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Abstract a completely general method of analysis for three-dimensional raked piles under harmonic
excitation is discussed. The piles have been represented by a three-dimensional frame structure and the soil has
been represented by a boundary element discretization scheme. A computer program has been written which
carries out this analysis and produces a group stiffness matrix that can be included as a foundation stiffness
matrix in the analysis of a superstructure. Results from this analysis have been compred with those available in

the literature.
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'INTRODUCTION

‘Many structures and their foundations are
subjected to dynamic loads resulting from
machinery, wave action, blast effects, etc. In
many instances these foundations are pile
foundations, and in recent years a good deal
of attention has been focused on both the
static and dynamic analysis of both a single
pile and pile groups. The soil-pile interaction
plays an important role in the response of the
pile group to this loading. The resulting
analysis is complex and requires resort to
numerical analysis techniques. It is necessary
to consider the piles as a structural framework
embedded in a three-dimensional continum.
In most of the numerical models to date, the
soil is not modelled correctly as an infinite
half- space, Refs [1-3].. The superiority of
the boundary element (integral) method for
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"modelling a half-space is well established.

However, it is inefficient to use such a
technique to model a long-narrow structural
component such as a pile. To overcome this
difficulty, a finite difference approximation
has been used for axially loaded piles (see Ref.
[4]). An explicit expression is used for the
transverse displacement of prismatic members
under dynamic patch loading. The pile model
is then coupled with the boundary elements
used to model the soil continum. In the study
reported here in the work has been extended
from a single pile to a pile group.

‘THEORY

1. Fundamental Equations

‘The integral equation for the displacement

Y of the point (£) in the soil is given,
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uj(s,t) = {)t {) Gij (x,t, £, 7) ¢; (x,7)ds dr
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' 3G;. i
+ui(z) T:J_ (z,t;£,0)1dV (1]

In equation (1), v{ and uj are the initial
velocity and displacement, respectively. The
coordinates (x, z) are points in the soil domain,
and (f) is a point on the pile-soil interface.
The pile-soil interface tractions are ¢;, and
G;; are the displacement components of the
fundamental solution.
For the pile, the equations of motion are:
(a) in the axial direction
22y 32u
m—23 +E A7 =nd oy(t) (2)

22 P g2

(b) in the transverse direction

2

o“u B
X X =

E.I 1 +m atz d¢x(t) (3)

In these equations, (u,, uy) are the transverse
and axial deflections and (¢, ¢,) the corres-
ponding forces. The terms (Epl, E,A) are the
bending and axial stiffnesses respectively, d
is the pile diameter, and m the mass per
unit length.

For harmonic response in the time domain,
these equations are replaced by,

:uj(i w)=fGij(x,£ w) ¢; (x, w)ds )

) 22u, ,
—mw?U_+EA—Y = nd¢ (5)
A S y
5 atu, ,
—mw Uy +El EvE doy (6)
by making the substitutions,

= iwt
¢y ¢y e
iw

u,=U_e t,etc.

y v
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2. Axial Response

For the axially loaded pile, the shaft is sub-
divided into n cylindrical elements, and the
base is represented by a uniformly loaded
circular disc (Figures 1 and 2). The equation
(5) is now approximated by a finite difference
expression so that,

o1 {s}e ()= {0}, @
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"Figure 1. Typical pile group problem.
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'Figure 2. Integration of the kernal function
(a) around the shaft

(b)  around the base of the pile
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In equation (7), [D] is coefficient matrix
and [B] is the pile head boundary condition
The [D] matrix is of the order,
(n+1) x (n+1) in the following form,

matrix.

2

—3—w*“m) 1
1 (—Z—wzm) 1
1 (—z—wzm)
E A
™l=_ P
Dl=
D] ndh2
'ZEROS
and 7 .
7 2E_AW T
B = 92 000 .0 |,

is an (n+1) vector.

In these equations, h=(L/n), (L=length of

pile, f=(nda/4Ay), (Ap=area of the base), W
is the axial displacement at ground level,
and (¢a)P is the axial traction acting on the
pile.

The equation (4) for the soil domain is
discretized by replacing the continuous pile-
soil interface by a number of' boundary
elements for each of which ¢ is constant.

That is, for the soil
1ui=I6] (8,)s
In this equation, (¢,) is the traction on the
The equations (7) and (10)
are now combined by utilizing equilibrium
and compatibility [(¢a)P = —(¢,)s], between
the soil domain and the pile elements, so

(10)

soil interface.

that the final system of equations is
—[D1 [61}{(#a)p} +{B} =182 5
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ZEROS
1 w2-02m)
=02 2 (5,2 3,
~1.33f 12f  (—10.67f—w2m)
That is

(D] [G]1+1 } [(6)p) ={B} (11)

‘The equations (11) are solved for the trac-

tions, and substitution in equation (10) yields
the displacements.

3. Lateral Response

The equation (6) can be solved for a pile
attached rigidly to a pile headstock, with Vi
the transverse displacement of the cap and
0 its rotation. 1t is further assumed that the
force conditions’ at the base of the pile are
moment and shear both equal to zero. A
cantilever under dynamic patch load and
specified displacement components (Vg 0¢)
at the support is used to model the laterally

loaded pile (Figure 3).

u load pe'™! per unit length
',_3__\‘

aa

P LT

J

3p

'Figure 3. Cantilever under dynamic patch loading
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The: transverse displacement of an element
j due to transverse stress intensity b acting

on an element i can be obtained from:

(9);= Vg =05 (j—0.5)a—9; [

(Aq);cosn (j— 0.5)a

+ Ap);sing (j— 0.5)a (12a)
+ (Ag)icoshn(j 0.5)a
+ (Ag)isinhn(j 0.5)a]
(forj<i)
and
(up)j= Vg —0,(j—05)a ¢, [
(Bq)jcosn (j— 0.5)a
+ (By);sing (j— 0.5)a (12b)

(Bg);coshn (j— 0.5)a

(By);sinh7 (j - 0.5)a]

(forall > i)

(Coefficients Aj to By) are given in Appendix
A)

Both equations (12a) and (12b) can be
written as

lugl=-Dy] o} +{B,} (13)

‘where [Dg] is an (nxn) matrix formed by
varying i=1, 2, ... n and j=1, 2, ... n.

Vg - 6, (052) |
v (1.5a)
(g1
%)
'-V%’ - 0 (n — 0.5a) )

n is the number of boundary elements.
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‘Once again, for the soil domain

o}

that is, soil tractions are of opposite sign to
pile tractions. Combining equations (13) and

(14)

(14), as in the axial load case, give

{(D]+(G] } { o} ={B)

‘Equation (15) can be solved to obtain trac-

tions on soil-pile interface.

(15)

Substitution in
equation (14) yields the displacements.

The deflection u at a point on the cantilever
(Figure 3) can be written as

7u=A1 cosnz+Azsinnz+B3coshnz
+ Aysinhnz(0<z<ap) (I)
u=Bjcosnz+Bysinnz+Bjcoshnz

+Bysinhnz(ag<z<29) (11)

~ For points (ap < z < ap) either equation (I)
or equation (II) can be used.
The constants Ay to By can be solved
using boundary conditions

(i) u=0,and

(i) (du/dz) =0 at point A;

(iii) (d2u/dz2) =0, and

(iv) (d3u/dz3) =0 at point B.

(v) Displacement and rotation compatibility
and equilibrium under the load.

For a laterally loaded pile, it is possible to

write '

H
ELL E L2

- (16)
1
L ESLZ ESL3 4
‘where
'V = applied lateral displacement

<
i

applied rotation
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Eg soil modulus
L length of the pile
(lyp) - (IVM)ST = elastic influence factors

for displacement caused
by horizontal load and
moment respectively
for constant Ej

(Ipw) ST (Tom) = elastic influence factors

ST
for rotation caused by

load and

respectively

horizontal
moment
for constant E
The subscript ST indicates static values of
the influence factors.

Pile axis
9. Distribution
HT o 9
h % }
u} Discrete values
3 of ¢,
— 0 Continuous
r\ distribution
“%1{Angle of ¥,
tocal__&4{||ANg A —
axis of rake \
— Discrete values
e et

a %

Figure 4. Single pile stresses.

When a pile is subjected to a steady state
lateral force and moment, the motion of the

pile head can be described by the general

equation:

(lyp) (ym) '

Vei“"t : DYN DYN Heiwtw
| OEL EL

(b T v .

o bpyny  "eMpyy Meiwt
EL E]L
17)
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‘Equation (17) is essentially the dynamic
counterpart of equation (16), where

w = frequency of excitation, and
t = time.

The influence factor, flexibility coef-
ficients, (lIVH)DY , etc. are complex numbers
with their real part representing pile flexibility
and the imaginary part representing damping
in the piles. Iyp = Igpp by virtue of
symmetry and it will be useful to define
(WH) Gy | (vHgp = (I11 +iJ11)
(vmpyn / (IVM)ST=(112 *ig,)  (18)

Tompyn / (Tgm)gp =22 * 1722)

‘4. Pile Group Analysis
“The analysis for a single pile can readily be

extended to a pile group by summation of
the interaction factors for each pile in a group
resulting from all the other piles in the group;
the displacement of each pile may be written
in terms of the loads on every pile in the group.
It is assumed that the interaction factor
for axial displacement caused by axial load
equals that for vertical displacement caused
by vertical load on a vertical pile. Similarly,
the rotaiton and lateral displacement interac-
tion factors caused by lateral load and moment
are identical with those for horizontal dis-
placement and ratation caused by horizontal
load and moment on a vertical pile. On the
basis of these assumptions, the resulting equa-
tions for vertical and horizontal displace-
ment and rotation may be written conveniently

in matrix form as follows:

211 a1 213 welwt] | Pelt
a1 23 agy Velwt( ) Helwt ((19)
|23 a3p a33 | | 0ei9t] | Meiw!
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In equation (19), Pel®t = vertical load, Hel®t=
horizontal load and Mel“!=moment acting
on the pile cap (Figure 1). The (3 x 3) matrix
in equation (19) is the global foundation
stiffness matrix and can be included as boun-
day conditions for the analysis of super -
structures. This matrix is obtained by succes-
sively applying unit vertical displacement, unit
horizontal displacement and unit rotation to
the pile cap and calculating the system of
vertical loads, horizontal loads and moments
required to equilibrate the system of stresses
developed. The flexibility matrix is obtained
by inverting equation (19)

. J -1 .
Welwt Fal 1 al ) al3 Pelwt
Velwt 1_ | az) agy aj3 Hel®® £(20)
geiwt a31 332 333 Meiwt
\ . -

Equation (20) may be solved for any com-
bination of (P, H, M).

‘5. Computer Program

A computer program (PDYNA) has been
written that incorporates the analysis des-

® HO,

Figure 5. Numbering of piles in a group utilising

geometric symmetry.
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‘cribed above. This program can be used to

solve both single pile and pile group problems.
Symmetry in a pile group is taken into account
to reduce the computational effort (Figure 5).
The program can analyze raked piles and piles
projected above the ground level. If the pile
cap is in contact with the ground, then the
interaction between the pile cap and piles
has to be taken into account, and this facility
is also present in the program.

‘6. Results and Discussion

"Though the analysis described here is for pile

groups under periodic excitation, the results
converge to static solutions for small fre-
quencies (‘w’ should not be made less than
0.01 for stability in numerical integration).
Static results obtained from single pile analysis
have been compared with poulos [5] and
Davis [6].
loaded single pile analysis have been compared
with those by Kuhlemeyer [1].

Dynamic results from laterally

Agreement with static results of Davis
(Figure 6) is good because he used the corres-
ponding static kernel function G(s, &) for

I" and IHM

1 1 |

1 |
107> 107 ‘l()'3K10'2 00 1 10
¢

Figure 6. Comparisons with Davis (Ref. 3)
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Figure 7 Dynamic magnification factors comparisons
with kublemeyer [Ref 1]

his analysis. Next, dynamic magnification
factors have been compared with those ob-
tained by Kulhemeyer (Figure 7); there is some
difference because Kuhlemeyer did not use a
kernel function for modelling the half-space.

Novak [7] has published results of vertical
vibration of pile groups in homogeneous and
non-homogeneous soil. His results of group

efficiency ratio for two floating piles in

homogeneous soil have been compared
with present analysis (Figure 8). There is a
fair deal of agreement between the damping
part of the group efficiency ratio obtained
by the two methods. It seems however that
Novak’s method underestimates the stiffness
part of the group efficiency ratio. This

may be attributed to the approximate soil

model used by Novak which may underesti-

mate the contribution by the soil block
trapped between the two piles and the rigid
pile cap. Interestingly, curves suggested by
Novak and those obtained by the present
method follow the same pattern for both
stiffness and damping terms. The present
analysis cannot handle layered soil structure.
However, the analysis is being extended to

incorporate this capability by using the kernel

Journal of Engineering, Islamic Republic of Iran

A]. =

7A2 = -

- ‘
—

[}

1l

34 Stiffness (BEM)

3,0
Q
b=
[» <
>
§ 2,0 Damping (BEM)
S 1.6p Dampin
g (Novaa)
a 10
3 Stiffness
& 0o Novak)

oblid | 1 i
24 10 20 30 40

S/0
Figure 8 Group efficiency ratio for two floating

piles in bomogeneous soil, [Ref 7]

function G(x, &) for multilayered soil as
suggested by Kausel [8].

APPENDIXA

—,——P—4——’[T3 (sin 7 ap — sinn ap)
4EIn T,

— T3 (sinhnag —sinhnay)
+(T4—1) (coshn ag —coshnay)

+(Ty +1)cosn ag —cosnap)]

-P - . .
: [(T4—1)(sinnap —sinnap)
AEIn*T, 4 b A
—(Tq +1) sinhq ag —sinh n ap)
+Ty (coshn ag — coshnay)
+Tp (cosnag —cosn ap)]

p

———— [T3(sinnag —sinna,)
4EIniT 3 B A

7—T3 (sinh ag — sinh g ap)
+(T4 — 1) (cosh 7 ag — cosh g ap)
+(T4— 1) (cosn ag —cosn ap)]
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