A PROCEDURE FOR BUILDING CONFIDENCE
INTERVAL ON THE MEAN OF SIMULATION
OUTPUT DATA

S. T. Akhavan-Niaki

Departmeni of Industrial Engineering
Sharif University of Technology
Tehran, Iran

Abstract  One of the existing methods to build a confidence interval (c.1.) for the mean response in a
single steady state simulation system is the batch means method. This method, compared to the other
existing methods (autoregressive representation, regenerative cycles, spectrum analysis, standardized
time series), is quite easy to understand and to implement and performs relatively well. However, the most
serious source of error is the underestimation of the variance of the sample mean due to the correlation
of batch means. In the new method, which is essentially based on the batch means approach, weights are
assigned to the batch means such that they become uncorrelated. Then based on the assumption that the
output data are obtained from steady-state simulation, as expression is developed for obtaining the
confidence interval on the mean.
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INTRODUCTION

One of the most serious problems encountered in a
real-world simulation study is that of constructing a
confidence interval (c.i.) for the steady-state mean ji
of a stochastic process. The information contained in
such a confidence interval provides the decision-
maker with a measure of how precisely p is esti-
mated. However, constructing the c.i. is difficult
because of the non-stationarity and serial correlation
of the output data from a simulation model; hence
direct use of the classical statistical techniques is
precluded. This problem has received considerable
attention in the literature, and many methodologies

have been proposed. Atpresent, there are still several

Journal of Engineering, Islamic Republic of Iran

st 0! s J{C)!J\ﬁa‘m‘ ‘,—AN“?‘I\-SIQ s Q‘W'_ L

output-analysis problems for which there is no com-
pletely accepted solution, and the solutions that do
exist are often too complicated to apply. To alleviate
some of the existing problems, a new procedure is

offerred here.

LITERATURE REVIEW

There are basically six different approaches in con-
structing a c.i. for the average response in a single
steady-state simulation model. Each of these proce-
dures involves some basic assumptions on the pro-
cess being simulated, which may not be realized, in
general, in real-world systems. Some of these meth-
ods, such as the one of independent replications, are
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wasteful in term of the information obtained from the
data [1]. Others, such as spectrum analysis,
autoregression representation, and standardized time
series place a heavy requirement on the user to be
familiar with sophisticated methods of time series
analysis. Other methods, like the regenerative method,
are simple and easy to understand, but cannot be
applied to most real life simulation systems. The last
approach suggested in the literature, the batch means
method, is easy to understand and to apply and is
based on the assumption of i.i.d. observations being
available. However, the key to the batch means
method appears to be the determination of the num-
ber of observations per batch [2, 3]. This determina-
tion needs to rely on a test of independence of batch
means if the resulting estimate is to the consistent
with the assumptions involved in the method. How-
ever, such test procedures are reported to require a
large number of batches (at least 100) to be reliable
[4]. On the other hand, since the total number of
observations is not unlimited, increasing number of
batches requires decreasing the number of observa-
tions per batch which may reuslt in violation of the
assumption of the independence of batch means. In
addition to the above difficulties, having a relatively
large number of observations is the key element for

all of the above procedures.
RESEARCH OBJECTIVE

The main objective of this research is to develop a
procedure for determining confidence intervals for
the average response in a single steady-state simula-
tion system. This procedure should require a rela-
tively small number of observations and produce
¢.i.’s that have good converages, and that are easy (o

understand and implement.
RESEARCH DEVELOPMENT
Batching, discussed as early as 1963 [S], is a
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conceptually straightforward method for computing
confidenceintervals onthe meanresponse of asteady-
state simulation by transforming correlated observa-
tions X, X, ..., X into fewer, almost uncorrelated,
and almost normally distributed random variables. In
this method it is assumed that n observations can be
taken from a covariance stationary process with the
mean, W, and lag s covariance, CS= Cov (X, X,.)
starting from some initial conditions and making a
single long run of the length n, then dividing the run
into k£ "batches" of m consecutive observations each
(n=k.m).LetX (i=1,2,...,m,andj= 1,2,....k) be the

ith observation from the jth batch, defined as

_ ZX(i.j)
Xjmy==__ ™

be the jth batch mean, and C (m) be the lag s covari-

ance between the batch means. Law and Carson [6]
showed that if:

0< 2 Cg () <oo

S=-eo
then:
im CM g for s= 1.2...... k-1
m——')oo Co(m)

Thus, the batch means will be approximately
uncorrelated for sufficiently large m. Furthermore,
using central limit theorem, it is not unreasonablc to
assume that the batch means ij (m)'s will be approxi-
mately normally distributed. Hence, when m is large
enough, the batch means are uncorrelated and nor-
mally distributed, i.e., they will be i.i.d. normal
random variables with the mean, Y, (by the assump-

tion of covariance stationarity), so that the classical
statistical methods can be applied, and a 100 (1-c0)%

¢.i. for @ would be:

Journal of Engineering, Islamic Republic of Iran



XCkam)* Tk -y 0 (kom)

where t . isthe upper T-0/2 critical pomtof the

¢ distribution with k-1 degrees of freedom (d.10),

ko
- Z X (m
Xkmy= =2
k
is a point estimator of g, and
K — =
2 | X, im) - X (k. mu|
S k.m)= = (1
k { k-1

is & point estimate of the Var [X (k.m)].
In summary the assumptions involved in the

method of Batch means are:

i) Initial transient cffects have beenremoved: e the
output is covariance stationary with mean. . the
variance, ¢, and lag s covartance C . s= 1.2....

i1) For a run length of #, there exists a number of

batches &% with an associated batch size m ™* =
n/k * such that the dependency and the
nonnormality of the batch means are negligible,
and

ii1) The problem of n/k * not being integer is

insignificant.

Hence, there are three potential sources of error
when one uses batch means to construct a ¢ 1. for (e
X, X, - (forafixed and nonnegative integer

L) will not be exactly covariance stationary.

2) I is not large enough, the batch means XI (m)'s,
may not he approximately normally distributed.
3) If m 1s not large enough, X, (m)'s may be highly

correlated and the estimate of the variance of the
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mean of their means given by Equation 1 will be

aseverely brased esumator,

The assumption of mdependence between batch
means s vpically made in sunolation analyses even
though there exists an autocorvarianee between the
values at the end of one subinterval and those at the
heginning of the next submterval, ln particular, if the
N e posttively correiated dthie coxe usuadiv en
conntered i practice s the batchimeans will be posi
tively correlated as swell, giving aovariance esuinale
that v biased low and o ¢ that is oo small. By
makmge the batch size (pn) barger. the covarncee
herween batch means should decrease. Tt was
concluded mibLaw 2] that underestimation of Vo
1—32 (m.k) . due o small value of w1, 18 the principal
source of errovin this method. Also empirical resule
inLaw and Kehton | 7} indicate that. atleast for sumgsie
systems like an M/M/L quene. the correlation be-
tween the batch means s the most serious source of
crrorand it bettertomake atew large batches rather
than many small batches: the batchmeans inthe fatter
case being oo heavily correlated o obtiwn a good
estimate of the vartance of the sample mean: (see also
Schmeiser [8]).

The actual coverage of a nominal 90% c.1. tor

when A =20 and 7= 320 has been shown 1o be .49
{7]. In order for the method of batch micans to be a
reliable approach for steady-state analyses, a
procedure for determining the batch size s, such thi
the covariance between adjacent batch means s
insignificant, is nceded. One approach which has
been suggested in the literature for obtaining
uncorrelated batch means is given by Fishman [9].
This method is based on Von Neumann's test for the
presence of correlation. However, whentested on the
M/M/1 queue with p= 0.8 or p= 0.9, the method
produced c.i.'s with coverage below the desired value,

if the total runlength o was too small. While Fishman's
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procedure allows the number of batches to be as small
as eight, kleijnen er al. [4] recommended that the
number of batches should be at least 100 when using
Von Neumann's test to ensure a test for correlation
withsufficiently high power. Schmeiser[8] quantified
the effects of using different batch sizes on the c.i.
coverage. He concluded that a value of m between
10<m<30is reasonable formost simulation situations,
however, itis important to note that a large number of
batches may be required to determine a batch size for
which the corresponding batch means will be ap-
proximately uncorrelated (see Kleijnen ef al. [4], and
Law and Carson [6]). Also Adam and Klein [10]
concluded thatthe coverage probability for the process
mean decreases significantly at moderate levels of
autocorrelation, and unless the number of batches is
large, neither the Von Neumann ratio test, nor its rank
version is good as a test of zero autocorrelation. their
results tend to agree with the recommendation of
kleijnen e al. [4] that a large number of batches
(perhaps at least 100) be used when testing for first-
order autocorrelation.

Other papers that discuss the method of batch
means have been developed by Adam [11], kang and
Goldsman [12], Mechanic and McKay [13], and
Schriber and Andrews [3] which have proposed a
modification to Fishman's algorithm.

Law [7] encouraged researchers to develop a new
procedure for choosing the batch size for the method
ol batch means such that the corresponding bacth
means are approximately uncorrelated and normally
distributed. He also recommended to investigate the
possibility suggestion of leaving some observations
between batches that are actually used for estimation
purposes, or more generally to assign possibly
different weights to the observations within a batch.
The goal of such schemes would be to try to reduce
the correlation between batch means.

In this paper we develop a c.i. procedure for the

mean of the output data from a single steady-state
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stochastic process which is essentially based on the
batch means approach and Law's recommendations.
The main ideais to find some weight schemes for the
batch means such that the batch means are i.i.d.
random variables and the classical statistical meth-
ods can be applied. Thus, thec most potential source of
error involved in the batch means approach will be
eliminated and hopefully the actual coverage of the
new confidence interval procedure will be more
efficient than the ordinary batch means method. The
new method, even though general, will be specially
helpful in situations where the ordinary batch means
method fails. It will also be helpful in the situations
in which the estimation of ¢.i.'s for simulation outputs
where observations are hard or expensive to obtain

and only limited data are available.
DERIVATION OF THE NEW C.I. METHOD

Since the variance-covariance matrix Kz associated
with the batch means vector is real and symmetric, it
has a full set of orthonormal eigenvectors and can be
easily diagonalized to UT KU =A once U s
known [14]. The columns of U are just the unit
eigenvectors of Kz and these can be obtained once the

eigenvalues are known. In other words, we will have:

MO0 .. .0
OAXa . . .0
UTKzU=A=
O - }\.n
where:
KK . . .
U= | KK Kn’
NN A

and K/'s are the orthonormal eigenvectors associated
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with Kx such that:

Ki Kj=1 ; i=]
=0 ;0 1#]

i.e.; U is an orthogonal matrix and we have UTKzU=A.
On the other hand, since we are looking for some
weight schemes for the correlated batch means such
that the weighted batch means (random variables) are
uncorrelated, we want to ﬁave a linear transforma-
tion of the form: Y= DX such that the variance-
covariance matrix associated with the random vector
Y isdiagonal,i.e.; Ky = A and D is the weight matrix.

The mean vector (U, ) and the variance-covariance
matrix (K, ) associated with the random vector Y can

be derived as follows:

1= E(Y)= E(DX)= DE(X)= D px

K= E[(Y-u,) (Y-u,)"I= E[(Y-D pz) (Y-D px)T]
=E[DX- D pz) (DX- Dps)"] = E[D(X- po)] [D(X- )"
=E[D(X-p3) (X- p3)" DT|=DE[(X- px) (X- p)"] DT

= DK; D"

and we want KY=A, ie., DKx D'= A . we have seen

above thatU " Kx U = A. Then the comparison of the

last two equations D must equal U™,
The New Confidence Interval Method

Given the random vectors X A (il(m), iz(m),...,
ik(m))T and YA (Y,,Y,...., Y)7, we have seen that if
we apply the linear transformation to the random
vector i, (Y=D§), where D=UT and U is a matrix
with the unit eigenvectors of Kx along its columns,
then Y will be an uncorrelated random vector, i.e., all
of its & random components will be uncorrelated.
Now if we assume that the i; (m)’s (i=1,2,....k) are
normally distributed but correlated random variables
(an assumption which is not far from reality
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according to the central limit theorem, when each
batch mean contains a large number of observations),
then under this linear transformation, the random
vector Y will also have a normal distribution.
However, the components of Y will be uncorrelated
(and in the case of normal distribution they will
also be independent, hence they will be i.i.d jointly
normally distributed random variables). Now Y=

DX in expanded form is:
Y=DX +D X +.+D X i=1,....k

If we add the left hand sides of the above k equations

we obtain:

k k
Yi =2 z D;X;
j=1i=1

—

Now defining the weights W, (i= 1,2,..., k) as the sum
of the ith column of the D matrix, we have:

K kK
z Yi=) WX
i=1 =1

Since the Y's components are i.i.d normal random
variables, the variance of their summation is simply

the summation of the Amatrix diagc. al entries, i.e. :

k k k
Var Q) Y)=Y Var(Y)=3 A
i=1 i=1 i=1
where the A's are the eigenvalues of the variance-
covariance matrix associated with the random vector
X. The meanof the summation of the Y's components
can be derived from the mean of the process response
(for which we are looking to construct a c.i.). Know-
ing that the sample mean is an unbiased estimator of
the real process mean:
E[X ] = ux i=12,..k
and also since we assumed that the obser-

vations come from a steady - state simulation
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system i.e. :
Ux; = i=12,..,k
then:

E lz Y= (2 Wi

i=]
Now since Y 's are i.i.d. normal random variables,
their summation will also be a normal random vari-
able with a mean of:

k
Q. Win
=1

and a vanance of:

and we can have:

p|—

WXi- Q)

=1

k k —
% Z ; iX;

k

2 l)zz%]=1-a

Mw

1l
—_

If the summation of the weights is positive, we will

have:

k —_ Kk
> WXi- (3 AiZe Z WX+ (2 AR Zs

P =1 - i=I <u<1 i= _l_a
lW; ZWi

However, when the summation of the weights is

negative we will have;

ZW.X +(2)»1)2Zu 2wx1 (27\.1)22u

P i=1 i=! <u<l ! i=1 =l-o

> Wi Yy Wi
1=1

i=1

o
~
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where X;is the ith batch mean, W is equal to the sum
of the ith column of the D matrix, As are non-
negative eigenvalues of the variance-covariance
matrix associated with the random vector containing
is the upper (1-0/2)%
percentile of the standard normal distribution. Recall

the batch means, and Za/2

that the D matrix is the transpose of the matrix of
which the columns are the unit eigenvectors of the
variance-covariance matrix of the batch means. Also
note that since the eigenvalues are all non-negative,
their summation will also be non-negative and there
will not exist any difficulty computing the square
root.

The application of the new methodology will be
clearer through the following example in which the
variance-covariance matrix is assumed to be known.
However from the realization of a given stochastic
process (simulation output sequence) we need to
have an estimation of the variance-covariance matrix

which are discussed in [9, 14 - 18].
Numerical Example

Suppose that we make a single simulation run and
obtain n=1000 steady state observations on the sys-
tem performance (response). We want to obtain the
point and interval estimates for the average response
(1) based on the sample observations X Xoeois X0
Let the sample mean X(n) which in general isa
good point estimate because X(n) is an unbiased
estimator of yu. Suppose that we divide the sample
data into k =2 batches of size m=500 each. Let X =2

and §2=4 be the two batch means obtained from
m=500 observations in each batch. Also suppose that
we know that the variance-covariance matrix (Kg)

associated with the batch means has the following
values;

K;=,3 -1‘

-13
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Thenon-negative eigenvalues A, and A, associated
with the positive definite matrix Kx can be obtained

as follows:

det (Kx— Al =0

q -

3 ll-kll ()I):da{
13 01l

G-M=1=0=> A =4 | A=2

:>dd(

3-A -1 I)ZO
-1 3-A

and we have:
k=2
Y Ai=4+2=6
i=1

The unit eigenvectors K and K, can be obtained as

follows:
Kz-ADKi=0 = K=, - LT
2 2
(Kz- D) Ko= 0 = K= (o, )T
R

Then the U matrix whose columns are the unit eigen-

vectors is:
1 1
u-| Z
N S
2 2

Now the weight matrix (D) is simply the transpose

of the U matrix, i.c., :

1.1
D=12— 2
1 L
2 V7

and the weights are W, =Y2 and W,=0. Also we have:

k

2
Wi=ﬁ+0=v2—

and:
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k=2 _
2, WiXi=(2)(2) +(0) =22

i=1

Knowing that Z_ =1.96 for a=0.05, then the 95%

confidence interval on W is:

p| 22 - 4f6) (1.96) <2+ (6 (LIO] _1 .05=0.
z o

which gives:
P[-1.39 <u < 5.39]= 0.95
Note that the variance-covariance matrix

associated with the transformed random vector Y=DX

will be in the following form:

Ky= DK;DT =

A S-S
L s

which, as expected, is a diagonal matrix. In other
words, the random vector X with correlated compo-
nents was converted through the above linear trans-
formation to a random vector Y with uncorrelated
components. Also note that the eigenvalues are ob-

tained along the diagonal of the K, matrix.
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