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Abstract Full simulations of homogeneous isotropic turbulence containing a homogeneous passive
scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral
behavior of the two fields are quite similar; both fields decay as power—law functions of time. However,
the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of
the velocity field seems to fall off somewhat faster as a function of Reynolds number than experiments
indicate. The behavior of the velocity derivative skewness is in good agreement with the experimental results
but indicates a different trend with Reynolds number than the experiments.
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INTRODUCTION

The concept of isotropic turbulence was
introduced by Taylor (1935).
(1937) introduced the use of tensors in

Von Karman

isotropic turbulence, and von Karman
and Howarth (1938) studied the statistical
theory of turbulence. In 1941, Kolmogoroff
suggested that the small-scale components of
turbulence are approximately isotropic.
Almost all experiments on isotropic tur-
bulence use rigid, uniform grids to generate
the turbulence. The first successful attempt
to generate nearly isotropic turbulence was
that of Simmon and Salter (1934). They
found that at high Reynolds numbers
the turbulence far behind a grid is a good
approximation to isotropic turbulence.
Several other experiments have been carried
out, among which that of Comte-Bellot and
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Corrsin

(1971) provides rather complete
statistical information. Frenkiel, Klebanoff,
and Huang (1979) used both water and air.
The final stage of isotropic turbulence was
studied experimentally by Batchelor and
Townsend (1950), Tan and Ling (1963), Lee
(1965), and Bennett and Corrsin (1978).
Also Tavoularis, Bennett, and Corrsin (1979).
studied the velocity skewness of isotropic
turbulence at small Reynolds numbers.
Numerical simulation of the decay of two-
dimensional, isotropic, homogeneous tur-
bulent flows was carried out by Herring,
Orszag, Kraichnan, and Fox (1974). The
first simulation of three-dimensional, homo-
geneous, isotropic turbulence was made by
Orszag and Patterson (1971). Schumann
and Patterson (1975) studied the velocity and
pressure fluctuations in isotropic turbulence.
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Kwak et al. (1975) and Shaanan et al. (1975)
simulated isotropic turbulence by the large
eddy simulation technique and obtained very
good agreement with the experimental results
of Comte-Bellot and Corrsin. Clark et al.
(1977) carried out a full simulation at low
Reynolds numbers and used it to study subgrid
scale modeling.

There is also a series of experiments in
heated isotropic turbulence. In all cases, the
heating was small enough so that the tempera-
ture could be assumed a passive scalar and den-
sity variations neglect;d. The diffusion of heat
from a fixed line source in grid-generated,
nearly isotropic turbulence was studied ex-
perimentally by Schubauer (1935), Collis
(1948), Frenkiel (1950), Townsend (1951),
Uberoi and Corrsin (1952), Schlien and
Corrsin (1974), and Libby (1975). These
experiments studied the downstream develop-
ment of temperature fluctuations and measured
statistical properties such as length scales,
decay rates, velocity-velocity and velocity-
temperature correlations, and spectra.

The fluctuating temperature field in an iso-
tropic turbulence generated by uniformly
heated grids was studied by Kistler et al.
(1956), Mills and Corrsin (1959), Yeh and
van Atta (1973), Sepri (1976), and Warhaft.
and Lumley (1979) at Taylor microscale
Reynolds numbers in the range 60-130. Yeh
et al. (1973) carried out an experiment at a
relatively low Reynolds number and studied
the spectral transfer of the scalar and velocity
fields. The results showed that, unlike the
decay exponent of the turbulent kinetic energy,
the decay exponent of the fluctuating scalar.
intensity varies considerably from one experi-
Antonopoules (1981)

simulated homogeneous isotropic turbulence

ment to another.

with passive scalar by large eddy simulation
and studied the effect of the initial length
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scales on the decay exponent of the scalar.

He concluded that the decay exponent of the
scalar is a linear function of the initial length
scale ratio and found results in excellent

We shall
study the effects of Reynolds number and

agreement with the experiments.

Prandtl number on the decay exponents and
concentrate on low Reynolds numbers results.

Non-uniformly heated grids were used by
Wiskind (1962) and Venkataramani and Chev-
ray (1978) to generate a uniform temperature
gradient in isotropic turbulence Cornelius
and Foss (1978) measured the diffusion of
particles in isotropic turbulence by a unique
method.

METHOD
Since the flows that are simulated in this
paper are all at relatively low Reynolds
numbers, it is possible to solve the Navier-
Stokes equations with no approximations
other than the unavoidable numerical ones.

Thus, we shall solve the momentum equations

L=0 ®)

Y. ] 229 .
—_—t ufé=p ——~
at an u.] 0x.0x; (3)

If we restrict our attention to flows at Taylor
microscale Reynolds numbers less than 25,
it is sufficient to use a grid of 32 x 32 x 32
mesh points, provided that accurate numerical
methods are used. In the calculations pre-

sented here, all derivatives were computed
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by using Fourier transforms (the pseudospec-
tral method). This method is also perfectly
compatible with the periodic boundary con-
ditions that were applied in all three spatial
directions.

The second-order Adams-Bashforth method
was used for advancing the solution in time.
To maintain accuracy, the time step was
chosen such that the Courant number based
on the maximum velocity was 0.1 or less,
The initial levels of the velocity fluctuations
were chosen to give the desired Reynolds
The initial spectra of both fields

were chosen to have the box shape shown

nuembers.

in Figs. 1 and 2; the velocity field was re-
quired to satisfy continuity, but both fields
The choice of
spectrum was convenient in the absence of

were otherwise random.

experimental guidance, and as shown in the
figures, the spectra quickly evolve into realis-
tic ones. This method also avoids the need

preselect a

spectrum at the low wave-

numbers. Since the low wavenumbers have
a large influence on the decay of the tur-

bulence, it was felt best to allow the spectrum

Table 1. Description of Computer Runs

“to develop rather than providing it as input.

With the initial conditions described, the
initial stages of the calculations are not

realistic representations of turbulent flow

fields.
tion until the spectrum developed a realistic

For this reason, we ran each simula-

shape, the skewness reached a more or less
constant approximate value, and the decay
curve showed a power law shape.

Runs at Prandtl/Schmidt numbers (Pr=v/D)
of 0.2, 1.0, and 5.0 were made for each
Reynolds number. We shall hereafter simply
refer to this ratio as the Prandtl number,
although it may be interpreted either way.

The calculation was run on the ILLIAC-IV
and required 3.2 sec. per time step.

RESULTS

Results for the decay rates, length scales,
skewness, and three-dimensional spectra are
presented for both hydrodynamic and
scalar fields. The list of runs is given in Table
1. We begin by presenting some results for
one run, IH32—2. Further results are found
in the report by Shirani, (1981).

‘Simulation 7Reh,i 7Re7\,f Pr BY g n ‘m r
TH32-2A  11.00  3.00 0.20 0.634 240 ‘300 125
[H32—3A 22.30 10.00 0.20 0.703 1.70 3.00 1.76
[H32—4A 44,40 22.00 0.20 0.830 1.50 2.90 1.93
[H32--2 11.00 3.00 1.00 1.27 2.40 2.25 0.94
IH32-3 22.30 10.00 1.00 1.23 1.70 1.70 1.00
1H32—4 44,40 22.00 1.00 1.19 1.50 1.61 1.07
1H42—2B 11.00 3.00 5.00 1.68 2.40 0.75 0.31
1H32-3B 22.30 10.00 5.00 1.40 1.70 0.50 0.29
IH32—4D 44.40 22.00 5.00 1.26 1.50 0.34 0.23
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“A. A Typical Hydrodynamic Field
Figure 1 shows the evolution of the three-

As stated
above, the initial 3—D spectrum is a square

dimensional energy spectrum.

wave. It evolves to a realistic low Reynolds
number energy spectrum, since the Reynolds
number is small, there is no inertial subrange.
At low wavenumbers, the spectrum attains
a k? shape, an expected result. The energy
at wavenumbers higher than 2/3 of the
maximum wavenumber is set to zero to avoid
aliasing and is responsible for the spectral
shape seen at t=3.15.

Figure 3 shows the time evolution of the
turbulent kinetic energy and its three com-
ponents. Except din the early ‘“developing”
region, the result is a straight line in log-log
coordinates. If E(t) is the turbulent kinetic
energy at time t, then

E(t)= AcP 4

‘where n is the decay exponent. In this parti-
cular run, n=2.4.

The decay of the turbulent kinetic energy
has been observed in many experiments. It
has been shown analytically that the ex-
ponent, n, is 2.5 for very low Reynolds
numbers.
mentally and analytically that the decay
exponent for high Reynolds numbers is 1.20.

The integral length scale, Lij(rg),is defined
as twice the distance at which Ryi(rp) first
reaches 0.1. This differs from the standard
definition of the integral length scale, which
is the integral of the two-point correlation
function, However, since the two-point
correlation can have negative values at large
r, the standard integral length scale may be-
have poorly. The time evolution of the
integral length scales is shown in Fig. 4.

The Taylor micro-scales are shown in
Fig. 5. The Taylor microscale, ?\ij(rg), is
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It has been shown both experi-

‘defined as the inverse of the curvture of a two-

point correlation at r=0. Both the integral
and Taylor micro-scales increase with time.
However, the integral length scales increase
faster.

'B. A Typical Scalar Field

Figure 2 shows the time evolution of the
3—D spectrum of the scalar quantity. It is
very similar to the 3—-D energy spectrum; in
particular, the low wavenumber behavior is
k*  However, the scalar fluctuation spec-
trum is slightly higher at high wavenumbers.
This is also observed experimentally for the
flows with Prandtl number close to 1. It
suggests that the dissipation in the velocity
field is lower than dissipation in the scalar
field.

The integral and micro-scales of the scalar
quantity are also similar to those for the
velocity field. They are shown in Figs. 4
and 5 together with corresponding values for
the velocity fields.

The decay of the scalar intensity < 82>
with time is shown in Fig. 6. As can be seen,
its behavior is similar to that of the turbulent
kinetic energy history and can be fit by:

< §2>=p;m (5)

"where m is the decay exponent of the scalar

and B is a constant. In this particular run,
m=2.25, which is within the range obtained
from the experimental results. The magnitude
of m obtained experimentally varies between
0.87 and 3.0, depending on the initial length
scale ratio, A/Ag, and scalar intensity; the
Prandt] number was 0.7. There are no
experimental results for m at low Reynolds
numbers or other Prandtl numbers. This
completes the presentation for a particular
run. We shall next give synoptic results for
the set of runs.
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"C. Derived Quantities

Nine simulations were-made;the parameters of
which are given in Table 1. The initial micro and
integral-length scale ratios are fixed: A/Ap=
1.23 and L/LG =1,30. Table 1 shows some
In this table,
Rey ; and Rey ¢ are the initial and final
Reynolds numbers and r is the ratio of the

statistics for the various runs.

decay exponents:

r=m/n (6)

It is also the ratio of characteristic time

scales of the velocity and scalar fields:

) q2/e ]

rs —m—m—m (7)
<82> /e,

where ¢ is the rate of dissipation of kinetic
energy and e, is half the rate of the dissipa-
tion of the scalar intensity,

o 7
= D<0:i> (8)

'D. Effects of Reynolds and Prandtl Numbers

In this section, we examine the behavior of
the various turbulence statistics as we vary
the Reynolds and Prandtl numbers.

1. Microscale Ratio

Figure 7 shows the behavior of the microscale
ratio, AfAg, asa function of Reynolds number
for various Prandtl numbers. As can be seen,
the microscale ratio increases with Rey when
Pr < 1, and decreases with Re, when
Pr> 1. On the other hand, at high Reynolds
numbers, the length scale ratio seems to
become independent of Prandtl number. As
Rey, > 0, the length scale ratio reaches a
constant which depends on the Prandtl

number.
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2. The Decay Rate

Figure 8 shows the decay exponent of the
velocity field, n, vs. Reynolds number. At
very low Reynolds numbers, n reaches 2.5.
It has been shown analytically (by Batchelor
(1953)) that this should be the case. As the
increases, the decay
At high Reynolds
numbers, W. C. Reynolds (1976) argues that
the asymptotic value should be 1.2, The
experimental value of n at high Reynolds

Reynolds number

exponent n decreases.

number, obtained by Warhaft and Lumley
(1978) and Comte-Bellot and Corrsin (1971),
is 1.25 £ 0.06. As shown in Fig. 8, the ex-
perimental value for n obtained from Tavou-
laris (2978) is very close to our simulated
The Bennett and Corrsin (1978)
result, however, indicates that the decrease

results.

occurs more slowly than what our results
indicate. The origin of this discrepancy is not

known.

‘3. Decay Rate Exponent Ratio

The decay exponent ratio, r, defined by Eg.
6, is shown in Fig. 9 as a function of Rey-
nolds number for various Prandtl numbers.

As can be seen from this figure,r increases

with Reynolds number for Pr < 1, and de-
creases with Reynolds number for Pr> 1.
At high Reynolds number, r seems to asymp-
totically reach a constant which depends on
Prandtl number. As Rey,—* 0, however, it

seems that the decay exponent ratio may
reach a constant value independent of Prandtl
number,

4, The Velocity Derivative of Skewness

Velocity derivative skewness is defined by
Sk=< (auifox;) 3> /< (duyfaxy)?> 212
(no sum) (9)

Figure 10 shows the skewness. Reynolds
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Figure 1. Three-dimensional energy spectra at three
different times.
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Figure 3. Decay of the turbulent kinetic energy and
its components with time.

number. The results shown in this figure
were obtained from experimental results, the
code described above, and a 16 x 16 x 16
mesh point code. As can be seen, skewness
has a broad maximum of approximately
0.5 at Re,=20. For Re, > 20, skewness
decreases, and it seems to reach a constant at
about Re,=100. At low Reynolds numbers
(Rey < 20), the skewness decreases and

SI:-DasRchﬁ 0.
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Figure 2. The 3-D spectra of scalar quantity ai
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It is interesting to note that the experi-
mental results suggest that Sk = Re, at low
Reynolds number, whereas the computational
results tend to favor Sk = Re, with p a bit
smaller than 0.5.

CONCLUSIONS

We have shown that homogeneous isotropic
with and without a passive scalar can be
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simulated accurately. The results are in good scalar as a function of the Reynolds and
agreement with the experiments for all of Prandtl numbers have been presented. The
the quantities that could be compared. New curve of the decay exponent of the velocity
results for the rate of decay of the passive field vs. Reynolds number has been filled in.
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iindicate a different trend as a function of
Reynolds number.

The results for the velocity derivative skewness
are in good agreement with experiment but
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