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Abstract

optimal robot arm movements for processing a considered commitment of tasks, using the branch

In this paper a discrete competiive neural network 1s introduced to calculate the

and bound methodology. A special method based on the branch and bound methodoloy, modified
with a travelling path for adapting in the neural network, is introduced. The main neural network
of the system consists of different subnets, each of which is designed for a special propose. The
common neuron for competitive layers and the state presentation neurons for different layers are
also presented and used in the design of neural network architecture. Sigma Pl neurons are used to
increase the calculation’s performance. A case study with different commitments of tasks is
simulated and the results are compared with Hopfield and Tank net from different view points.
Key Words  Branch and Bound, Sequence Path, Compatative NNT, Cyclic Competition, Sigma
PI Neurons
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INTRODUCTION

Artificial neural networks take their names from
the networks of nerve cells in the human brain and
have structures similar to biological systems [1].
Recently the neural networks are finding
applications in various fields including adaptive
pattem recognition, adaptive signal processing,
adaptive dynamic modelling, adaptive control,
expert systems, and process control [2]. One of the
other specific applications of neural networks is the
robot arm movement. Igor Aleksander and Helen
Morton have suggested an architecture of three

major parts for the system of robot arm movement
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[3] as follows:

a sensory neural level,
a cognitive neural level, and

a conventional computing level.

In this paper the computational feature of the
neural network is exploited as the computing
level to calculate the optimal robot arm
movement for processing different commitments
of tasks. This problem is an NP complete problem
settled in Travelling Salesman Problem (TSP)

category.
Hopfield and Tank have used the nerral
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nctwork to solve the TSP, considering the
energy equation and using the heuristic meth-
odology to decrease the energy of the system at
each step [4]. Wilson and Pawley have reported
that the performance of Hopfield network is
poor and it gets poorer as the problem gets
larger. It does not solve larger problems reliably,
however in such a case the network often comes
up with a solution that contains segments that
arc locally optimal [5].

This paper presents a neural network to
calculate the optimal sequencing of robot arm
movements using the branch and bound
methodology. The robot processes different
commitments of m tasks that are chosen from a set
of n types (m Cn). The simulation results are com-
pared with those of Hopfield and Tank net from
different view points. The calculation time through
the present network is less than that of the Hopfield
and Tank method and it preserves its relative speed
even for m>10. Beyond this value, however, both
methods become slow.

STATE OF THE SYSTEM

A commitment of m tasks from n types is presented
to an intelligent robot for processing at a particular
time. For convenience, the tasks are of different
Lypes without loosing the generality. The objective
is the calculation of the optimal sequence of robot
arm movements to minimize the total operation
time. Clearly this is an NP complete TSP where the
robot arm movements are considered as the
travelling salesman and the tasks are playing the
role of different cities in TSP,

The objective function to be minimized is:
m m-1
T=2pk+2 dk(k+l)+dm0 (1)
k=1

k=0

where 7' is the total operation time of robot on m
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tasks. p, = p, ., if task i 1s considered in the k%
position of the sequence and dj . ;) = dj; if the tasks
i and j are considered in the & and (k+ 1) positions
of the sequence respectively. p; is the operation
time on task i and d;; is found from the following

formula:

d::

ij = max {rijv Vij} (2)

where rj; is the preparation time of robot for
operation on taks j after task i, and v; is the
movement time of the robot arm from the position
of task i to the position of taks j.

It must be noted that during the movement of
the robot arm, all, or some parts of the preparation
proceduce to the new task takes place. It depends
on which one (movement or preparation) takes
more time. In the last formula, d,; is the movement
(or preparation) time from the start position of the
robot arm to the position of task j (if itis considered
in the first position of the sequence). In the same
way the dj, is the movement time of the robot arm

from the position of the last task to the start

sequence 4, 2, 5; the objective function will be

written as:
T=pa+py+ps+dos+dg+dys+ds 3)

Noting that the operation times pis are fixed,
and they don’t affect the optimal conditions, the

objective function may be reduced to:
m-1
T= Z dk(k+1)+ dmo (4)
k=0

In the literature of optimization, the minim-
ization objective function is called the cost
function. In this paper the optimal movement
duration of the robot arm is called the cost function

to respect this routine.
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BRANCH AND BOUND TREE AND
SEQUENCING PATH

In this section, a branch and bound tree and the
adjacent travelling path to find different possible
sequences or subsequences of robot arm move-
ments are introduced. Figure 1 shows the branch
and bound tree and its adjacent travelling path for
sequencing of 4 movements. This tree consists of a
root node and the sequencing nodes divided at
different levels, where level i denotes the i
position in the sequence. Therefore, the node 4 in
the 2°¢ branch from the top of the 37 level in Figure
1 means that the movement of the arm for task 4 is
considered in the 3" position of the sequence in
that branch. The travelling path, shown with the
directed line, starts from the root node and retums
back to it. Each node becomes active (considered in
the sequence) passing from over it and is
inactivated (removed from the sequence) passing
from its underside. When the path is travelled
completely, all of m! permutations for m
movements are obtained [6].

In the branch and bound methodology, after
activation of each node the cost function (the
movement duration in the case of this paper) is
calculated for the subsequences generated by the
active nodes. If the calculated (current) cost
exceeds the last one obtained, the node is bypassed

2l el

= z -
allyg 1iiaciivdaica

continued line is travelled, the sequence 1, 2, 4 is
obtained. If the cost function of this subsequence
exceeds the last one obtained and saved as an
optimal (best) cost, node 4 will be bypassed.
Continuing this procedure, the subsequences (1, 2),
(D), (1,3),(1, 3, 2), ... will be obtained respectively.

Using a set of m layers of m binary cells, the
whole branch and bound tree can be represented by

the layered mxm cells. Each layer represents the
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corresponding level in the branch and bound tree.
Forward and backward movements through the
layers will be the projections of the travelling in the
left to right and right to left directions of the branch
and bound tree respectively. Activation of the i
cell in the j# layer corresponds to the activation of
node  in the j# level of branch and bound tree. This
mapping is used in the design of the neural network
for branch and bound calculations. To put the
concept in an appropriate perspective, first a
general foundation of neural network along with
some special proposed neurons and activation

rules, is in the next section.

travelling-
Ppath

Level

Level

ILevel
3
2

Figure 1. Branch and bound tree for 4 movements and its
adjacent travelling path to find different sequences. Level i
represents the i position in the sequence. The nodes of the
last level are leaves. Reaching a leave means that all the
movements are taken into account.
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NEURAL NETWORK FOUNDATIONS

Processing elements (PEs), also referred to as
nodes, short term memories (STM), neurons,
populations, or threshold logic units, which
perform simple computations, are the basic
components of artificial neural networks [7].
Figure 2 displays the anatomy of a generic
processing unit, which will be called simply “a
unit” in this paper, and form an input vector A =
(a, ..., a;, ..., a,), where q; is the activity level
(output) of the unit i. Associated with each
connected pair of units is a fixed or adjustable
value called a weight (also referred to as a long
term memory). The collection of weights that abuts
the unit j forms a vector W; = (wWy;, ..., wij, ..., W),
where the weight w;; represents the connection
strength from the unit a; to the unit b;. An
additional parameter §; modulated by the weight
wy;, which is commonly taken to be unity, is
considered for some units as internal threshold.
The weights W, their associated unit values A, and
the possible extra parameter 8;, are used to

compute the output value b;. This computation is

(a)

typically taking the dot product of A and W,
subtracting the threshold to find the net value
absorbed by the unit and passing it through an
activation (threshold) function f( ). Mathematically
these procedures are defined as

net;= Za;w;j - w; 0 5)
or more precisely,

net; = Xa;w; -0 (6-a)
and

b; = f(net) @)

where the net; is the net value absorbed by the unit
j. The threshold values will be considered as 8
instead of w8 from now. The negative threshold
value is commonly called the bias value and in this
case the net; will be found from the following

equation

netj= Ea,’W,'j +0 (6-b)

(b)

Figure 2. Anatomy of the generic unit j. Input units from the vector A = (@, ,..., a,). The threshold is 6. The connection strengths
are represented by the weight values Wy and the threshold is being assigned to the weight W (a) Bj 1s considered as threshold

value. (b) G} 1s considered as bias value.
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Sigma PI Units

In the anatomy of Figure 2, a simple additive unit is
assumed where the net value absorbed by the unit is
given by (6). This is certainly the most common
form used in most of the models. Sometimes
however, multiplicative connections are used
where the output values of two (or more) units are
multiplied before entering into the sum. Such a
multiplicative connection allows one unit to gate
another. Thus, if one unit of the multiplicative pair
is zero, the other unit of the gate can have no effect.
The Sigma Pi (SP) units are suggested by Crick and
Asanuma for this type of connections [8]. The net
value of a SP unit is

netj=2w,-jr1a,-1a,-2... a;x (8)

where a;;, aj,..., ay are the outputs of k conjunct
units connected to the i*# gate of the SP unit. If the
SP unit contains only one gate, the net value will be
simply the weighted product of the outputs of the

conjunct units
netj= Wij l'Ia,-la,-z iy (9)

and it will be called the Pi unit. The anatomy of SP
and Pi units are shown in Figure 3.

Activation Rules

Activation functions, also referred to as threshold
functions, map the net values of units to their
output values. Four common activation functions
are the linear, ramp, step and sigmoid (S shaped)
functions [7].

The linear function has the equation

f(x)=ox (10)
where o is a real-valued constant that regulates the
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magnification of the unit’s activity x.

When the linear function is bounded to the
range [-%,+y], (10) becomes the nonlinear ramp
function described by

+y ifx>%
fx)={x ifx<y¢vy (1D
v if x<-y

where y(-y) is the maximum (minimum) output
value of the unit, which is commonly referred to as
the saturation level.

H (a)
[ ]
[ J
L ]
[ ]
a .
i1
Wi
- b
a;,0 5
[ ]
M Detf“’unaﬂ
k
a;y b3=f(netj)
[ ]
®
[ J

Figure 3. The Anatomy of Sigma Pi and Pi units. (a) Sigma
Pi unit, (b) P1 unit
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If the activation function responds only to the
sign of the input, emitting +7y if the x is positive and
-8 if it is not, then the activation function is called a
step function, where y and & are positive scalars.
The step activation function is mathematically

characterized by

{-FY if x>0

f(x)= (12)

l-S otherwise

Equation 12 is often binary, emitting 1 if x > 0. and
0 if otherwise.

The sigmoid function is a bounded monotonic,
non-decreasing function that provides a graded,
nonlinear response. A common sigmoid function is

the logistic funciton

f (x) = (1+ex)1 (13
which has its saturation levels at 0 and 1. Two
other sigmoid functions are the hyperbolic
tangent

f (x) = tanh (x) (14)

with the saturation levels at -1 and 1; and the

augmented ratio of squares

x2/(1+x3) x>0
f(x)= (15)
0 otherwise

In this paper the linear and the binary step

functions are used as activation functions.
Competition Rules

A competitive set is a set of units which act through

competition and inhibition in opposition to one
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another. The activation rule tor the unit j of a
competitive set is the following modification of the
activation rule using the binary step activation

function:

{1 if net;>0 and netj = max {net;}

bj=

(16)

lO otherwise

This equation denotes that unit j of the
competitive set will be active (it wins the
competition) if its net value is positive and has a
miximum value among all other units of the set.
Commonly each unit has an inhibitive connection
(normally with negative unity weight) to all other
units and an exciting recurrent connection
(normally with unity weight) as considered in this
paper and shown in Figure 4. Under the same
conditions (equal net values) the topper unit, with

the least index, 1s considered as the winner.
Cyclic Competition Rule

This is another version of competition procedure
used by Rumelhart and Zipser [9], and Grosberg
[10] for pattern classification, manipulated for
branch and bound calculations and other
applications.

According to this rule, if the winner becomes
inactive instantaneously (shocked) by an external
unit, the state of the set will change to the
competition state, Figure 4(a), and the competition
will take place between the units with positive net
values excluding the last winner. By this way after
imposing a sequence of shocks to the net, the
winner units of Figure 4 will be i, £, and n, Figure
4(b), respectively. Regarding that units ‘l and n are
neighbors, if the net value of the first unit was 2
(net; = 2), it would be the next winner after

imposing a new shock.
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NEURAL NETWORK ARCHITECTURE
AND DYNAMICS OF BRANCH AND BOUND
CALCULATIONS

The neural network of branch and bound
sequencing is a discrete network consisting of a
hierarchical collection of four main subnets called:
Sequencing, layer recognition, cost calculation,
and processing control subnets. It also contains two
special proposed units named common unit and
optimal cost memory. Figure 5 shows the
schematic representation of this architecture. The
doubled lines show the communication links
between different subnets.

As itis shown in Figure 5, the input layer (I) and
layer recognition subnet (R) have single array
representations while the sequencing subnet (S) is
presented in a grid form as a set of different layers
for convenience. The common unit (P) is also
included in this subnet. The cost calculation subnet

net .=
j 1

Next
wWinnex

(a) (b)

Figure 4. A set of competitive units with corresponding net
values. Each unit has a negative unity inhibitive connection
to other units and a unity exciting recurrent connection.
Units 1 and n are neighbors. (a) competition takes place
between the units with positive net values. (b) unit { wins
and becomes active (its output value is set to 1). The cycle
line shows the direction of cyclic competition, which implies
that after the unit , units £ and n will be the winners.
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consists of a grid of data table units (T), and a
single unit called current cost unit (C). The process
control subnet (PCS) includes the optimal cost
memory (B), counter (U), comparison (M),
backward (F) and the end of optimization
procedure (E) units. In this scheme the common
and optimal cost units are specially proposed units.

The generalized dynamics of the system may be
described as follows: a commitment of m tasks is
presented to the system by the input pattern. At
each iteration, a new sequence (subsequence) of
robot arm movements is found by activation of
appropriate unit in each layer of the sequencing
grid. If the cost of sequence (subsequence) is less
than the last cost saved as the optimal (best) one,
and the number of layers containing a winner is less
than m (a leaf of branch and bound tree is not
reached), the forward process will continue.
Otherwise, the backward process is performed.

In the following subsections, the dynamics of
different subnets, the activation rules of various
units, their interconnections in the mentioned
subnets and their usage are presented in more
details, where the following symbols are used to

clarify the descriptions.

L; unit i of input layer
i output of [;

— | s
O @ ® 1OOOE O
| ll
© ©
61 @@@ () o) e )

Figure 5. The schematic representation of the branch and
bound sequencing neural system
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R, unit i of layer recognition subnet

T output of R;

unit in the i** row and j*» column of
sequencing grid

Sij output of S;;

ij unit in i row and j* column of data table
grid

output of Tj;

common (public!) unit

output of P

current cost unit

output of C

optimal (best) cost’s memory.

output of B

backward unit

output of F

counter unit

output of U

comparison unit

output of M

end of optimization (movement signal) unit
output of E

®°mpBgZTE "M TWEe AT TS

The activation functions of all the units, except
the current cost and optimal cost units, which
follow the linear activation functions, are binary
step functions.

Appropriate numbers of indexes are used for
weights (one for single arrays and two for grids).

Characteristic letters of different subnets are
used in parentheses as subscripts of weights to
clarify the origins and targets of the connection.
For example, wy ; j  (r) ; means the weight of the
connection link from the unit S;; of the sequencing
grid to the unit R; of the layer recognition subnet,
w(t)ij,(c) Tepresents the weight of the unit T); of the
data table grid to the current cost unit and so on.

Finally, when a set of weights are considered to
follow a special constraint, such as (18), they are

assumed to have the same values.
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Input Layer

The units of this layer are connected to all
appropriate units in the sequencing grid such that
each I; is connected to the appropriate units S;;.
Figure 6 shows these connections.

Sequencing Grid

All the units of this grid have a threshold value of
and are classified into different layers. Considering
the following connections,

Weisij=60, j#l 17)

Weimin>0, Jj=1 (18)

according to the cyclic competition rule, after
representing a new commitment to the input layer,
the competition takes place only between the units
corresponding to the input pattern in the first layer
(with positive net values) and one of them becomes
active (fires) as the winner.

In this grid, each unit of layer is fully connected
to all the units of the next layer, and has inhibitive

o

P
-
®

\Q
!
\@5

Figure 6. Connections between the units of input layer and
the sequencing grid. Each unit /; is connected to the
appropriate units S i
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connection to all the units of the same row and the
same layer and a recurrent exciting connection.
Figure 7 shows the general architecture of this grid.

By choosing appropriate weights satisfying the
following constraint

$i Wi ork HinWey o nie> 0, (19

for i=1,..,n1, j=2,..,n,
h=1,...,n, h#i, k=j+1

after activation of the winner unit of each layer, the
competition takes place only between the units of
the next layer corresponding to the input pattern
(commitment). Figure 8 represents an illustrative
excample of the active units for the sequence 3, 8,
1, 5, 4 in a commitment of m=5 tasks.

The layer Recognition Subnet

This subnet is a set of m units where its j*# unit
corresponds to the jt» layer of the sequencing grid with

exciting and inhibitive connections as shown in Figure 9;

1 J Jj+1 n

[l

O OO T &L W —

—
=

123465

6 789 10

O0®O00
00000
®0000
0O000®
0O00®O
00000
00000
0O®000
00000

00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

Figure 7. The units of the sequencing grid are classified into
different layers. Each unit §;. has a threshold value 6. It is
fully connected to all the units of the next layer, has an
inhibitive connection to all the units in the same row and the
same layer and an exciting recurrent connection.
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S

Figure 8. Active units marked by tokens in circles,
represent the sequence 3, 8, 1, 5, 4 of a commitment of
5 tasks.

Figure 9. Schematic representation of the layer
recognition subnet and its connections. Each unit j of
this subnet receives and exciting connection from all
the units of the j* layer in the sequencing grid and has
an inhibitive connection to the previous unit of the
subnet and to all units of the j* layer in the
sequencing grid.
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where

WR) (R =WiS)hi (R) (20)
for i h=1,....n j=i+1l

According to these connections. when one of
the units of a layer (say layer j) in sequencing grid
becomes active (wins), the corresponding unit of
the layer recognition subnet becomes active as
well. Tt inactivates the preceding unit of the subnet
while decreasing the net value of the units of the j#
layer. This procedure will be useful in the
backward procedure. The schematic representation

of this subnet is shown in Figure 9.
Common Unit

This unit is common between all the layers of
sequencing grid. It participates in the competition
with the units of each layer, which is in the
competition state (its units are competing). This

unit has a bias value of 8 > 0 such that
5 iWesij hk FERWr b bk - 6> o, (21)
for i,jh=1,...n h+i, k=j+1

This condition forces the common unit to be
the last one that wins in the competition of a
layer. After inactivation of this unit, the next
cycle of competition will start from the top of the
layer in the next shock imposed to its units.
Considering that the j# layer was in the
competition state, activation of this unit means
that it was not possible to consider a new task
(arm movement) in the j* position of the
sequence (there was not a real winner). This unit
has a bilateral connection to the backward unit

with the following weights
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W(p), (F) = a great value (22)
W(Fj,(P)<_6 (23)

According to (22) and (23) the common unit
activates only the backward unit and becomes
inactive instantly by the activation of the backward
unit, which again inactivates the backward unit in
turn. This mutual activation and inactivation
between the two units causes the generation of a
backward impluse (shock) by the backward unit.
When the common unit becomes the winner of the
first layer of the sequencing grid, the optimization

procedure terminates.
Cost Calculation Subnet

This subnet consists of an (n+1) x (n+1) grid of the
data table units and the current cost unit as shown
in Figure 10.

All the units of the data table grid are P1 type

with the following connections to the current cost

unit
Wirij.(c) =dij (24)
for i,j=0,..,n

consequently,

et =El,‘j W(T)ij.() (25)

or considering (24) and binary step activation rule
for Ty,

nete,=2d;; (26)

where the summation is done for the active units of
the data table grid. On the other hand, all of the i*

and j** units of two adjacent layers of the
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sequencing grid, say g and (g+1)* layers
respectively, are connected to one of the gates of
the unit T; in this grid. Each unit j of the first
column in the sequencing grid is connected to the
single gate of the unit Ty; in this grid. Each unit R;
of the layer recognition unit is also connected to
one of the gates of T, in conjunction with one of
the S;. In this way, considering as an example the
active units of the sequencing grid in Figure 8, the
active units of the data table grid will be ty3=t3g =
tg; = t;5 = ts4 = tgo = 1, and net; = dgz + dsg + dg; +
d,s + ds4 +d49 as shown in Figure 11. The current

cost unit uses the linear rule for activation, that is
Cc= net(c) (27)

where net,, and c represent the net and output

values of the current cost unit, respectively.
Process Control Subnet

The purpose of this subnet is to control forward and

Figure 10. Schematic representation of the cost calculations
subnet containing the data table grid and cumrent cost unit.
The units of data table grid are Sigma Pi type with conjunct
inputs to different gates. The units i and j of two successive
layers are connected to different gates of T,. S, units are
connected to T . while Rj and S,; units are connected to the
different gates of T, .
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backward processing of the system and save the
updated optimal cost. This subnets includes the
optimal cost memory, counter, comparison,
backward and end of optimization (movement
signal) units, as have been mentioned previously.
The connections of these units are shown in Figure
12 and will be discussed below.

Counter unit counts the number of tasks in the

123456782910

10010001 9/010191 81!
10101818/0/0/019191 8@
19101010:010:918181019!
1910/0:0!9181 010101910
1019101019191818/0:919!
19101019101818! 910919
191010/0/91810/0:01819!
10101010/0/0:0'91 81949
191010101819/010:91918!
19191010/0/0:0!91 81919
1919191919191019!0/019:!

T

Figure 11. Active units of data table grid (marker by tokens)
corresponding to the active units of sequencing grid in
Figure 8.

S O O 90O Nm WMN —©

—

From [ (inhibitive) and st (exciting)

1l PCcs =
From R, == \gx?ﬁ' From R,

© ®

Figure 12. Process control subnet consisting of the optimal
cost memory (B), counter (U), comparison (M), backward
(F) and end of optimization (E) units.
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commitment and limits the sequencing grid
processing to the first m layers for m tasks. It has a
threshold value of ¢ (a very small positive value)
and becomes active if all the tasks are considered in
the sequence. That is, if the commitment consists
of m tasks, then ner,,) becomes positive if each of
the first m layers has an active unit (winner).
Activation of this unit causes updating of the
optimal cost (if it is modified) and performing the
backward processing.

Comparison unit compares the current cost and
last optimal (best) cost, saved in the optimal cost
unit. It becomes active if the current cost is less
than the saved cost.

Optimal cost memory is a collection of cells to
save the optimal cost. Takeda and Goodman [11],
proposed several schemes for developing any real
number on to the unit state space and Takashi
Nakatsuji and Terutoshi Kaku [12], have
introduced an adaptation of the group-and-weight
scheme for data handling. This paper does not deal
with the methodology of handling the neural nets
as a memory place. The interested readers are
referred to the mentioned references. Hear it is
considered that the last cost value is saved in an
optimal cost unit as its net value and can be
retrieved from its output; That is:

b= net(B) (28)

where netp) and b are the net and output values of
the optimal cost unit, respectively. The net, is

calculated following the PI rule that is:
netg)=Wic.um) (- C.-U.m 29

where the wc, y, m) , () denotes the weight of the
conjunct units C, U and M entering the single gate
of the optimal cost memory. Considering the unity

- P .
ion \1‘9) may be writtan
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more precisely as:

netg)=c.u. m (30)

Equation 30 denotes that if counter and
comparison units are active (all the tasks are taken
into account and the current cost is less than the
saved on) then the current cost is assigned to the
net,. The ner, remains unchanged if the right hand
side of (30) is zero.

The backward unit follows the binary step
activation function with the bias

6 =¢ (31)

where 6, is the bias of the backward unit and €1s a
very small positive value. The net value of this unit

is computed from the following equation

l’l(f[(p) = PwWp), (F) + CWBj , (F) - bW{B) (F) + 9f (32)

which means that this unit becomes active if the
common unit is active or current cost is greater than
or equal to the optimal cost (saved in the optimal
cost memory). Evidently, when all the tasks are
considered in the sequence, the optimal cost is
updated as mentioned earlier, and the backward
unit becomes active immediately.

This unit has inhibitive connections to all the

units of the sequencing grid such that

LWy ik T Sij Wisyij, (s)nk Y TWE) (s) me > 0 (33)

and

EWiryi (s) mkESij Wis) ij. (st SWeR) - (s) et Tk Werjk (s < O

(34)

o

Considering (33) and (34), activation of this
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competition state, which is recognized by the layer
recognition subnet, to become negative, leading 1o
inactivation of the winner. The remaining net
values remain positive and their winners remain
active. If the last winner is the cormgnon o,
according (o its mutual activation and inactivation
with the backward unit (as mentioned in
subsecction 4) the hackward unit becomes active
after producing a backward shock. M thie L
winner is a S, unit, ks inactivation causes i
imactivation of the corresponding 7, and
consequently subtracting o, from the current cost.
This procedure causes the net,to becomne negative
and the backward unit to be inactivated. Therefore
in any way the backward unit seacrates o
backward shock to the active layer of e
sequencing grid (the last layer, which was in ihe
competition state) to continue the cyclic
competition,

Inactivation of the last winner in a layer /.
causes the layer recognition unit of the preceding
layer to become active instantly, and recasoning so
until the activation of a new winner in layer j. if
the last winner was the common unit, the cyche
competition will continue in the preceding layer.
The end of optimization unit has a bias value of ¢,
that 1s, when all of 1its input values becom zero,
then neryy = € > 0. All the R bave an inhibitive
connection to the end of optimization unit;
theretfore, if at least one of the R, 1s active (system
Is in the optimization state), this unit remains
Inactive and it becomes active if all the &,
become inactive (end of the oplimization

procedure).

SIMULATION RESULTS
The designed system s simulated for differemt
commitments of tasks. The sets of ien types of

tasks are considered as the main collections., out of
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which five different commiuments of 4, 5, 9 and 10
tasks arc simulated in wrn. The results are
compared with those of Hopfield and Tank method
Figure 13 shows the results.

All the values are normalized and in cach box
the musumum value is set to unity. The dark bars
represent the values of the branch and bound
method where the clear bars depict the Hopfield
and Tank method. The bars of (a4) boxes compare
the total number of iterations to find all the possible
permutations considering that in the Hopficld
method m! random sequences are generated for the
commitment of m tasks. The (by boxes compare the
itcration number in which the optimal cost (usually
the hest cost i the case of Hopficld and Tank
method) is obtained. The (¢) boxes show the
optiaal cost obtained using cach of the methods.
The (d) boxes show the cost value in the Hopficld
and Tank mcthod when (that is the same iteration)
the optimal cost is obtained by the branch and
bound net,

The critical condition for the branch and bound
net artses when the optimal sequencing is the
descending order obtained in the last branch (ex.
sequence 4.3, 2, 1 for four tasks). The two methods
are simulated also for this condition and the results
are shown in Figure 14, As itis scen inthe Figure,
in this sitaation, the Hopfield and Tank micthod is
better for a few number of tasks, but for more tisks
the branch and bound network responds more
appropriately.

In the case of a real time problem. when the
calculaiions may stop before considering wll the m!
permutations, the results obtained by the branch
and bound method are preferabie. When all the m!
permutattons are considered. the problem of
rehiability arnses in the case of Hopiield and Tank
net where in the branch and bound net all the
permutations are considered in a relatively short

calculation time,
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Figure 13. Simulation results for different commitments of
4,5, 9 and 10 tasks. The clear bars in the boxes represent the
values of Hopfield and Tank net while the dark bars are used
for the representation of branch and bound net. The values
are normalized such that the bigger value is set to unity. (a)
boxes show the total number of iterations (changing the state
of the system) to find the optimal sequence. (b) boxes
compare the iteration in which the optimal (best) solution is
obtained. (c) boxes show the optimal cost function obtained
by each method. (d) boxes compare the cost function of the
two methods when the optimal value is found by the branch
and bound net. The results obtained to commitments of 6, 7
and 8 tasks (not shown in this figure) are similar to the bars
of 9 and 10 tasks.

CONCLUSION

An artificial neural network for calculation of
optimal sequencing of robot arm movement is
introduced while exploiting the computational
feature of the neural networks. This problem is in
TSP category, which is classified as an NP
complete problem. some special proposed neurons,
cyclic competition and the shock phenomena are
introduced in the architecture of this network. A
case study with different commitments of tasks is
simulated. The results show that the system is
relatively reliable and the calculation time is
satisfying. The proposed network may be a good
suggestion for further studies of neural network
utilization in branch and bound calculations.
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