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" Abstract

Measures of network stuctural integrity useful in the analysis and synthesis of power systems

are discussed. Signal flow methodology is applied to derive an expression for the paths between sources
and sinks in a power network. Connectivity and reachability properties of the network are obtained using
the minors of a modified connectivity matrix. Node-connectivity, branch connectivity and mixed connectivity

of power system are discussed.
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INTRODUCTION

Quality and continuity of service are two of
the most important characteristics of any
utility system. The real worth of the service
that is provided by a utility to its customers
cannot be readily evaluated [1], nor is the
cost to customers as a result of a service inter-
ruption necessarily related to the income lost
by the utility during the interruption.

With the ever present threat of natural
disaster and human bungling, power systems
are vulnerable to interruptions and the possi-
bility of extensive physical damage exists.
As improvements in a power system do not
come about without an expenditure which
is eventually passed on to the consumer,. the

vulnerability of power systems is of utmost
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concern to the user. Thus any design proce-

dure under normal and emergency conditions
must include cost as a constraint.

Most studies of power system reliability
are based on probabilistic techniques. More
notable among these works are the excellent
books on power system reliability by Billinton
et al. [2] and Endrenyi [3]. However, in the
absence of acourate reliability figures for
many of the components of power systems,
other measures of network integrity must be
identified which can give insight for the design
of affordable and reliable power systems.

Furthermore there are some other questions
which remain. For instance what does one
do when not worried about the probable but

the possible major interruption? How does
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“one tell whether a given power network holds
together better than another?

We see a need to develop a methodology
which can give reasonable insight into network
reliability through an assessment of the net-
work’s structural integrity. It is for this reason
that we apply deterministic measures of net-
work vulnerability which do not require
exact information as to the probabilities of
failure of system components. This is equi-
valent to saying that in the absence of accu-
rate reliability figures, we could consider all
system components to be equally likely to
fail in an environment where the threat to the
system is a random function of time and
location of system components.

Recently there is increased interest in the
application of graph theoretic techniques for
planning of power distribuiton networks [4].
The techniques presented here are based on
graph theory. They are not only applicable
to power systems but also have applications
in the areas of computer, communications
and transportation networks [ 5, 6, 7, 8]
where structural integrity of the network and
the minimization of service interruption in
the face of emergencies are desirable charac-
teristics for the system.

Crowin and Miles [9] in their assessment
of the 1977 New York City blackout outline
the impact of the blackout on many public
services such as fire protection, police pro-
tection, public health, the sewage disposal
system, the transportation system, the water
supply system and other sectors of the popula-
tion. They find the following statement from
the Public Services Commision’s investigation
of the blackout as requested by the Governor
of New York State “of particular interest”:

“The tragic consequences of the July black-
out under-score the special vulnerability of the
New York City community to the effects
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‘of major power failures. This extreme vulner-
ability necessitates a higher level of reliability
than may be required—and costs greater than
may be tolerated—in other service areas.”

CONCEPT OF CONNECTIVITY

For the purpose of our discussion we shall
equate network structural integrity with net-
work connectivity: how well do its various
parts hang together?

Problems of connectivity have been
approached in several ways. Most procedures
for computing the connectivities of graphs
are based on the Max-Flow Algorithm [10].
This outlook is very restrictive. We shall pre-
sent an alternative approach to exploring
connectivity problems based on signal flow
methodology [11].

Note that a network can be disrupted
because nodes and or branches might fail.
Initially we will consider node failures only,
later branch failures and the mixed case as
well. In this section we regard the power
system as a linear graph. In the next section

we shall use a signal flow graph model.

“Linear graph model

We can model power systems by using linear
graphs [5]. A linear graph G(N, B) is a finite
collection of basic elements referred to as
nodes [N] and a set of pairs of nodes called
branches [B]. The branches may be directed
or undirected, with the latter always trans-
formable into pairs of oppositely directed
branches. The number of nodes in the set [N]
is denoted by n and the number of branches
in the set [B] is denoted by b. Adjacency
information is presented in the connectivity
matrix C = [c(i, j)]. Node i is denoted as
ni and branch i as bi. Two nodes ni and nj
connected via a branch are said to be adjacent,
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ie. c(i, j) = 1. Otherwise c(i, j) = 0.

‘Definition of Node-Connectivity [5, 6]

The global node-connectivity K™(G) of a
connected graph G(N, B) is the minimum
number of nodes whose removal from the
graph results in a disconnected graph or the
presence of a trivial graph (single node). The
node-connectivity of a complete graph (in
which each node is connected to every other
node) is equal to n-1.

The node-connectivity index is a measure
of the vulnerability of the power system to
node failure (bus, generating station or feeder
failures).

‘Computation of Node-Connectivity
Computationally the global node-connectivity
K™(G) of a graph G(N, B) is the minimum of
the pairwise node-connectivities K™::(G) over

j

all distinct, non-adjacent i, j node pairs, i.e.,

K™G) = Min (Knij(G)) (1)
i#i

where the pairwise node-connectivity K™;:(G)
is the number of nodes whose removal from
the graph destroys all the paths between the
two distinct, non-adjacent nodes i and j.
The key to the computation of the node-
connectivity of a graph is in a classical result
in graph theory due to Menger [12]. Menger’s
theorem states that the minimum number of

nodes whose removal from a graph disconnects

two non-adjacent nodes s and t (say, source
and sink) is equal to the maximum number of
s+t paths in the graph which are node-disjoint,
i.e., which have no nodes in common excluding
s and t. For example consider the network
of Figure 1. There are three node disjoint
paths between the source node and the sink
node t. The branches forming these paths

are marked as a, b and c.
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When applied to a power systems, our
interest lies in the transmission of power
between generating sources and demand
centers. We would therefore compute the
global node-connectivities as the minimum of
the pairwise node-connectivities over all

source-sink pairs of nodes.

‘Branch Connectivity

Another measure of power system integrity
is the branch-connectivity. This index gives
an indication of the vulnerability of a power
system to branch failure (transmission line
or breaker failure). For our application, the
branch-connectivity K°(G) is the minimum
of the pairwise branch-connectivities over all
source-sink pairs of nodes. Pairwise branch
connectivity Kbij is the minimum number of
branches in any i-j branch cutset. Cutting
the branches in the cut set will disconnect

all the paths between nodes i and j.

‘Mixed Connectivity

In an emergency both nodes and branches
might fail, giving rise to the concept of mixed
connectivity. Mixed connectivity kb1 s
defined as the minimum taken over pairwise
mixed connectivities. The pairwise mixed
connectivity Kbni- is the size of the minimum
i-j mixed cut set. An i-j mixed cut set is a
mixed set of nodes or branches whose removal

from the graph destroys all the paths from

node i to node j.

CONCEPT OF REACHABILITY
The reachability matrix R = [R(j, j)] is a
nonzero whenever there exists at least one
path between nodes i and j and is zero other-
wise. The matrix R can be found by adding
an identity matrix 1 to the connectivity
matrix C and raising the resulting matrix to a

power k, k = 1, 2, 3, ..., m until the resultant
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matrix (C + I)m is the same as the matrix
(C + )™ There are faster ways of com-
puting the reachability matrix. For example
one could multiply the resultant matrix from
above by itself at each step. This speeds up
the determination of the reachability matrix.
More efficient techniques exist which use row-
sweep and row-sum algorithms. This concept
has applications in detection and identification
of islands in power system networks [13].

SIGNAL FLOW APPROACH

In the approaches mentioned eatlier one
usually uses a linear graph to model the net-
work, however we approach the connectivity
problem by using signal flow methodology.
The usual procedure for the calculation of
connectivity requires the use of the Max-
Flow Algorithm and the efficiency of these
procedures depends on the efficiency of the
Max-Flow Algorithm [10]. In our approach
to connectivity problems there is no need
to use the Max-Flow Algorithm. Thisapproach
yields a general formula given by

P(, j) = —1"7my(CTop) (2)
subject to the complementarity condition
given as;

o(i, j) c(G, 1) =0 (3)
‘where;

Mij(CT-I) denotes T!:he (i, j)th minor of the
n x n matrix C=C*-I;

Iis an n x n identity matrix, and cT is the
transpose of the connectivity matrix. Note
that the determinant of the matrix C’ is the
characteristic equation of the system.

This approach seems to have been over-
looked, although related work has appeared
in the literature [14, 15, 16, 17].

The application of the general formulas
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‘represented by (2) and (3) for path deter-

mination and connectivity and reachability
evaluation is illustrated by way of examples.
But first let us define a signal flow graph.

Signal flow graph model

An alternative model for a power network
can be established using signal flow methodo-
logy [11, 17]. A signal flow graph consists
of a set of nodes [N] and a set of ordered
pairs of nodes referred to as directed branches
[B]. A node represents a specified quantity
or a process variable. For each node j, there
is a node signal y(j). Associated with each
branch directed from node i to node j there
is a branch transmittance x(i, j) that defines
the coefficients which relate the node variables.
A signal flow graph defines the relationship
between the variables at the nodes. These

can be expressed as a set of linear algebraic
equations.

There exist one or more incoming branches
for any dependent node of a signal flow
graph. That component of the signal or
commodity y(i) at node j which is transmitted
through a branch directed from node i to j
with branch transmittance, x(i, j) is the product
of y at node i and the transmittance of the
branch, i.e., y(j) due to branch ij = x(i,j) y(i).

At a node the signals entering through several
branches are summed: y(j) = sum over i of

all x(i, j) y(i).

'Path Determination

Given a power system network with a set of
source (generating) nodes, a set of transition
nodes and a set of sink nodes (load centers),
applying (2) to an augmented signal flow
model of the power network and then im-
posing the complementarity condition (3)
we can find an expression for all the paths
between any subset of source nodes and any
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subset of sink nodes.

Connectivity Evaluation

From the resulting paths expression the con-
nectivity properties of the network can be
obtained. We can find the number of node-
disjoint paths between any source-sink pair of
nodes. This can be achieved by inspection of
the path expressions in simple cases, or by
application of a simple algorithm to find the
number of disjoint sets among several reduced
path lists.

In addition we find the (ij) branch cut sets
and mixed cut sets by manipulating the path
expression. Minimal branch and mixed cut
sets are identified. Their size indicates the
(i-j) pairwise branch and mixed connectivities,
respectively.

Thus we find the pairwise connectivities of
the graph. The minimum of the pairwise
connectivities over all distinct, non-adjacent
pairs of source-sink nodes gives the global
connectivity indices of the network.

'Reachability Evaluation

Reachability properties of the network can
also be computed using (2) subject to the
complementarity condition given by (3) by
inserting the appropriate values of c(i, j) from
the connectivity matrix C.

‘Reliability Evaluation

If the reliabilities of individual components
are known, various network reliability figures
can be found using the paths expression and
standard series-parallel formulas [18]. This
includes the probabilities of failure for both
nodes and branches. The reliability expres-
sions derived must be modified by reducing
to one all powers of those terms which have a
power greater than one, thus accounting for
terms which appear in several paths between
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a given pair of nodes. Kim et al. [19] devised
an operator which does exactly this operation.
This topic will not be pursued any further
in this paper.

‘Signal flow formulation

Given the utility network of Figure 2 with
generation source node 1, transition nodes
2 and 3, and sink node 4, we first develop a
method to find all the paths from source
node 1 to sink node 4. We begin by identifying
the elements of a signal flow model for the
utility network, augmented by return path
4-1 an shown by dashed lines in Figure 2.

Writing the equations for general node
variables y in terms of the transmittances x
of the branches we obtain:

y(1) = x(4, 1) y(4) (4)
y(2) = x(1, 2) y(1) +x(3, 2) y(3) (5)
y(3) =x(1, 3) y (1) +x(2, 3) y(2) (6)
y(4) = x(2, 4) y(2) +x(3, 4) y(4) (7)

Putting equations 4-7 in matrix form we obtain

Y =XY (8)
‘where:
y(1)
y(2)
Y= |y(3)
y(4)
7 and
0 0 0 x(4,1
%= |x(1,2) 0 x(3,2) 0
x(1,3) x(2,3) 0 0
0 x(2,4) x(3,4) 0

‘Note that the transmittance matrix X is

analogous to the transpose of the connectivity
matrix C[5] associated with the graph of
Figure 2 where x(i, j) =c(j,-i). Equation (8)
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"can be rewritten as;
v=cly (9)

7Bringing both terms of (9) to the same side
and factoring out Y we get:

X-DY=(clpy=Ccy=0 (10)
‘where 1 represents an identity matrix of
order n.

The matrix C in (10) is represented here

in terms of elements c(i, j) as

-1 0 0 c(4,1)

o= c(1,2) -1 «(3,2) 0 1)
o1,3) ¢(23) -1 O
0 c(2,4) ¢(3,4) -1

‘The matrix C is analogous to the “Signal

flow matrix”’ as in Vasudeva [20].

'Path Determination Between a Pair of Nodes
The expression for P(1, 4) giving all the paths
between nodes 1 and 4 is determined by
applying (2) to (11) to find the P(1, 4) seen
to be the determinat:

c(1,2) -1 (3, 2)
P(1,4) =] ¢(1,3) ¢(2,3) -1
0 c(2,4) c(3,4)

=¢(1,2) ¢(2,4) + (1, 2) ¢(2, 3) ¢(3, 4)
+c(1, 3) ¢(3, 4) + (1, 3) ¢(3, 2) (2, 4)

"Each term in (12) represents a path from
node 1 to 4. For example, the term
c(1, 2)c(2, 4) represents a path from node
1 to 4. The four paths from node 1 to 4
from (12) are shown in Figure 3.

‘Calculation of Pairwise Node-Connectivity

The P(1, 4) paths expression shown in (12)
can be used to find the number of (1-4)
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‘node-disjoint paths where 1 and 4 take the

roles of a “source” and a “sink” node res-
pectively. We construct for each path a
vector which contains the nodes of the path
in the order traversed resulting in the path
vectors p(1) = [1, 2, 4], p(2) = [1, 3, 4],
p(3) = [1, 2, 3, 4] and p(4) = [1, 3, 2, 4].

If we wish to determine the number of
paths which are node-disjoint, we first start
by excluding the end nodes 1 and 4, leaving
us with modified path vectors L(1) = [2],
L(2) = [3], L(3) = [2, 3] and L(4) = [3, 2].

The next step is to compare the L vectors
to determine the number of disjoint sets.
L(1) and L(2) are disjoint sets. L(1) and L(3)
are not disjoint, neither are L(2) and L(3)
nor are L(1) and L(3).
p(1) and p(2) are node-disjoint. We conclude

Therefore only paths

that the pairwise node-connectivity between
nodes 1 and 4 is equal to two, i.e., K1 4(G)=2

‘Determination of Paths Matrix P’

Application of (2) and (3) to the signal flow
model of the unaugmented model of the
power network yields the paths matrix P’
given by

P'(i, j) = P(i, j) subject to [c(i,j) c(j» )=0] (13)
The path matrix P' gives all the paths
between every pair of nodes. Indeed it is
intuitively obvious that the information con-
tained in P’ is also that of the reachability
properties of the network.

For the network of Figure 2, the matrix C’
from (12) is repeated here, but with 0 sub-
stituted for ¢'(1, 4) to yield the modified
connectivity matrix for the unaugmented
network as shown:

1 0 0 0
e _[e(1,2) -1 c(3,2) 0 14)
c(1,3) (2,3 -1 0
0 c(2,4) (3,4 -1
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‘The terms of the matrix P can be found from

(2). Using the matrix C' of equation (12),
calculation of P(i, j) is illustrated for the
casei=1,j=2:

c(1,2) ¢(3,2) O
P(1,2)=—11%2%1 ¢(1,3) 1 0

0 (3,4 -1
= ¢(1, 2) +¢(1, 3) (3, 2) (15)

After working out the remaining terms the

results can be gathered in a matrix P as shown:

Te(1,2) c(2,4) +
o(1,3)¢(3,4) +
(1, 2) ¢(2, 3) <(3, 4) 4
o1, 3) ¢(3, 2) (2, 4)

o(1,3)+
<(1,2) ¢(2,3)

1~ ¢1,2)+
[c(2,3)¢(3,2) c(1,3)¢(3,2)

0 1 "2, 3) o(2,4)+
c(2, 3) ¢(3,4)
o (3, 2) 1 o2, 4)+
(3, 2) c(2, 4)
0 0 0

-
(2, 3) (3, 2)]

‘The terms of the form c(i, j) c(j, i) shown in

square brackets above can not occur in any
actual paths. Thus we impose the com-
plementarity condition (3). The resultant

path matrix P’ is

N a2+ (1, 3+ “e(1,2) o2, 4) +
o1,3)¢(3,2)  c(1,2)¢(2,3) (1, 2)c(2,3)c(3,4)+

(1,3) c(3,4) +

B o(1,3)c(3,2) c(2,4)
p= ] (16)
o 1 (2, 3) o(2,4) + (2, 3) ¢(3, 4)
0 3,2 1 “¢(3,4) +¢(3,2) (2, 4)
o 0 0 1

‘Calculation of Reachability Matrix R

The terms cf the reachability matrix R can be

found by following these steps:

A)Diagonal elements are all 1(every node can
reach itself).

B)R(i, j) =
c(i, j) is the corresponding element of the

1 whenever c(i, j) = 1, where

connectivity matrix C. This step could be

omitted, but its presence saves computation
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time.

C) All other terms of the reachability matrix R
can be computed by substituting zero or
one for the elements c(i, j) from the con-
nectivity matrix C in the paths matrix P"

R(i, j) = P'(i, j) with values of c(i, j) inserted

(17)

If we replace for all c¢'s their appropriate

values in (16) we obtain the reachability

matrix R as shown:

lendnode: 1 2 3 4

start node

1 1 2 2 4| (18)
R = 2 0 1 1 2

3 0 1 1 2

4 0o 0 0 1

'A term R(i, j) = O implies that no path exists

between nodes i and j, i.e. node j cannot be
reached from node i, otherwise node j is
reachable from node i. The value of R, j)
gives the total number of paths from node i
to node j. Note that these paths may share
nodes, ie. they are not necessarily node-
disjoint. For example the term R(1, 4) = 4
from (18) implies that node 4 can be reached
from node 1 via four alternate but not neces-
sarily node-disjoint paths. The paths are
given by the P'(1, 4) term of (16). It can
be seen that only the two terms c(1, 2) ¢(2, 4)
and c(1, 3) c(3, 4) represent node- disjoint
paths from node 1 to 4.

The reachability properties of the power
system can be' investigated from the matrix
P’ once adjacency information has been
gathered. There are possible applications in

security assessment.

APPLICATION TO
GENERAL NETWORKS

The procedure discribed so far can be extended
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for path determination and connectivity and
reachability evaluation of general power net-
works.

“Augmented signal flow model

To obtain the augmented model of a power
network we introduce an artificial super
source node s and an artificial super sink node
t. From the super source node s we craw a
“directed super branch” to each of the source
nodes j. The super nodes and the super
branches are defined to be perfectly reliable
and of infinite capacity. Similarly every one
of the sink nodes k is connected to the super
sink node t.

The directed super branch transmittances
c(s, j) and c(k, t) for all j and k can be given
as zero-one parameters if subsets of sources
and or sinks are to be examined. A value of
zero for the transmittance c(s, j) of a directed
super branch from the super source node s
to the source node j will deselect source node
s to the source node j will deselect source
node j from inclusion in the path expression.-
Similarly, c(k, t) = 0 will deselect the sink
node k from inclusion in the paths expression.
Thus we can find the paths between any
subset of the source nodes and any subset of
the sink nodes. Connectivity and reachability
properties of the network are obtained from
the path expression. The following example
illustrate this technique.

‘Signal Flow Formulation for an Example
Power Network

Given the power system network of Figure 4
adapted from Billinton et al. [2] with
generating stations at nodes 1 and 2, and load
centers at nodes 3, 4 and 5, we first find all
the paths from any subset of source nodes
and any subset of sink nodes using equations

(2) and (3). The augmented signal flow
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‘model of the power system network of Figure

4 is shown in Figure 5.
The matrix C1-I for the augmented signal
flow graph model of Figure 5 is:

¢=cl.1=

) 1 2 3 4 5
[—1 0 o2 0 0 0 1] s
ds, 1) -1 c2,1) c(3,1) o0 0 of1
c(s,2) ¢(1,2) -1 0 c(4,2) © 02
0 c(1,3) o0 -1 c(4,3) ¢5,3 o0} 3
0 0 20c,4) (3,4 -1 c(5,4) 0} 4
0 0 0 c(3,5) c(4,5 -1 0|5
0 () 0 3,8 c4ht) 51 -t

‘The s, t minor of C' will give:

P(s, t)=

c(s, 1) c(1, 2) c(2, 4) c(4, 5) c(5, t)
+c(s, 1) ¢(1, 2) c(2, 4) c(4,t)
+c(s, 1) (1, 2) c(2, 4) c(4, 3) ¢(3, 5) c(5, t)
+c(s, 1) c(1, 2) (2, 4) c(4, 3) (3, t)
+c(s, 1) c(1, 2) (2, 4) c(4, 5) c(5, 3) ¢(3, t)
+c(s, 1) c(1, 3) ¢(3, 4) c(4, 5) (5, t)
+c(s, 1) c(1, 3) c(3, 4) c(4, t)
+c(s, 1) ¢(1, 3) ¢(3, 5) ¢(5, t)
+c(s, 1) c(1, 3) ¢(3, 5) c(5,4) c(4, t)
+c(s, 1) ¢(1, 3) ¢(3, t)
—c(s, 1) (1, 2) ¢(2, 4) c(4, t) [c(3, 5) c(5, 3)]
—c(s, 1) c(1, 3) ¢(3, t) [c(5, 4) c(4, 5)]
—c(s, 1) c(1, 3) c(3, 5) c(5, t) [c(2, 4) c(4, 2)]
—c(s, 1) c(1, 3) (3, t) [c(2, 4) c(4, 2)]
+c(s, 2) c(2, 4) c(4, 5) ¢(5,t)
+c(s, 2) ¢(2,4) c(4,t)
+c(s, 2) c(2, 4) c(4, 3) ¢(3, 5) ¢(5, t)
+c(s, 2) c(2, 4) c(4, 3) ¢(3, t)
+c(s, 2) c(2, 4) c(4, 5) c(5, 3) ¢(3, t)
+c(s, 2) ¢(2,1) c(1, 3) (3, 4) c(4, 5) c(5, t)
+c(s 2) ¢(2,1) ¢(1, 3) ¢(3,4) c(4, t)
+c(s, 2) ¢(2, 1) ¢(1, 3) c(3, 5) ¢(5, t)
+c(s, 2) (2, 1) c(1, 3) c(3, 5) c(5, 4) c(4, t)
+c(s, 2) c(2, 1) c(1, 3) c(3, t)
—c(s, 2) ¢(2, 4) c(4, t) [c(3, 5) c(5, 3)]
—c(s, 2) (2, 1) ¢(1, 3) ¢(3, t) [c(4, 5) (5, 4)]
—c(s, 2) c(2, 4) c(4, 5) ¢(5, t) [c(1, 3) ¢(3, 1)]
—c(s, 2) c(2, 4) c(4,t) [c(1, 3) ¢(3,1)].
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Path Determination

An analysis of the paths will reveal that the
terms shown in square brackets above involve
extraneous loops which need to be eliminated.
We therefore impose the complementarity
condition (3), [c(i, j) c(j, i) =0], causing the
terms indicated in square brackets above to
disappear. The remaining terms give the paths
P’(s. t) as shown in (19) and listed in Table L.

P’(s,t) =

+c(s, 1) (1, 2) c(2, 4) c(4, 5) c(5, t)

+c(s, 1) c(1, 2) ¢(2, 4) c(4, t)

+c(s, 1) c(1, 2) c(2, 4) c(4, 3) (3, 5) c(5, t)
+c(s, 1) (1, 2) (2, 4) c(4, 3) c(3, t)

+c(s, 1) (1, 2) ¢(2, 4) c(4, 5) (5, 3) c(3,1)

+e(s, 1) (1, 3) ¢(3, 4
+c(s, 1) ¢(1, 3) ¢(3, 4
+c(s, 1) ¢(1, 3) ¢(3, 5
+c(s, 1) (1, 3) ¢(3, 5
+c(s, 1) c(1, 3) c(3, t)

+c(s, 2) ¢(2, 4) c(4, 5) c(5, t)

+c(s, 2) c(2, 4) c(4, t)

+c(s, 2) ¢(2, 4) c(4, 3) ¢(3,5) c(5, t)
+c(s, 2) (2, 4) c(4, 3) ¢(3,¢t)

c(4, 5) c(5, t)
c(4,t)
c(5,t)
c(5, 4) c(4,t)

t+c(s, 2) ¢(2, 4) c(4, 5) ¢(5, 3) ¢(3, 1)

+c(s, 2) ¢(2, 1) ¢(1, 3) c(3, 4) c(4, 5) c(5, t)
+c(s, 2) ¢(2,1) (1, 3) c(3,4) c(4,t)
+c(s, 2) ¢(2, 1) ¢(1, 3) c(3, 5) c(5, t)
+c(s, 2) ¢(2, 1) (1, 3) ¢(3, 5) c(5, 4) c(4, t)
+c(s, 2) ¢(2, 1) ¢(1, 3) ¢(3, t). (19)

‘Table I. All the Paths from the Generating Busses (1, 2) to the Load Centers (3, 4, 5).

‘end points ‘path expression ‘nodes along the path
(1, 2) <(2, 4) <(4, 3) 1,2,4,3
from node 1 to 3 c(1, 3) L3
c(1, 2) ¢(2, 4) c(4, 5) c(5, 3) 1,2,4,5,3
, o(1,2) c(2, 4 1,2,4
from node 1 to 4 c(1, 3) ¢(3, 4; 1, 3,4
c(1, 3) ¢(3, 5! ¢l 5, 4) 1,3,5,4
c(1, 3) ¢(3, 5) 1,3,5
fromnode 1to 5 o1, 3) (3, 4) c(4, 5) 1,3, 4.5
c(1, 2) ¢(2, 4) c(4, 3) (3, 5) 1,2,4, 3,5
(1, 2) (2, 4) c(4, 5) 1,2,4,5
, ¢(2,1) c(1, 3) 2,1,3
from node 2 to 3 c(2, 4) c(4, 3) 2,4,5,3
c(2, 4) c(4, 5) c(5, 3) 2,4,5,3
7 (2,4 2,4
from node 2 to 4 c(2,1) c(1, 3) ¢(3, 4) 2,1,3,4
c(2,1) c(1, 3) ¢(3, 5) (5, 4) 2,1, 3,5, 4
(2, 4) c(4, 3) (3, 5) 2,4,3,5
S ¢(2, 1) (1, 3) ¢(3, 4) c(4, 5) 12,1,3,4,5
c(2,1) c(1, 3) ¢(3, 5) 2,1,3,5
c(2, 4) c(4, 5) 2,4,5
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The P’ (s,t), paths expression (19) can be used
to find the number of paths between any
nodes i and j, where iand j take the roles of a
“source” and a “sink” node respectively.
Having used an artificial super source node s
and an artificial super sink node t, we set
c(s, i) = 1 and then set all other c(s, k) = 0
in order to select node i as the present source
of interest. Similarly we let all ¢(h, t) = 0,
except h = j for which c(j, t) = 1 so that sink
node j is selected. The resulting expression
gives all the paths between ‘“‘source” node i
and “‘sink” node j.

For example, if we are interested in finding
all the paths from source node 1 to sink node
3 it suffices to set c(s, 1) = 1, c(s, 2) = 0,
¢(3,t) =1 and c(4, t) = ¢(5, t) = 0 in (19).
Thus

P(1, 3) = ¢(1, 2) (2, 4) c(4, 3) +
c(1, 2) ¢(2, 4) c(4, 5) ¢(5, 3) +
(1, 3). (20)

If interested in finding all the paths between
source node 2 and all the sink nodes, we set
c(s, 2)=1,c(s,1)=0,¢(3,t) =1,c(4,t)=1
and ¢(5, t) =1 yielding

F(2,t)= c(2,4)c(4,5) +c(2,4) +
c(2,4)c(4,3)c(3,5) +
c(2,4) c(4, 3) +¢(2,4) c(4, 5) ¢(5, 3)+
c(2,1)¢(1,3) +
(2, 1) c(1, 3) ¢(3, 5) (5, 4) +
c(2,1) ¢(1, 3) c(3,4) c(4,5) +
(2, 1) c(1, 3) c(3, 4) c(4, 5) +
c(2,1) ¢(1, 3) ¢(3, 4) +
(2, 1) ¢(1, 3) (3, 5). (21)

Generation of Pairwise Node-Connectivity
Table

We construct a vector p for each path which
contains the nodes of the path in the order
traversed. The node-disjoint paths are found
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7by excluding the source and sink nodes from

the path vectors leaving us with modified path
vectors L (see Table II).

‘Table II. p, L Vectors and Pairwise
connectivity

pairwise
p vectors 'L vectors node-conn
ectivity
[1,2,4,3] |L(1)={2,4] |
[1, 3] L(2) = [Null] |1, 3are
[1,2,4,5,3] |L(3)=[2, 4, 5] adjacent)
1, 2, 4] L(4) = [2] (2 disjoint
[1, 3, 4] L(5) = [3] sets)
[1, 3, 5’ 4] L(6) = [3, 5] kl’l14._. 2
[1, 3, 5] (L(7) = [3] (2 disjoint
[la 3s 4’ 5] L(8) = [3, 4] sets)

[1,2,4,3,5]|L(9)=[2,4,3] |K";=2
[1,2,4,5] [L(10)=[2, 4]

[2,1, 3] (L(11) = [1] (2 disjoint
[2,4,3] L(12) = [4] sets)
[2,4,53] |L(13)=[4,5] |[K"y3=2
[2, 4] L(14) = [Null] |
(21,3,4] |L(15)=[1,3] |(&4are
[2,1, 3,5,4] | L(16) = [1, 3, 5] adjacent)
[2,4,3,5] |[L(17) =[4,3] |[2 disjoint
[2,1,3,5] |L(19)=[1,3] |sets)

[2, 4, 5] L(20) = [4] kg =2

‘The next step is to compare the vectors L to

determine the number of disjoint sets among
the L vectors. This is the pairwise source-

sink connectivity.

‘Determination of Node-Connectivity

The minimum of the pairwise connectivities
shown in Table II is equal to two and it is
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by definition the overall source-sink connecti-

vity index. It is this number that we can use

to compare two alternative power networks

for performance under emergency conditions.
For the example network analyzed, there
are two nodes whose failure is sufficient to
disrupt all the paths available for the trans-
mission of power from the generating stations
to the load centers.

So far we have assumed that branches

(transmission lines plus breakers) are not

subject to failure.

In the next section we
consider the case where only branches are
subject to failure and assume nodes do not

fail. Finally we will take up the case where

either branches and or nodes could fail.

Generation of Branch-Connectivity Table
From the paths listed in Table I we can find
all minimal branch cut sets, then compute the
pairwise branch-connectivities Kbi-. This
information is listed in Table III.

Table III. All the Paths including branches only, minimal branch cut sets and pairwise branch

connectivities
‘end points 7 paths mircli:aslegranch Kbij

from n1 to n3 b3, (b2 +b7), ba [(b1 +b6), b3]
(b1 +be6) 3
b3, (b2 +b7), b8, b5

from nl to n4 b3, (b2 +b7)
(b1 + b6), b4 [(b1 +b6), b3] 3
(b1 + b6), b5, b8

from nl to n5 (b1 +b6), b5
(b1 +b6), b4, b8 (b8, b5] 2
b3, (b2 +b7), b4, b5
b3, (b2 +b7), b8

from n2 to n5 b3, (b1 + b6)
(b2 +b7), b4 [b2 +b7),b3] 3
(b2 +b7), b8, b5

Vfrom n2 to nd (b2 +b7) [(b2 +b7), b3]
b3, (b3 + b6), b4 [(b2 +b7), b3] 3
b3, (b1 +b6), b5, b8

from n2 to n5 7(b2 +b7), b4, b5 7[b8, b5]
b3, (bl +b6), b4, bs 2
b3, (b1 + b6), b5
(b2 +b7), b8

Global branch b,

Connectivity K6 =2
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Table IV The Paths including nodes and branches, minimal mixed cut sets and pairwise mixed

connectivities
: . ' ‘minimal mixed wbn:
end points paths it sets Kbn;
from n1 to n3 b3, n2, (b2 +b7), n4, b4 (b1 +b6), b3
(b1 + b6) (b1 +b6), n2 3
b3, n2, (b2 +b7), n4, b8, n5, b5 (bl + b6), n4
from n1 to n4 b3, n2, (b2 + b7) 7(b3, n3)
(b1 +b6), n3, b4 (n2, n3) 2
(b1 +b6), n3, b5, n5, bs
from n1 to n5 (b1 +b6), n3, b5’ (n3, n2)
(b1 +b6), n3, b4, n4, b8 (n3, n4) -
b3, n2, (b2 +b7), nd, b4, n3,b5 | (n3,b8) 2
b3, n2, (b2 +b7), n4, b8 (n3, b3)
“from n2 to n3 b3, nl, (bl +b6) (n4,b3)
(b2 +b7), n4, b4 (n4, nl) 2
(b2 +b7), n4, b8, n5, bs

Determination of Branch-Connectivity

The global branch-connectivity for the power
system is equal to the minimum of the
pairwise branch-connectivities which equals
to two for this example. This implies that there
exist two branches whose failure is sufficient
to disrupt all the paths available for the
transmission of power form the generation

sources to the load centers.

Generation of Pairwise Mixed-Connectivity
Table
The minimal mixed cut sets and the pairwise

mixed connectivities are shown in Table IV.

‘Determination of Mixed Connectivity
The mixed connectivity Kbnij is equal to the

minimum of the pairwise mixed connectivities

as shown in Table IV. It is equal to two for
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‘this example. This implies that there are two

components whose failure is sufficient to
interrupt the transmission of power.

Having computed the connectivity indices
we can go back to the network and think of
ways to modify it in order to improve the

integrity of the power system.

CONCLUSIONS

It has been shown that the minors of the
matrix CT-I can be used for path determina-
tion and connectivity and reachability evalua-
tions, where C is the connectivity matrix
associated with the power system.

Note that our procedure will give all the
possible paths in a straightforward manner and
that it can be readily implemented on a
computer. It promises to be far more efficient

and consistant than present enumeration

“Journal of Engineering, Islamic Republic of Iran



schemes partially based on inspection. This
could be a basis for planning a switching
schedule for planned outages or for preparing
contingency plans based on simulated outages
for on-line security analysis. In practice the
transmission paths would be constrained by
power flow.

Power system integrity can be studied
using connectivity indices. Reachability pro-
perties of the power system can be obtained
using the formulas given in this paper in con-

junction with adjacency information about

the power system.
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