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Abstract Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived
in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field
and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid
in the pores. In addition, approximate fundamental solutions for short times are derived by analytically
inverting the Laplace transform expressions. Finally numerical results are presented to highlight the
essential features of the problem as well as to investigate the accuracy of the time domain solutions.
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INTRODUCTION

Dynamic poroelasticity has applications in numerous
branches of science and engineering, such as geophysics,
biomechanics, civilandmechanical engineering. The three-
dimensional theory of this problem was first developed by
Biot[1,2]. Biotpostulated apotential energy for poroelastic
media and utilized Lagrange's equations to derive a set of
coupled differential equations governing the motions of
the solid and fluid phases. According to this theory, a
dynamic disturbance in a porous medium generates one
transverse (shear) and two longitudinal (pressure) waves.
The first longitudinal wave, sometimes denoted as P1-
wave, is characterized by lightly attentuated solid and fluid
motions that are in phase. The second longitudinal wave
(P2-wave), on the other hand, is associated with highly-
attenuated and out-of-phase motions of the constituents.
The existence of these waves has also been demonstrated
experimentally [3]. More modem theories of continuum
mechanics, such as the theory of mixtures [4, 5] have
resulted in equations with essentially similar characteris-
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“tics [6, 7, 8,9, 10].

The first attempt to obtain the fundamental solutions
pertainingto Biot's equation was made by Burridge and
Vargas [11] who, in addition to presenting a general
solution procedure similar to that of Deresiewicz [12] used
the saddle point method to obtain displacements at large
distances due to a point force in the solid. Later, Norris [13]
derived steady-state fundamental solutions for a point
force in the solid and a point force in the fluid. He also
obtained explicit asymptotic approximations for far-field
displacements, as well as those for high and low frequency
responses. More recently, Kaynia and Banerjee [14] used
a solution scheme similar to that of Norris {13] and derived
explicit expressions for the fundamental solutions in the
Laplace transform domain as well as transient short-time
solutions.

Biot's equations are in terms of two displacement
ficlds, namely those of solid and fluid; therefore, they are
somewhatinconvenient for the solution of practical bound-
ary value problems. For this reason, Biot's equations are
sometimes recast in terms of the solid displacement field
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“and the fluid pressure (u - p model). This can, however, be
achieved only in a transformed domain with the resulting
equations being dependent on the transformed parameter.
Another advantage of this type of formulation is that the
resulting coupled equations resemble those of
thermoelasticity for which the fundamental solutions are
available [15, 16, 17). This form of poroelasticity equa-
tions has been used by Bonnet [ 18] and by Boutin etal. [19]
to derive steady-state fundamental solutions of
poroelasticity by the Kupradze method. However, Bonnet
develops a poroelastic formulation which is identical to
that of classical thermoelasticity, thus predicting infinite
propagational velocities. On the other hand, the work of
Boutin et al. is based upon a set of governing equations
which fail to reduce to the well - established consolidation
theory [20] in the absence of inertial effects.

In this paper, while a similar approach is adopted, both
of the above-mentioned difficulties are overcome, Explicit
expressions are derived in the Laplace transform domain
for the fundamental solutions of dynamic poroelasiticy,
These solutions define the solid displacement field and the
fluid pressure due to a suddenly applied point force in the
solid and a sudden injection of fluid into the pores. The
expressions for the fundamental solutions are then in-
verted analytically to obtain approximate transient short-
time solutions. Finally, a number of results are presented
10 demonstrate the charactersitics of the waves and the
interaction between the two phenomena present in the
behavior of porous media, namely the wave propagation
and the diffusions.

The expressions derived in this paper as well as the
observations made on the dynamic behavior of porous
mediaare equally applicable to generalized thermoelasticity
problems. In the theory of generalized thermoelasiticy {21,
22] the paradox of an infinite velocity for the propagation
of a disturbance, which is associated with the classical
theory of dynamic thermoelasticity, is eliminated. The
analogy between the equations of this theory and those of
dynamic poroelasticity is also addressed in the present

paper.

BASIC EQUATIONS

Following the formulations outlined by Zienkiewicz et al.
[23] and by Boutin et al. {19], one can write the equations
expressing respectively, the consititutive equation of a
poroelastic solid, the generalized Darcy's law, the conser-
vation of momentum and the continuity equation, as

G =Auydy= Wuz + u;) - Bpd; (1

Pi=-bwi- pAii- mw; 2

Giji+fi=pli+prwi (3

wig=- B -Lp+y 4)
) M

P
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“where p represents the pore pressure, u; denotes the dis-

placement of the solid skeleton and widenotes the average
displacement of the fluid relative to the solid. Furthermore,

Aand  are the drained Lame’ constants, p is that of the
solid-fluid mixture and 1 is another mass parameter which

has been shown to be equal to pfin [23] with n denoting

porosity. The material parameters f and M, describe rela-
live compressibilities of the constituents and are given by

p=1-Ka (5
B K (3)

-n. B ©

- where Krand K; are the bulk moduli of the fluid and the

solid grain and Kqis thatof the solid skeleton (drained bulk
modulus). Finally b =1 / x is the resistivity coefficient of
the medium, withm and x denoting the fluid viscosity and
the permeability of the solid skeleton, and fand yrepresent
the body force and the rate of fluid injection into the
medium, respectively. The indices i, j, and | vary from one
to three for three-dimensional domains.

Equations (1) to (4), in the absence of £ and y, are
equivalent to Biot's equations of dynamic poroelasticity
{2]. This can simply be verified by eliminating p and o;
from these equations to arrive at two coupled differential
equations in terms of the solid and fluid displacements.
Eliminating w;, on the other hand, is not possible except in
a transformed space.

Taking the Laplace transform of Equations (1) to (4)
and eliminating w;, one obtains new equations which can
be expressed as

(AW U+ - B pps?T+fi=0 (D)

'epﬁjj-MLﬁ- Bps;j+ =0 (8)

P

~ where the overbar denotes the Laplace transformation.

6p = 1/(b + ms), = f- prs6,, p=p- p/s6, and s is the
Laplace transform parameter, Under quasistatic condi-
tions, these equations reduce directly to those associated
with three-dimensional consolidation theory.

Additionally, the new form of equations in the Laplace
transform space (Equations 7 and 8) are especially helpful
in establishing the analogy between dynamic poroelasticity
and generalized thermoelasticity. According to Lord and
Shulman [21] differential equations of the latter are ex-
pressed as
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A+ Wi+ pu jj- BA+ 2oy T - pidi+£=0 ¢)]

KT, i-pce(T-1oT)+ (3A+2p) arTs
W@+ T, j)+Y +To¥=0

where T'denotes the absolute temperature and 7, ¢, o and
k denote the stress-free temperature of the body, the
specific heat at constant strain, the coefficient of thermal
expansion and the thermal conductivity, respectively. 7, is
the relaxation time which represents the time lag needed to
establish steady-state heat conduction in an element of
volume when a temperature gradient is suddenly imposed
on that element. Finally, A, p are the isotropic Lame’ para-
meters, while p is the mass density of the thermoelastic
material. Body forces and heat sources are represented by
f; and 7, respectively.

Taking the Laplace transform of Equations (9) and (10)
one obtains

(10

QA+ 10U i+ W, - BT - psTi+ =0 (11}
01T, M—T BT,su,+7=0 (12)

where B=(3A+2worr, 07=k /(1 + To5) and Mr=1/pce.
Equations (7) and (8) of poroelasticity and Equations

(11) and (12) of generalized thermoelasticity are quite

similar, even on the type of dependency of the coefficients

on s. It may be argued, however, that whereas i, and gy in
Equations (7) and (8) are dependent on s, their counterparts

inEquations (11)and (12),i.e., # and p, are constants. This
minor difference can simply be explained by noticing that
in a poroelastic material pr is nonzero (unlike in
thermoelasticity); if pris set to zero then B, and g, reduce,
respectively, to fandp which are constants as in
thermoelasticity. In other words, Equations (7) and (8) of
poroelasticity equally apply to generalized thermoelasticity
with pyequal to zero in the latter case.

'TRANSFORMED FUNDAMENTAL SOLUTIONS

The objective of this section is to obtain the fundamental
solutions associated with Equations (7) and (8). These
solutions define the solid displacement field and the fluid
pressure due to aunit point force in the solid and a unit rate
of fluid injection into the medium. Similar definitions
apply to generalized thermoelasticity where the quantities
of interest are, of course, the displacements and tempera-
ture,

For a continuous unit point force in the jth direction

suddenly applied at the origin, the body force f; (X,f} can be

expressed as 8(X) H (0, where H(t) is the Heaviside step
function; then its Laplace transform, is s 8(X) Similarly for
a unit rate of fluid injection at the origin, one has
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YX,p=8X)H (D), the Laplace transform of which is

Y (X, s) =s 8 (X ). Now following the Kupradze method
[16] one can write Equations (7) and (8) as

BE+s18(X)=0 (13)

where B Gandl are 4 x 4 matrices representing the

dlfferennal operator the transformed fundamental solution
and the unit matrix, respectively. In particular, the ¢le-

ments of Q are

Bjj = (A+p) ~

a_\ -+ &ii MA - ppsh)  (14a)

Ba=-59 "(14b)
ox;

By=-fps2 (140)
O%j

Bu=6,A--5 4d

u=6, - (14d)

P
where A is the Laplacian operator. The determinant of 8 is
given by

detB=6p’ L+ 20 (A-AD (A-2) A-23) (15)

“where

=g (16)
and Af and AJ are obtained from the following equations

AM+a=d+ S‘ _)
M, A+2u {17

?\.ZAQ.._._. 18
7 by M, ' (18)
and lcfisgivenby

k=P g -

: A+2u 19

If the matrix differential operator B’ denotes the trans-
poseof the cofactor of B one can show thatits elements can
be expressed as

Bi=ne2w {88, B-1)

8,4 -5} - A% lA - 20,

{Mm&&] [mu)( oA ) ﬁp](A %)} " (200)
B i4=ﬂp#2§(13-7t%)2 (20b)
_B'q=ﬂpuls§m-h%f "(20¢)
Bla=p? A+ 20) (A- ) (A- 23 (20d)
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Defining pasG =B 9 one can write
4
El BBy =5;jdetBo= 0,1 ° A+ 20) §;; @-W)A-RD)A-XeFo=0
Now if yis defined asw=6p u2a+ 2UNA - A.:)cp then

@a-2D@A-B@-My=0 1)
the solution of which is
e_lkr _
vE9=L3 — (22)
= akd-l -A )auz k)r
‘with As= A1, As= A2, and ¢ = Xixi,
) B’
Finally denoting the matrix operator B " =
7 (A-33)
one obtains
G=sB'p=sB"(A-\)p=B —S ¥ (23

9;:#2&

“The elements of (3 are obtained by substituting equation

(22) by equation (23) and carrying out the necessary
operations; the result is

- 3
Gi=3% }[531:54 u+ﬂk53— g (24a)

=\ FE
. 3;‘ d eh r\
Gia= L et 24b
4 k=1\ﬂksan T (24b)
~ El 2 0 ahgr .
G4;=k2_,j fﬁk slg' 975-} (24¢)
5u=§(vu59—fﬂ'} )
‘where
( nka- S/Mpeph)(&k"'ﬁk) Sa “(25)
4m(h+2) (W3- AD
1D G, +8 ,
B=B, ( )(1k+ z;) : 26)
479 (+20) (- &)
k. 2 2
y =('1) A -k )@, +8) QN

k 2.2
48,0 1)

The elements Gi; define, in the Laplace transform
domain, the solid displacement field due to unit point
forces in each of the three orthogonal directions; whereas
those elements associated with Gaj define the correspond-
ing fluid pressure. Also Gg, in the Laplace transform
domain, represent the solid displacement field due to a unit
rate of fluid injection and G determines the correspond-
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ing fluid pressure. To obtain variations of these functions

one needs to evalute their inversion. Due to the complexity
of these functions analytical inversion is not usually pos-
sible, so recourse has to be made to numerical schemes.
Nevertheless, for highly permeable media and for short
times the expressions of the transformed fundamental
solutions (Equation 24) can be inverted analytically. The
details of such calculations are presented in the next
section.

'TRANSIENT FUNDAMENTAL SOLUTIONS

7Following the method proposed by Hetnarski [24] one can

invert analytically the Laplace transformed fundamental
solutions (Equation 24) to obtain the corresponding ap-

proximate cxprcssion for short times. To that end, one
needs to take p=-=, use a Maclaurin series to expand the

parameters mvolvcd in Equation (24) in powers of p and
finally use the tabulated inversion formulae to obtain the
transient solutions. For the sake of clarity, the procedure is

outlined here for Ga (i. . for the fluid pressue due 10 a
sudden injection of fluid, with unit rate, into the medium).
Using equation (24) one can write

Gaslr, ) = s+ sy (28)
where ) and y; are given by (Equation 27)

. =_1*_7Ll X “(29)
4m8, 2% - A3

_1 N9 "(30)
4nfp 23 - A%

“and A and A3 which are the solution of Equations (17) and

(18), are given by

M=l [Kl+ _25)]
- *a*(ﬁl;*%ﬂf o “2}

(3D

7Using the expressions defining 6, 5 and k{ one can show

that

Bo |_1(,.b :
g {M,, m)=p—z(al+aaw) @2
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-[kf+ 5 ( 1 +_2” -48 1 kd-
0 \My, A+2u]] 8 M,
Lofgofifor’

where a), az, by, bz and bs are given in thie Appendix.

Using relations (32) and (33) and Maclaurin series to
cxpand second term on the right-hand side of equation (31)
one obtains

Al -#(dmd,p +dop?+ dsp3 + dap") (34)

(33)

Y ~# (ds +dep +dp? + dsp? + dp?) (33)

“where the expressions for dothrough do are given in the
Appendix.

A further application of Maclaurin series to obtain the
expansion {or the square root of relations (34) and (35)
results in

A ~,L;+fz Hfip+fp+fip
?»z~%+gz+gsp+gw2+gsp3

where the f and g coefficients are given in the Appendix.
A final application of Maclurin series to obtain the

expansion for the inverse of (A.%-l%) followed hy the
algebraic multiplications involved in equations (29) and

(30} leads to an expression for G (equation 28) as

Gag=0 [qu+(I_‘+q_2.+ﬂ3_+3“_]c‘f1’ efimety
4mr $ ¢ & ¢

where o  gs (as well as/] 0 f3and g; o g3) are constant pa-
rameters which depend only on the material properties.
Explicit expressions {or these parameters are given in the
Appendix.

Utilizing similar procedures, one can oblain the fol-
lowing expressions for theother components of the Green's
tensor

Gax= bt -(_A_L+§_2_+ ﬁ‘.+£) e-fllsefZFe'hsi
2 @ ¢

4n0»+2u)'2[
+(2—'+B?2+Pi+§i-)eﬂ5382é‘g3sl] (38b)

G,= 1_:/[ A +A2 A3+ 4+——) Aishrhi,
r

4
s

Am(+20)
T
(B1 +P§%.+ .]3%+B%+B%) eglme‘gzre'gﬁ} (38¢)
s

S S
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[N S ij+i-¢._ij..+_i e‘ﬁ"e‘fi'eﬁg
Pana+2wfl s 2 2 ¢

win

: C. -8, C. C Co|oun e )
O eI SRR S eMee™  (38d)

“where the A, B, C and h coefficients are given in the

Appendix.
Equation (38) can now easily be inverted by the use
of the following formulae [25]:

a) fi<0:

L( e {B(t) ,\/T ZW/—E)]H(t

(39
L-l/ PR _) M(zw/_) #(0)
’b) £>0:
LL( fzreflrsefsr/s fzr[a([) V-_JJ(Zﬁ-H(t‘)
40)

L {snefrefine o} = ¢ fZF[(—) In«l(zv_)] ()

where t*=¢-fir,a=|f|r and r is the euclidean distance

from the source. Also, H(t), J and / denote the Heaviside
step function, the Bessel function of the first kind and the
modified Bessel function of the first kind, respectively.
The result of these operations is then the approximate
transient fundamental solutions.

Equations (38), defining the fundamental solutions of
dynamic poroelasticity (as well as generalized
thermoelasticity), demonstrate the existence of three
damped waves: two longitudinal waves with velocities
1#iand 1/g: and one transverse wave with velocity 1/h
However, while the longitudinal waves are present in all
components of G, only Gij contains the transverse re-
sponse. The damping effects in these waves are reflected
through the dissipation factors f, g> and k2. Numerical
results show that, in general, g; is much larger than
£ and k. This implies that the second longitudinal wave is
highly dissipative to the extent that it can hardly propagate
beyond a close neighborhood of the source. In porous
media with practically infinite permeability, dissipation
factors vanish and the three waves travel without any
dissipation effects.

Aninteresting feature displayed by the transient funda-
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mental solutions is the presence of pulses in those compo-
nentsdefining the pressure. i.e., Equations (38a) and (38c).
These pulses, in the form of Dirac delta functions, are
associated with the arrival of the two dilatational waves.

The interaction between the two phenomena of wave
propagation and diffusion in dynamic poroelasticity (as
well as in generalized thermoelasticity) is another interest-
ing subject. As numerical results in the next section show,
the second dilatational wave is immediately followed by
the diffusion. This observation is particularly valuable in
thermoelasticity as it removes an irrational consequence of
the classical theory of thermoelasticity which, by eliminat-
ing the second dilatational wave, implies an infinite veloc-
ity for the propagation of a disturbance.

'NUMERICAL RESULTS

A number of results are presented in this section to high-
light certain characteristics of the dynamic behavior of
fluid-saturated porous media. In addition, the accuracy of
the analytical solutions is investigated by a comparison
with numerical inversion of Laplace transform solutions.

~——— Displacement cus %o forse

Isplacament (mi
ol
i
-4
°-
T

BB B33 1,803

Figure 1. G) : Horizontal solid displacement due to a unit
horizontal force.
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Figure 2. G4 : Fluid pressure due to a unit horizontal force.
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The material propertics are selected such that the
numerical resulis clearly show the two phenomena of
wave propagation and diffusion and their interaction.
These propeties are

A=0274 x 10°Nm?, =085 x 10° Nfm?

M=0.997x 10°Nm? , =083, £=0.195
p,=1000Kg m?, p=2273kg/m?, m=5128Kg/m?
b=10’Ns/m

Except for the order of magnitude of A, |, M and b,
these properties are those measured by [26] which were
converted by [11] to match the parameters appearing in
Equations (1) to (4).

Figures 1 to 4 show four components of the fundamen-
tal solutions in the medium, calculated by numerically
inverting the Laplace transform expressions (Equations
24). To obtain Figures 1 and 2, a 1N point force in the x-
direction was applied in the solid at (0,0,0) and the hori-
zontal displacement, G, and the fluid pressure, Gai, were
evaluated at the point (0.5,0,0)m. To obtain Figures 3 and
4, on the otherhand, the fluid was injected at arate of 1 /s

292 == Dizslecament due =z injectisn

displacementim)

timz(ses)

Figure 3. G4: Horizontal solid displacement due to a unitrate
of fluid injection.2

=i

Prassurs dua to injession
]

5ee.

+808. -

oo 200 T 520 3

pressure(i/m.m]

time{(Sec

‘Figure 4. Gaa : Fluid pressure due to a unit rate of fluid injection.
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“into the medium at the point (0,0,0) and the resulting
horizontal displacement. {714, and the fluid pressure, G,
were evaluated at (0.5.0.0ym.

The velocities ol the three waves in this medium are
approximately Fooe =120 and Lo=168m/s,

fi £1 h
Therctore, the three waves arrive at the observation point,
1oL (0.5.0.0),:a10.163, 0.4 L and 0.3s. Inlocating the arrival
ol the waves in Figures 1 10 4 one should note that, out of
the four plotied components of G only (7, (Figure 1)
contains the three waves, The rest (Figures 2, 3 and 4)
contain the two dilatational waves only.

[t is also instructive to examine the values of dissipa-
tion factors in the three waves. These factors for the two
dilatational waves and the shear wave are £ =0.0063,
gr=88 and h»=0.54, respectively. The large value of go,
compared to considerably smaller values of A and A2, is an
indication of the highly dissipative nature of the P2-wave.
As permeability of the medium decreases, the dissipation
plays amore pronounced role in suppressing the P2-wave,
to the extent that this wave can hardly be detected beyond

"Figure 5. Ga; : Fluid pressure due to a unit horizontal force.

t

Tisplazament dus te injectisn

displacement (m)

2R 2.8 AN &.0e E.22 0.8

time(sec)

“Figure 6. G4: Horizontal solid displacement due to a unit rate
of fluid injection.
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“a close vicinity of the source.

An interesting feature displayed by these figures is the
interaction between the two phenomena of wave propaga-
tion and diffusion. These figures, especially Figures 3 and
4, vividly show that the diffusion starts right after the
arrival of the P2-wave. In other words, no diffusion takes
place before the arrivial of this wave. To demonstrate the
significance of diffusion in this problem the same funda-
mental solutions of Figures 2, 3 and 4 are replotted for
larger times in Figures 5, 6, and 7, respectively. Similar
conclusions, regarding the two interacting phenomena,
apply to generalized thermoelasiticty. Especially, the fi-
nite speed of diffusion propagation, which could not be
accounted for in classical theories of dynamic
thermoelasticity, is noteworthy.

Finally, in order to examine the accuracy of the ap-
proximate transient solutions, the same fundamental solu-
tion shown in Figure 4, i.¢., G, is obtained by the analyii-
cal expression and plotted in Figure 8 against the corre-
sponding numerical result. The properties of the medium
and the distance to the source in this comparison are those
described before, except that the permeability has in-

pressure(lm.m)

.08 s.o0 1o.ee 1= 80 ze.ee

time {Sec)

Figure 7. Ga4 : Fluid pressure due to a unit rate of fluid

injection.

v —_—= Numwrical tnversion

2 e Fenliytizal salutton

Z o

H

i

T s, -

o0, L I i
oc2 ] 208 .433 ém N [ )
time(sec)

"Figure 8. Comparison between the approximate analytical and
numerical solutions for G44.
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creased such that b =2 x 10* Ns/m*. This comparison, and
similar comparisens concerning other fundamental solu-
tions, suggest that the analytical expressions can capture
the essential characteristics of the problem and can pro-
duce fairly accurate results. However, as expected, the
accuracy of these expressions gradually deteriorates as the
permeability decreases and as time increases.

'CONCLUSION

‘Fundamental solutions have been derived in the Laplace

transform domain for Biot's theory of dynamic
poroelasticity. The displacement and pore pressure re-
sponse is obtained for both point forces and mass sources
acting in a domain of infinite extent, Via an analogy, this
solution is found to be equally applicable to generalized
dynamic thermoelasticity. The correspondence is exact,
except that the term associated with the fluid mass density
is zero in the latter theory. Thus, displacements and tem-
peratures resulting from the applacation of point forces
and heat sources can also be determined based upon the
present work.

In light of the complicated form of the fundamental
solutions, the inverse transform cannot be completed ana-
lytically. Instead, series approximations are introduced to
obtain expressions that are more readily inverted. The
resulting time domain formulae are valid for the short time
response of media with large permeability. One transverse
and two longitudinal waves appear in these sotutions, All
are damped, however the second longitudinal wave is
highly dissipative. Additionally, all disturbances propa-
gate with finite velocity, thus eliminating the unrealistic
consequence of classical thermoelasticity regarding the
instantaneous effects of heat sources applied at a distance.
Several numerical results are provided, within the context
of poroelasticity, to illustrate the general overall behavior
and to validate the approximations,

APPENDIX
Coefficients in the fundamental solutions

2
-2
al=m(L+_B )+p B"f

MP A+2U) A+2u
2
azzm _l._+ B
Mp A+2u
> am_1_|,.¢)
b o=a-4m_1 |5
1= M A+2u P
7b 23132 4m_P

M A+2U
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b3=a%
do=1(a - b4
d1=]—(32-1—b2b'1m bm!
2\ b
=-1p®lpb,- Lo bm?
dz"4— 1 V3"

ds= %(a. +b}9

ds=1 (az + Lo om’

d=-ds , ds—-da , do=-ds

do=1 (P}l—)
du-ﬁ(p ’-')#)

-1
d,=-d, bm
dyz=dyb’m?
d14=-dub3m'3

fi=di
f2=;—d1d6m
L6y - Lg?
f=La (dodz 4d1)
osﬂ(d%da-l—dodld2+l—d?]
2 8
fs=§—dbm(4d4d3-2d3d1d3-d%d%+%dod%dz-1—56-(1?)

g=foreplacing de with d,,, s k=1,5
hg =f replacing di.; withd, ; k=1,5

k+9*

ek=dk'dk+5'. k=0a4
b=¢j
h=-ee}
b=ef(eles -e2)
h=e[erexy - e3- ered (efeg - €]
I =%e'3[e2+e e,-2¢ e4-ee;; (ez-eez)

+2ee (e -e8,) -3, (ee,-ee)]

de=de-—td, 0 k=0,4
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) d'k+5 =dks -

dk-HO ; k = 0’4
+21

qo=d'nla
L b
=l§)dllk-l+ﬁl§6dllmm; k=14

gss = g replacing di with diass k=0, 4
az=fim-p,
as=fr
A
Ai=asbh
Ar=ms(hfi+bf ) +asbfi
As=ws(bfi+hf 2 +if) +adhfi+bf %)
As=as(Bfi +bf 2+ h i+ bfi)+adbfi+hf 2+ bf)
As=m{lfi + 5 2+ bfi+ Lfs+ bfs)+ ad i + B 2+ L+ bfy)
B -B,=A -Areplcing f, with g, and f ', with g'2=g2+-}_-
[ v=Lk,replcing e withd, k=0,4
{ "= h,rephcing ¢ with dy,s; k=0,4
co=1-1"
MP

c,=L(ml'c+bl '), k=1,4

Mp

¢,,, = c, Teplacing Lywihl, ; k=04
Mo = Colo

K
=Ecllk-l; k=14
i=0

m_ =m,replacing ¢, with ¢, k=J,4
M=o replacing g with &,

0 K .
P.=3xxr -8.1
1] 1) 1y
1 :
P..=3xx.r4-8“r2
i ij i
2 :
P..=x,x.r3
ij "}
02
N.=P.d
] 7
1 L 2
Nﬁ =Pijf1+Pijd1
N§=P§+P£ﬁ+Pﬁ2d2
N; =Pifs+ Pids
Ni=Pif+ Pids

NE® =Ny, replacing di by diss and f,by g, k=0,4
NH0 = N, replacing dic by diaoand by b k=0,4
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i
[y

Cu Zm kl-l, k=14
G= me. k=5.8

c,,_z mNe Y k=11,14

=10
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