ([0, T) trom Equation 3,

T,=T,+[T /R FE - (LT/R *E +min (E , T,
- LT(}/RI—I*Rl })’

the scarch mterval 1s narrowed down to [T, Tx].
To prove the second assertion, All tasks requested
by the device U, prior to time T, will be completed
before the task 1 is completed. The total execution
time needed by these tasks is |—T2/R21*E2, of which at
the most MPD ([0, T 1) is consumed by the time T,
Hencee, the minimum amount of time that the device

U, will delay the completion of the task ¢, | is
[T /R IFE, - MPD([0. T D).

Therciore, the completion time of the task t_, must he

later than ume T where
T,=T,+(T/R,FE, - MPD_|0, T,|).
Substituting MPD,(10. T,]) from Equation 2,

T,=T,+[T/R,FE, - (T /R, FE ,+ min (E,. T,
—LT /R R,

Using similar argument for devices U, U, .., U,

the scarch interval can be further shortened by the
following iterative tormula.
T, =T +(T/RFE - MPD ([0, T])

Or,

138 - Vol. 7, No. 3, August 1994

T’H = TJ + |‘TJ/RJ_|°"Ej - (LT(/RJJ*EJ+ min {EI T
—LT/R R }).

8]

Using the assertions of Theorem 3 the procedure for
locating test-points that are candidates for the LESP(S,
10, R, i= 1.2, ..., n, and checking condition 1 is

developed as follows.

The LFSP Locating Procedure

(i) Take T=1_, (sR)=lR/R ¥R and T =R_.The
interval [T, T] can be considered to be the first
search interval.

(i1) The length of this inteval is further shortened
by advancing the lower bound of the interval from T,
0 T =T +E, | on the basis of Theorem 3(1).

(ii1) Following Theorem 3(2) the searchinterval is
repeatedly shortened by advancing the lower bound
ofthe interval from T, throughT,, T, ... 10T _.Since
the upper bound of the search interval is T,, which s
a fixed value, the final search interval is {T, |. T |. At
any time during the process of computing T,’ =12,
e d-1, iij turns out to be greater than T . the interval
[TH, T 1 becomes an invalid interval and we should
then consider the second scearch interval.

(iv) f T_ <T,, we then check to see it Condition |
is satisfied for any of the request points of devices U
u,....u within the interval [Tw Tll, i.c., apomtin
time at which arequestis made by any of the devices.
If the condition holds true for at Icast one such point,
the device U, is safe. Otherwise, we should then
consider the second scarch interval. The request
points of each device within a search interval are
checked backwards, i.c., starting with the request
point ncarest 1o time T, and continuing towards the
request point nearest to time T, .

(v) To consider the second scarch interval take
T=1_(<R)=[R/R_FR -R_ and T=1_ (<R).

and steps (it) through (iv) should be considered out

-1

one more time.

(vi) If there does not exist a request-point within

Journal of Engineering, Islamic Republic ¢! Iran

eitherof'the two search intervals for which Condition
[is satisfied, device U, is unsafe.

The tollowing algorithm, when called, produces a
reduced length search interval from a given original
one. The search interval that is produced is an actual
scarch iterval. The algorithm is called twice, once
forT =1 (<R)= |_R,/R,_1J"‘Rk1 and T =R, and once
forT=1" (<R)=LR/R #R -R_andT =/ (<R).
In order to make this algorithm a real pascal program

minor changes are necessary.

Procedure search-int (i: integer; R, E: vector: TO. Tx: real;
var T: real):

{i: index of the device being checked)

{R: array of device request intervals }

{E: array of device execution times }

{this procedure uses the results of Theorem 3 to shorten
the original search interval [T, T | and produce the actual

search interval [T, T]}

begin
T:T,+E;:
=1

while (j<i-2 & T<T) do

heing
T:=TH T/R FELT/R FE min{E.T,-LT/R FR }):
ji=

end

end.

Algorithm 1. This algorithm furhter shortens a
aiven search interval.

The overall method for verification of the safety
of a general (1.G, RMP)-system is summarized as

follows.

A New Safety Determination Procedure

For a general n-device system, devices are checked
one atl a time, starting from the first device, i.e., the
device with the shortest request interval, and continu-

ing towards the last device. When we made sure that

Journal of Engineering, Islamic Republic of Iran

adevice is safe it will be added to device set S which
is originally a null set.

Considering a new device U, i= 2.3, ..., n. if the
total processor utilization of devices in set S plus the
device being considered is not greater than i(2''-1),
the new device is also safe. It is clear that the device
is unsafe if the utilization is greater than one. Other-
wise, the safety of the device is checked as follows:

(a) For the first device the checking is simple and
itis safe if and only if E <R .

(b) The second device, U,, is safe if and only if
condition 4 in Theorem 1 holds true.

(¢) Device U, i= 3,4, ..., n, is safe if and only if
when checking the Condition | for any of the request-
points which is a candidate for the LFSP (S, [0, R D).
where S= {U, U,,
The candidates are obtained by using the LFSP locat-

..U, }, the condition is satisfied.

ing procedure.

The following algorithm clarifies how the safety
determination method presented in this paper could
be implemented. It is clear that it is not a real Pascal
program and some details are left forthe implementor.
The algorithm is called once for every device until
either all devices are checked or an unsafe device is

detected.

Procedure safe_i(i: integer; R, E: vector): boolean:
{this procedure, when called, checks for safety of device
U,i= 12, ..., n}
begin

safe_1.= "false":

if'1i= 1 then f ESR, then safe_1:= "true”

else;
else if i=2 then ifLRZ/R!J*E] +min{ El, sz I_Rz/ R, J*R, }
+ E <R,
then safe_i:= "true" elsc;

else ifprocessorutilization<i(2'- 1) then safe_1:="true"

else begin
k:=1;

while (k€ number of request points within actual

Vol. 7, No. 3, August 1994 - 139

scarch mntervals & safe_i= "false") do
hegin
T:= time of k™ request point within actual search
intervals;
i [T/R FE, + [T/R,FE, + ...

then safe_1:= "true";

+[T/R FE<T

k:=k+1
end
end

end.

Algorithm 2. This algorithm, whencalled, checks
for safety of a given device.

Example 2. Consider a (1, G,, RMP)-system
withR =1,E =0.2,R,=2,E,=0.6,R;=5.E;= 1.35,
R,= 142 and E ;= 2.95. For devices U, U, and U,
no checking is requied. The processor utilization for
these three devices is 0.77 which is less than 3(2"3-
)= 0.779: therefore, S= {U,. U,. U, }. Processor
utilization of all fourdevices is 0.977 whichis much
higher than 4(2'7-1)=0.756. To check for safety ot
device U,. T and T, are set o [(<R))= 10 and R =
14.2. respectively (Figure 2). T, canbe computed as
T=T,+E=11.35.T, and T, are then computed as
[11.75 and 12.1 by using Theorem 3. Within the
interval [12.1, 14.2] there are three time points at
which one or more requests are generated by

devices U UL, U and U, These time points are 13,

0 ——> time
H *
e e = b — b b e
U‘l23456789lll|1|2;|3|4
| T 3 i MY
LZ H K 3 i3 10 2 14
i Search
1(s14.2) i Eq | & interval
3 e B,
U) i 5o
3 5 ad \
To 1@ T=1135 /
TS} Ty=121 :
U,) 1(4=14,2'_"'

*time point for which Condition [is checked

Figure 2. A four-device system with load factor equal to 9.77

which is safe.

140 - Vol. 7, No. 3, August 1994

14, and 14.2. Condition 1 is satisfied for T= 14. There-
fore, the last device is also safe and the system can run
without any task overrun under the RM scheduling
strategy. The safety determination procedure presented
here checked Condition 1 for only two request-points
and concluded that the system is safe, whereas previ-
ously known procedures check for 14 request points.
The safety determination procedure presented here 1s
a substantial improvement over the procedures devel-
oped in [6.8]. It performs specially well whenr >2r_, for

some or all 1, 1=1.2,..., n.
CONCLUSION

In this paper real-time systems that run periodic time-
critical devices under the RMP scheduling strategy were
studied. The important problem considered here was to
make sure that the system is safc and every request
generated by the devices are exceuted prior to their
respective deadline. The safety determination time was
reduced in this paper. In earlier algorithms to make sure
that the device U, i= 1.2,..., n, is safe, Condition 1 had
to be checked for all request-points withinthe interval [0,
R |, until either this condition is satisfied or all request-
points are exhusted. In the method presented here, to
check for safety of device U two search intervals are
produced. Only request-points within these intervals are
considered. In almost all cases. total length ol these
search intervals is by far less than the length of interval
[0, R]. Therefore, the number of request-points for
which Condition 1 has to be checked is much smaller in
comparison to earlicr methods. Only in few cases, ¢.g..
when R = R,= ...= R, the present method performs
similar to earlier methods. The improvement is even

greater when r>2r_, for some or all devices.
REFERENCES

1. S. K. Baruah, A. K. Mok and L. E. Rosier, "Preemptive

Scheduling Hard Real-time Sporadic Tasks on one Proces-

Journal of Engineering, Islamic Republic of Iran

sor," Proc. Real-time Systems Symposium, (1990), pp.
182-190).

to

. E. J.Jr. Coftfman, ed, "Computer Job-shop Scheduling
Theory." John Wiley and sons, (1976).

300 R Lali R.E. Harper and L. S. Alger, "A Design
Approach for Ultrarcliable Real-time Systems," [EEE
computer, May (1991), pp. 12-22.

4. B. Sprut, L. Sha and J. Lehoczky, "Apriodic Task

Scheduling for Hard Real-time Systems," Journal of

real-time systems. Vol 1, No 1, (1989).

5. M. S. Finberg and O. Sirline, "Multiprogramming for
Hybrid Computation," Proc. AFIPS Fall Joint Comp.
Conl.. (1967), pp. 1-13.

6.J. Lehoezky, L. Shaand Y. Ding, "The Rate Monotonic

Scheduling Algorithm: Exact Characterization and

Journal of Engineering, Islamic Republic of Iran

Average Case Behavior,” Proc. Real-time Sysiems
Symposium, (1989), pp. 166-171.

7. 1. P. Lehoczky, "Fixed Priority Scheduling of
Periodic Task Sets with Arbitrary Deadlines.”.
Proc. Real-time Systems Symposium, (1990). pp.
201-209.

8.C.L.Livand J.W.Layland, "Scheduling Algorithms for
Multiprogramming in Hard Real-time Environments."
Journal of the ACM, Vol. 20, No. 1,Jan (1973), pp. 46-
61.

9. L. Sha and J. B. Goodenough, "Real-time Scheduling
Theory and the Ada," IEEE Computer, April (1990),
pp- 53-62.

10.J. A. Stankovic and K. Ramamrithan, "Hard Real-time

Systems,"” Computer society press of IEEE, (1988).

Vol. 7, No. 3, August 1994 - 141

