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‘Abstract
systems’’ in control theory and summarizes some of the recent developments in this area. Discrete event systems is

This article is a brief exposure of the process approach to a newly emerging area called “discrete event

an area of research that is developing within the interstices of computer, control and communication sciences. The
basic direction of research addresses issues in the analysis and design of distributed intelligent systems operating
within real time constraints. The article focuses on the concepts of an algebraic process approach and formulates
supervisory control problems in this framework.
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INTRODUCTION

"The concept of a discrete event models an
instance that causes a qualitative change in a
system. For example in a data communication
network the instance of requesting to send data
or the instance of transmitting a single
packet of data may be represented by
the events send-data-request and packet-
transmitted respectively. Similarly in a flexible
manufacturing system:

part-a-arrived; part-b-arrived; start-process

is a possible sequence of events. A logical model
‘of a discrete event system is a formal description
of possible sequence of events that can occur.
There are two factors that constrain the event
sequences. The first one is the physical
possibility of a sequence. For example the
event packet-a-transmitted must precede the
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‘event packer-a-received in a possible event

sequence, The second factor is logical design
constraints. For example in a communication
protocol it is usually desired that the receiver
receives the data packets in the order demanded
by the transmitting side. Therefore the logic of
the protocol must impose this constraint so that
if the event packer-n-received is followed
by packet-m-received then m = n + 1. In more
complex instances both the systemdescriptionand
the specification require formal logical models.
The problem of verification is to check whether
the formal description of the system satisfies the
formal specification. In realistic applications the
complexity of underlying logical models may be
intractable due to a large amount of parallelism
involved in performing numerous tasks
simultaneously. Therefore unlike conventional

.
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dynamical problems, the complexity of logical
discrete event systems is not due to the size of
the arithmetic operations involved, instead it
stems from the requirement of generating and
observing events in appropriate sequences.

The origins of logical discrete event systems
lie in efforts to build semantic models for
parallel computer languages. Among various
approaches to this problem two well-known ones
are the “Communicating Sequential Processes”
(CSP) of Hoare [1) and “A Calculus for
Communicating Systems” (CCS) of Milner [2] The
data flow approach of [3] addresses issues in
paralle]l signal or data processing problems.
Various logical models have been used for
discrete event systems. Finite state machines,
Petri-nets [4], temporal logic [5] and process
models of Hoare and its derivatives such as
finitely recursive marked processes [6,71 are
among these. Some of these models have been
used as tools for solving the verification problem
discussed above. Recently Ramadge and
Wonham have introduced a control dimension to
this problem in their supervisory control
formulation of disctete event systems [8l. Here a
controller is introduced to force a system (plant)
to obey a given logical specification. Among
basic extensions to this approach are supervision
under partial observations and decentralized
supervision problems [9,10].

The literature on stochastic and timed
discrete event systems is much more developed.
Here the question addressed is the performance
of such systems in terms of efficiency measures
such as throughput and delay in various services
offered to users. To a large extent these models
coincide with the Markov models used in
queueing theory and its extensions in various
directions. A relatively recent arca of intercst is
deterministic timed models which could serve as
a bridge between the logical and stochastic
models. The algebraic approach in [11] extends
some linear-system-theoretic concepts to a
restricted class of timed petri-nets with
applications in parallel signal processing and
manufacturing systems.
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In this paper we focus the discussion on a
recent approach in modeling and control of
discrete event systems based on the algebra of
processes. In particular we develop the relevant
concepts of the process approach and formulate
supervisory control problems in terms of these
concepts.

'ALGEBRA OF PROCESSES

Before we proceed with the process definition

we first define the finite state machine (FSM)
model for a discrete event system. An event
driven state machine is given by S:=(A4, X, 8,x,
X;) where A is a finite set of events (event
alphabet), X is the set of states, 8: X x4 - X is
a partial function called the transition function,
x, is the initial state and X, is a subset of
X usually referred to as the final set of states.
S is called a finite state machine if X is a finite
set, If § is defined on the pair (x, a) then the
event transition < a > is said to be allowed at
the state x and the next state of the system is
given by 8(x, aj. The partial function & can be
extended to event strings s by applying
& consecutively to the eventsin s starting from
the initial state. The resulting partial function is
called the transitive closure of & and is denoted
by &*. Associated with a state machine § is a set
of event strings L such that a string 5 belongs to
L iff 8 (x, 5) is defined. L is called the
language generated by S. The subset of
L denoted by L, such that s € LI iff 5% (x,,5)
€ X, is called the language recognized by S. It is
well known that the set of languages generated
or recognized by finite state machines is the set
of regular languages (121

Now let 4* denote the set of all finite event
sequences with events from A. Following Hoare’s
terminology we call each element (string) in
A * a trace. If s and ¢ are traces then
5~ 1 denotes the trace obtained by concatenating
s and t. In order to distinguish the event a from
a trace consisting of that single event we use
<a> to denote the latter. Let < > denote the
empty trace and let C(A4) denote the set of all
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prefix-closed subsets K (ie s~ t € K= 5 € K)
of A*. A (deterministic) process P is defined as
a triple (¢rP, oP, tP}where trP is an element of
C(A) and oP, and 1P are functions mapping
{rP into the sets 24 and (0,1}, respectively. The
functions ot P and tP are called the event
control and rermination functions, respectively.
Let IT denote the set of all such processes. We
define a partial order on IT by letting;

P corQ
aP(s) = Q)
TP(=10(

VseirP
VserP

P<Q=

P is called a subprocess of Q iff P Q. A
chain in Il is an infinite nondecreasing sequence
of processes and the limit of the chain is defined
as the least upper bound of the sequence. The
partial order defined above is complete in the
sensc that every chain in IT has a limit in I1. In
fact if {P_} is a chain then its least upper bound
denoted U, P, is given by

Uk Pi) =Uktr P
‘and if s €1 P; for some then

o(Uk Pr) (5)=ot Pi(s)
Uk P} (s)=1 Pj(s)

The calculus of processes consists of two basic
operations on II. The post-process of a process
P denoted by P/s is defined as;

tr(P/s):=(t€ A*|s"tEWr P)
Q(P/sHD):. =t P(s™1)
WP/ . =1P(s™D)

provided that 5 € tr P. The converse operation is
called the choice function. Let P,...,Pn be
processes in I1, let a,,.., a, be distinct events in
A and let o, and 1, be elements in 24 and {0,1),
respectively. Then the choice operation denoted
by

-Q =(al_'Pl I“'] an _>P")(C‘0110)
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is defined as follows:
7er: =[<>]U}l1(<af>‘r,'1tjeter)
aQ(<aj> 1) = Pj(t))
12(<ap> ") =1Pi(t))

‘and the initial condition requirement is satisficd,

that is,

o). =0
()Y =10

"The fundamental relation of process calculus

relates the post-process and choice operations as
the converses of each other as given by the
following formula

P =(@1—=P/<ai>|--lan—Pl<an >2£¢p(<>),1}’(<>)) ‘7(1)

“where the set {<a >,..,<a,>) denotes the set of all

single event traces of P.

The principle advantage of process
formulation lies in the possibility of defining
funcitions on processes. For example the post-
process operation P/s is a partial function
defined on those proceses in IT that have s as a
trace. On the other hand the choice function,
maps I17 into IT for a given initial condition
pair (ot ,, 1,). The trace-length-projection
operation PTn is another basic function on II
defined by

r(PTn):=(s€trP\# s<n)

“where # 5 denotes the length (no. of events) of

the trace s and the event control and termination
functions of PTn are the restrictions of those of
P 1o the traces P T n.

A function F: [1-11is called continuous if
for every chain {P; }in I1,{F(P;)}is also a chain
inIT and
' Ui F(P)= F(U; P)) @
F is said to be strictly causal if

FPT)T(n+D=F(P)T{n+1)

and causal if
F(PTm)Tn=F(P)In
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“These definitions according to Hoare [1] are the
discrete event counter-parts of the usual
causality definitions for conventional dynamical
systems. If F has several arguments then the
above definitions are extended by applying them
to each argument one at a time. The properties
of continuity, causality and strict causality are
all preserved under functional compositions. In
addition if only a single stage in a composed
chain is strictly causal, the others being plain
causal, then the composed function is strictly
causal.

Next we relate the process definition above
to the state machine definition by constructing
an abstract state machine Sp: = (4, Xp,
§x, X ) corresponding to a given process P by
letting Xp to be the set of all post-processes of
P and defining the transition function as

'_S(x,a): =x/<a>

‘A post-process x € X, iff w (< >) = 1. Itcan
be shown that the language generated by Sp is
equal to trP under this construction.

In order to use processes as discrete event
system models one has to construct finite
representations for processes. The basic tool in
doing this is recursion coupled to algebraic
functions. Consider the simple recursive equation

Y=(a-Y)(,10)
‘A process Y, that satisfies this equation is
given by:

tr¥sof={a)*:=(an|nz0)
aYsol(s)=0to
Ysi(s)=To

“In order to arrive at this solution via a recursive
recipe first define the process HAL T{o ,
1,) as the process with only the empty trace
< > and

oLHALT (04,,1,) (< D): = Olo
IHALT(&,,,'[O)(( Ni=1o

"Then we construct the following fixed point
iteration:

Yi=@Y )
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Pl Q)<a>

‘with Y,; = HALT(a,, 1,). It can be shown that

the sequence {Y;} is a chain and it converges to
Y,,; given above as its limit where this limit is a
solution to the recursive equation. Moreover it
can be shown that the solution Y, is unique.
The following theorem is a gencralization of the

simple example given above.

‘Theorem

Consider the recursive equation

X = F(X) ¢

‘where X € 17 and F: 11" T1". Suppose that

Z € Tl " satisfies the initial condition

requirement:

“Zk=Fi{Z)T0 (@)

for k=1,...,n where the subscript k refers to the

kth component of the vectors Z and F. There
exists a unique minimal solution X = X to
equation (3) subject to the initial condition
constraint X, To = £, k = 1.1 provided
that each F, is a continuous function. By
minimal it is meant that if X’ is another
solution to the same equation and subject to

the same initial condition constraint then for
each k, X, <X",.
If, in addition, each F_is strictly causal then
the solution X is unique

In order to enrich the algebraic structure of
recursively represented processes we define (wo
further operators on them. The first is the
parallel operator operating on two Drocesses
P and Q and yielding a new process denoted by
P || Q. The definition proceeds inductively by
first letting

Ta(P| Q) = o PO)YU Q<)
WP 0) (<) = Min(1P(¢>),10(< >))

“and by defining the one-step progress rule for a

possible transition <a > as follows:

Tri=(Piay||@fcad.if<arewrPRrg
[ i=(P/<a>||O)ifca>etr PAirQ AagoQ(<>)
l 1= (P @/<ad)ifca>etrQ\tr P Aag oP(<D)
undefined otherwise
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By using the transitivity of the post-process
operation, that is (P/s)/t = P/(s ~t), the
definition above can be completed inductively to
cover all the traces of P || Q. According to the
definition above each argument process of the
parallel operator can progress individually unless
they synchronize on a common transition or one
process is blocked by the other one. The parallel
operator is associative, commutative and causal
but not necessarily continuous. As an example
consider the processes P, @ and P where

P =[O,<ad)
trP=[K>,<a><bd)
rQ@={>,<b>)

where

aP’ =P ={a}; 0Q(< >) = (b}
and termination functions are all identically 0.
Clearly P <P, yet

(P @Q={><a>,<b>, ab)

whereas

(P )| @) ={<>,<a>,<b>,ab,ba)
so that

(POy2(PIIQ)

and the monotonocity requirement of continuity
is violated. There is an important class of
processes on which the parallel operator is
continuous. Define a process P to be proper if
it satisfies

(5"<a>€EirP)=> aeoP(s)

and let I1, denote the set of all proper processes
in 1. Then the parallel operator can be shown to
be continuous on the set I, x I, Note that the
process P in the example above was not proper.
Therefore in view of the theorem above if the
parallel operator appears on the right side of a
recursive definition its arguments must be proper
processes for the recursion to have a solution.
Another important operator is the sequential
operator. Let P, 0 be processes and define the
scquential composition P;Q by first letting
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P PO, if TP(<) =0

(P ()= o Q(<>), otherwise

and
0,if TP(<>)=0

P :=
URD©) 10(<>), otherwise

“Traces are inductively defined by

(P 1<a>); Q. fP(<)=0A<a>e trP
(P, Q) (<a): ={ Qj<a> TP (<>)=1A<a>€ tr{Q
undefined atherwise
The sequential operator is an associative,

continuous and causal operator. In order to
exhibit the expressive power of the sequential
operator consider the following recursion:

P=(a—P;Q\b— HALT ((c}.1) X{{a,b},0)
Q= (c— HALT({}.1)X({c),0)

"It can be shown that the recursion has a unique

solution and the solution process P has traces
given by:

trP=(anbc|n20)

‘It is well-known that the language corresponding

to trP above is a language generated by a
context-free grammar [12) and therefore is
non-regular and cannot be gencrated by a finite
state machine,

We conclude this section by summarizing the
idea behind a finitely recursive process over a
given algebra. Consider the following recursive
representation

X = F(X)

Y =G(X) ®

“where each F,, is of the following form

Fr(X)=(@k—~F1eX) | | @ngk= Frape(X)) (Ookrtok)

~Each function [z consists of arbitrary number of

composition of functions from a given fixed
collection. For example if the collection consists
only of the sequential and parallel operators
defined above then each fii consists of arbitrary
sequence of parallel and sequential operations
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operating on any of the argument processes
X ;... X,. This idea can be formalized by a set
whose elements consist of functions that are
arbitrary compositions of operators from a given
fixed collection C. We call this set of functions
an algebra A generated by the collection C. A
finitely recursive process (FRP) over an algebra
A is a solution ¥ of the representation given by
(5) where each f;; as well as G are members of
the algebra A. The basic result on FRP’s states
that if Y is an FRP over an algebra A then for
any s € 1rY the process Y/s = H(X)} where H €
A [6]. Therefore elements of the algebra A form
a state sct for the FRP process.

In [7] the ideas summarized above are
generalized (o0 marked processes. Omitting
certain technicalities, a marked process is a pair
(trP, WP) where trP is as defined above and
yuP is an abstract function mapping P into a
marking set M. For the special case discussed
above p = oPx TP and M = 24 x {0, 1}. It was
shown in [7] that the construct of a finitely
recursive process over an algebra can be
extended to marked processes. In paricular
known discrete event models such as Petri-nets
and others are special cases of such a construct
where the algebraic structure and recursive
nature of representation is implicit in these

models. Examples of FRP as an expressive
modeling tool is given in [6].

'SUPERVISORY CONTROL

In this section we formulate the supervisory
control problem introduced by Ramadge and
Wonham [8] in terms of the process concepts of
the previous section. In supervisory control one
tries to force a given process (uncontrolled plant)
by means of blocking some of its transitions
(supervisory control action) such that the
controlled process behaves in accordance with a
given specification process. The decision to block
a transition depends on the cbservations made by
the supervisor in question. Moreover the
supervisor may lack the authority to block some
of the event transitions (uncontrollable events) of
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‘the plant. In the decentralized supervision more
than one supervisor may be in action each with
its own observation and control authority. Below
we model these concepts and formulate the
problem.

In order to formulate the partial observation
capacity of the supervisors we first define trace
and process projections on a given process, First
define the projection of a trace s on a process
P inductively as follows:

Krlep=o
“ca>ipi= Lax,if <a>eturP ©
<>, otherwise

(sT<ad)pi=5P Ca> [ Pislp)

‘As an example take rP: = {< >, < a >, ab, <c>,

ca} and s = dcab then s | P = ca.

It follows from this definition that s | P € trP
for any trace s and if s € irPthens] P=s.
Using the definition of trace projection we
define the projection of a process Q on a
process P denoted Q. P as follows:

r(Q.Py:=(serP|3terQs=tlp)
o(Q.PY(5). = P(s),Vsetr(Q.P) V)
Q. P)(s): = TP(s), Vs ELr(Q. P)

We now proceed with the supervisory control
formulation. The plant and the supervisor are
modelled as processes with appropriate
constraints. The mechanism of supervision is the
parallel composition of the plant and the
Supervisor processes.

The plant process P is assumed to be a
proper process and has an event control function
that is constant and is equal to the universal
alphabet set 4.

For the supervisor we define a set of
processes on which we seek a solution to the
algebraic equation that defines supervisory
control. The generic supervisory process
space is denoted by S(A, Y,) where the
paramecters A, and Y, are called the
controllable events set and the observation
process respectively. Formally A, is a subset of
the set of plant events A and Y, is any process.
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Elements of A, are called the controllable
events relative to the supervisor. The event
control and_termination functions of ¥, do not
play any role in the analysis therefore we
assume them to be arbitrary constant functions.
The process Y, represents the fact that the
supervisor can only observe the filtered traces
s, Typically 1rY, = A+’ where A,c A and
its elements are called the observable events of
the supervisor. The filtering for this special case
corresponds to hiding all event transitions that
are not in A, Under the paraliel operator the
supervisor process is allowed to make transitions
synchronized to the observable event transitions
of the plant but it can only block events in its
event control set. Therefore, unlike the plant
process, the supervisor process is an improper
process since it can make transitions of pure
observation events without anv authority to
block them.

Formally the parametrized supervisory
subspace of processes S=S(A_Y,) is defined as
follows:

trScerYo “®

S€S <= L S(s)cAcVsetrS

The general supervisory contrcl problem is to
find a solution to the equation.

PIS1 |ISs=K ©

‘where K is called thespecification
process and satisfies the constraint

K=P

and each Sj belongs to a supervisory space of
the type explained above

The neccessary and sufficient conditiens for
the problem above to have a solution is given in
{14]. Here we present a simple example. For a
more realistic example the reader is referred to
[14). Consider the plant process P and the
specification process K given in the figure above.
In this figure we represent processes by finite
state machines. The events are given by A: =
{a, b, ¢, d, e, f}. There are two supervisors in
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Supervisor 1 Supervisor 2
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this example where Y, = A*;; for j= 1,2 and

Ac1=Ac2: =[c,d)
Aol ={a]
Ap2:={b)

‘The initial state is the darkened one for each”

process. For the processes P and K the event
control sets are constant and equal to A at ¢ach
state by definition, therefore are not specified in
state diagrams. On the other hand the event
control sets for the supervisors are marked in the
figure for each state. For example, for
supervisors 1 and 2 the event control sets at the
initial state are both empty and become [(d} and
{c} after one transition respectively. The
termination marks for each statc is marked 1 or
left empty corresponding to a 0. After observing
a transition <a> supervisor 1 blocks all <d>
transitions whereas after observing <b>-
supervisor 2 blocks <c> transitions. The resulting
parallel composition of the plant together with
the supervisors yields the specification process K.
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