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PAPER INFO ABSTRACT

Paper history: Accurate crop classification is crucial for agricultural monitoring and decision-making. Remote sensing's
Received 08 January 2024 ultimate goal is the precise extraction and classification of crops. Based on a cloud platform, the study
Received in revised form 09 February 2024 area of Guntur district, Andhra Pradesh India, presents a multi-crop classification approach using
Accepted 27 February 2024 Sentinel-2 satellite imagery and machine learning techniques. The study area encompasses a diverse

agricultural region with three major crop types. After pre-processing, spectral and textural features were
extracted. It compares the traditional four machine learning algorithms employed, adding the NDVI,

ﬁ};t‘;; (;er(g;ps NDBI, MNDWI, and BSI vegetation indices for multi-crop classification enhances accuracy, and offers

Machine Learnin diverse and complementary information. The overall classification accuracy achieved 95%, with
g S - - . S

Google Earth Engine individual crop accuracies ranging from 85 to 96%. The scalable and simple classification method

Sentinel-2 proposed in this research gives full play to the advantages of cloud platforms in data and operation, and

Vegetation Indices the traditional machine learning compared with other algorithms can effectively improve the

classification accuracy, and individual areas of crop production are calculated. The results underscored
the reliability of GEE-based crop mapping in the region, demonstrating a satisfactory level of
classification accuracy, surpassing 97% across distinct time intervals in overall accuracy values, Kappa
coefficients, and F1-Score.
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1.INTRODUCTION

Understanding the spatial arrangement of crops within
farmland holds significant importance in shaping macro
agricultural policies, guiding farmers' production
practices, detecting food production trends, and
predicting future yields (1-3).

Conventional crop classification methods heavily
rely on extensive manual fieldwork, resulting in low data
timeliness. Therefore, there's a growing need for
instantaneous observation of regional crops (4, 5). The
swift progress in recent advancements in agricultural RS
technologies has offered robust technical assistance in
promptly identifying and monitoring vast crop areas.At
present, numerous studies have validated the viability of
utilizing visuals from remote sensing for crop labelling.
Li et al. (6) demonstrated precise identification of winter
wheat by leveraging spectral features. Similarly, Jiang et
al. (7) successfully retrieved data pertaining to rice from
Landsat images, analyzing the evolving rice planting
systems in Southern China. These studies affirm that
spectral features serve as a viable basis for crop
recognition. However, relying solely on single spectral
features for multi-crop classification has limitations due
to the "same matter different spectrum"” and "foreign
matter same spectrum” phenomena, particularly in areas
with intricate planting architectural. RS images
encompass diverse textural characteristics that mirror the
ground object dispersion in space.

Incorporating these textural features enhances the
differentiation between multiple crops and elevates
classification accuracy (8). Researchers have examined a
number of techniques for extracting textural features and
confirmed their utility in crop classification (9, 10).
Furthermore, environmental attributes significantly
influence crop growth characteristics. Leveraging
environmental indicators to discern crops based on
environmental  disparities can notably enhance
classification accuracy (11). Zhang et al. (12) for
instance, integrated agricultural categorization using
spectral and environmental indices, producing very
precise results.

Thus, devising an effective strategy that amalgamates
these three types of information—spectral, textural, and
environmental features— for the categorization of many
crops to fulfil practical agricultural needs warrants
further exploration. Machine learning (ML) models are
often used in identification of crops, encompassing
techniques like random forest (RF) (13), support vector
machine (SVM) (14), K-nearest neighbor (KNN) based
algorithms (15), naive Bayes (NB) which was utilized
(16), artificial neural network (ANN) (17), and Extreme
Gradient Boost (XGBoost) (18). For instance, Xu et al.
(13) and Liu et al. (19) used RF to track winter wheat,
investigating different feature combinations and how
they affected the precision of categorization. Saini and

Ghosh (20) demonstrated the superior performance of
XGBoost over RF and SVM in crop mapping based on
spectral features. Asghari Beirami and Mokhtarzade (21)
integrated multiple data sources, discovering that RF and
XGBoost exhibited the highest accuracy across different
datasets.

Sentinel-1, using a semi-empirical WCM model in
RS & GIS, assesses soil moisture in varied agricultural
regions (22). The paper outlines a technique to identify
topographical characteristics and design structure in the
Abbassia reach of the Euphrates River (23). Employing
Grim Schmidt spectral analysis on thermal satellite data,
surpassing MH. This study refines the CD method for
precise LU/LC pattern calculation (24). Study assesses
optimal LU/LC mapping in Serdang, Selangor, Malaysia,
comparing spatial resolutions (UAV, WorldView-2,
Sentinel-2) with GS and Brovey algorithms for accuracy
(25).

However, the selection of classification features and
the quantity of classification indices significantly impact
ML classifier performance. Inclusion of excessive
indices can affect prediction efficiency and accuracy,
while too few may not adequately represent crop
characteristics, thereby reducing model accuracy. As a
result, in order to maximize machine learning classifiers,
index screening is frequently used to reduce redundant
data and get crucial indices for crop identification.

In summary, this paper aims to mention challenges
through a comprehensive comparative analysis, a topic
that, to the best of our knowledge. The objective is to
amalgamate spectral, textural, and environmental
features to develop a more precise and efficient method
for multiple crop classification, employing various ML
classifiers. This study involves constructing multiple
crop which have taken paddy, chilly, and maize crops
with data from the ground truth points, and satellite
images which apply the ML models by integrating four
classifiers (RF, SVM, NB, and XGBoost) with diverse
methodologies. For these algorithms to improve the
efficiency we added the parameters of vegetation indices.
Guntur, known for its flourishing agriculture, serves as
the study area. Spectral, textural, and environmental
variables are utilized to quantify crop growth
characteristics, forming the foundation for the developed
classification methods aimed at recognizing multiple
crops. The evaluation of results will employ metrics like
the Kappa coefficient, F1-score, and accuracy, and
finally classify the individual crops and their crop
production stages among additional improvements.

2.STUDY AREA
As depicted in Figure 1, the research encompasses the

Guntur district situated in Andhra Pradesh, India. This
region is bordered by the Bay of Bengal to the southeast,
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Bapatla District to the south, Palnadu District to the west,
NTR District to the northwest, and Krishna District to the
northeast. Covering an approximate area of 2,443 km?
(943 mi?. Its coordinates are located between
16.314209° N latitude and 80.435028° E longitude,
pinpointed at 16° 18' 51.1524" N latitude and 80° 26'
6.1008" E longitude, Guntur district. The climate in the
region is tropical, with an average annual temperature of
28.5°C (83.3°F) and a yearly rainfall averaging around
905 mm (36 in). The influence of the southwest monsoon
is prominent, particularly in the months of June and July,
witnessing the highest monthly rainfall, reaching up to
280 mm. Conversely, December records the lowest
monthly rainfall at 1 mm. Utilizing sensing and GIS
techniques, the study focuses on multi-crop classification
within the coastal region. This area showcases varied
land usage patterns, encompassing agricultural practices,
water bodies, barren land, and forested areas. Notably,
rapid urbanization has significantly impacted crop
production management within this region.

3. METHODOLOGY

Figure 2 depicts the method of conducting research. The
primary contents comprise: (1) Pretreatment and data
acquisition; (2) Gathering of samples, examination of
features in the Normalized Difference Vegetation Index
(NDVI), Normalized Difference Built-up Index (NDBI),
Modified Normalized Difference Water Index
(MNDWI), and Bare Soil Index (BSI) as a component of
the work done prior to categorization; (3) The Crops
maps were identified wusing Random  Forest,
Classification and regression, Gradient Tree Boost
classifier and , Naive Bayes, using feature collaborative
data; and (4) Analyzing and assessing the outcomes and
correctness of the classification.

3. 1. Acquiring and Analyzing Data within the
Study Region

3.1. 1. Data Source The dataset utilized comprises
crop types and geographic coordinates extracted from the
Guntur district crop dataset of 2022. This dataset

Figure 1. Regional geological map of the study area
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Figure 2. work flow of study region

primarily features chilies, paddy, and maize as the
prominent crop types, aligning with the focus crops in
this area. The sources of the remote sensing data used
include the 2022 Sentinel-2 product, processed through
image mosaicking and clipping procedures using
ArcMap software and GEE.

3. 1. 2. Crop Phenology Information Phenology
represents the cyclic alterations shaped by organisms'
prolonged adjustment to diverse external factors like
temperature and humidity, encompassing the growth and
developmental rhythms synchronized with the
surrounding environment. Various crops typically
exhibit distinct phenological characteristics. The
phenology specifics of the crop types under examination
(e.g., Chilies, paddy, and maize) within the topic of study
has been acquired by consulting a range of studies.

Figure 3 illustrates the dispersion of crop growth
periods spanning from January to December, presenting
the data from the time series encapsulating the crop
calendar utilized in this study.

3. 1. 3.Sentinel-2 Data Sentinel-2 is an optical
image with 14 bands of multispectral data offering
acceptable spatial resolution. It comprises 4 bands at 10
meters (blue, green, red, and near-infrared), 6 bands at 20
meters (including red edge and swir bands), and 4 bands
at 60 meters (covering aerosol, water vapor, cirrus, and
cloud cover). For this study, the 20-meter and 60-meter
reflectance was adjusted to 10-meter resolution using the
nearest-neighbor method. Consisting of two satellites,



1766 P. S. Nagendram and P. Satyanarayana / [JE TRANSACTIONS C: Aspects Vol. 37 No. 09, (September 2024) 1763-1772

JAN  FEB MAR APR MAY  JUN JUL AUG  SEP  OCT NOV  DEC

wee [ | I

SOWING - GROWTH- HARVEST

Figure 3. Crop calendar

Sentinel-2A and Sentinel-2B, this system grants a revisit
time of ten days per satellite, with a five-day overlapping
period between them. Cloud cover information obtained
from Sentinel-2's cloud-masking band was essential for
ensuring cloud-free operations in the study. The standard
product, known as Level-1C ("COPERNICUS/S2"),
delivers top-of-atmosphere reflectance data in Universal
Transverse Mercator (UTM) map projection. Widely
employed in crop type classification, Sentinel-2's Level-
1C data has a minimal impact about crop labelling
accuracy results.

3. 2. Construction of Spectral Indexes Several
studies indicated that the different growth characteristics
between crops are mainly reflected in the temporal
sequence of the NDVI values, in this research progress to
improve the accuracy of the algorithm to performance
better way and compares to the other algorithms the
spectral indices are to be utilized, where NDVI used for
the vegetation NDVI's ability to capture variations in
vegetation health and density is leveraged in crop
classification studies to differentiate between various
crop types, monitor their health, and assess changes in
agricultural landscapes over time. NDBI's capacity to
highlight built-up areas makes it a valuable tool in the
context of crop classification by helping differentiate
between urbanized and agricultural or natural landscapes
within satellite imagery. MNDWI plays a crucial role in
identifying and excluding bodies of water captured using
satellite images, thereby refining the scope of crop
classification analyses to focus specifically on
agricultural or non-water land cover types, consequently
enhancing the accuracy of classification models. BSI is
valuable in identifying and isolating bare soil surfaces
within satellite imagery, enabling the exclusion of these
areas from analysis or specifically focusing on vegetated
regions for crop classification, thereby refining the
accuracy and precision of classification models.

3. 3. Machine Learning Classifiers The paper
employed various classifiers, including Random Forest
(RF), Support Vector Machine (SVM), K-Nearest

Neighbor (KNN), Naive Bayes (NB), and Extreme
Gradient Boost (XGBoost). The optimization of these
classifiers' hyper parameters was conducted by assessing
the acknowledged error rate and employing cross-
validation.

Random Forest (RF), based on decision trees,
constructs multiple trees for classification purposes and
has extensive applications in various fields related to
pattern recognition and classification (21). This classifier
requires establishing critical hyper parameters like the
number of decision trees (NTREE) and the number of
variables sampled randomly for building each tree
(MTRY).

Support  Vector Machine (SVM), a powerful
nonlinear classification algorithm, was chosen due to the
complex relationships between data and diverse crop
types. SVM's selection involved configuring the kernel
function (e.g., linear, polynomial and radial kernels) and
tuning two crucial hyper parameters: gamma, influencing
the class-dividing hyperplane's shape, and cost, used for
misclassification penalization (26).

Naive Bayes (NB) is a straightforward probabilistic
classifier rooted in Bayes' theorem, selecting the
classification type based on the highest posterior
probability. Tuning for the NB classifier involved
considering the hyper parameter Laplace (26).

Extreme Gradient Boost (XGBoost), an advancement
of traditional boosting, aims to create a robust classifier
by combining weak classifiers' outputs. This involved
tuning parameters such as the number of trees (nrounds),
the learning rate (eta), and the tree's depth (depth).

3. 4. Accuracy Evaluation The paper assessed
the effectiveness of a classification approach using
accuracy, recall, precision, and F1-score. Recall signifies
the ratio of accurately recognized positive samples from
all actual positives.

Precision gauges the ratio of true positive samples
among the predicted positives, while the F1-score
represents the accuracy of positive sample predictions.

However, it is usual to find high recall with poor
accuracy as well as high precision with low recall, which
makes it difficult to distinguish between the efficacy of
positive sample categorization. For instance, the recall
and precision results are not comparable when the recall
is 0.93 and the accuracy is 0.96 with an F1-score is 0.9.
This problem is introduced as the harmonic value of
recall and accuracy, which can be solved using the F1-
score. As a result, rather than using recall and accuracy
as assessment indicators, the F1-score was used.
Furthermore, accuracy in Equation (3) is the percentage
of the entire sample's accurately anticipated rate.

Moreover, the paper emphasizes the calculation of
error matrices individually for algorithms using distinct
training and testing datasets. Accuracy, representing the
ratio of correctly predicted instances among the entire



P. S. Nagendram and P. Satyanarayana / IJE TRANSACTIONS C: Aspects Vol. 37 No. 09, (September 2024) 1763-1772 1767

dataset, is highlighted as an essential metric (as outlined
in Equations).

P _ TP¢
Precision: P(c) = TPetrPe 1)
. _ _TpPc
Recall: R(c) = TPetFN: 2)
. - R(c)*P(c)
F1-Score: F1(c) = 2= ROIP© )
Accuracy: A(c) =
Sum of correct Predictions for all classes (4)

Total Number of Instance

where c is the crop type; TP, is the true positive for crop
class (c), FP. is the false positive for crop class (c), FN,
is the false negative for crop class (c)

Recall, primarily designed for binary classifications,
lacks the capacity to adequately assess the outcomes of
multiple crop classifications. Consequently, in order to
assess a multi-crop classification model's overall
effectiveness, for this work introduced the kappa
coefficient. Combining the use of Recall and the kappa
coefficient provides a comprehensive evaluation of the
model's performance, offering insights into the multi-
crop scenario and classification efficacy. Based on prior
research, specific thresholds for the kappa coefficient
help categorize the effectiveness of the model A kappa
coefficient below 0.2 indicates a slight model effect. A
kappa value of 0.21 to 0.40 indicates a reasonable
classification skill for the model. When values are more
than 0.40 but less than 0.60, the model shows mediocre
classification performance. A kappa coefficient ranging
from 0.61 to 0.80 signifies substantial model
performance. A kappa coefficient surpassing 0.80
denotes almost perfect model accuracy. In general, the
evaluation of classification results commonly involves
the consideration of the kappa coefficient, F1-score, and
accuracy. These metrics collectively offer a
comprehensive assessment of the model's effectiveness
in multi-crop classification scenarios, providing a
nuanced understanding of its performance across various
dimensions.

4.RESULTS

4. 1. Classification Results Ground points from
the study region were merged with Sentinel-2 satellite
data to validate the results obtained from multi-crop
classification. This validation process involved the
application of six classifiers and the creation of four
distinct models. The primary objective was to assess the
precision of the classification of the crops and calculate
the individual fields of the production area. For visual
representation, the results generated by the ML
algorithms are presented below. In these visual
classifications: The color red signifies the classification

of chilly crops. Yellow indicates the classification of
maize crops. Green is assigned to identify paddy fields.
Orange represents built-up areas. Blue is used to indicate
bare land. The gray color is assigned to represent water
bodies within the region. The outcomes of the four
models are visually depicted in Figure 4. Then, finally
knowing how much crops are growing in a particular area
showcases the distinct categorization of various land
types based on the multi-crop classification approach.
The classifications of support vector, Naive Bayes and
XG Boost are shown in Figures 5 to 7, respectively.
Figure 8 shows the overall accuracy of different models.
Figure 9 depicts training and accuracies of different
models.

Figure 4. (a) Random forest classification, (b) chilly, (c)
maize, (d) paddy, (e) bare land, () built-up, (g) water

X

Figure 5. (a) Support vector (SVM) classification, (b) chilly
crop, (c) maize crop, (d) paddy crop, (e) bare land, (f) built-
up area, (g) water bodies

Figure 6. (;1) Naive Bayes classification, (b) chilly field, (c)
maize crop, (d) paddy crop, (e) bare land, (f) built-up area,
(9) water bodies
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Figure 7. (a) XG Boost classification, (b) chilly area, (c)
maize crop, (d) paddy field (e) bare land, (f) built-up region,
(9) water bodies
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Figure 9. Accuracy of the models

4. 2. Evaluation Metrics Analysis

4. 2. 1. Accuracy It evaluates the general accuracy
of predictions by indicating the proportion of correctly
predicted instances out of the total. The random forest
model demonstrates superior accuracy in comparison to
others. In this approach, RF will get the highest accuracy
when compared to other algorithms.

4.2.2.Precision  Precision evaluates the percentage
of actual positive predictions among all of the model's
positive predictions. Table 1 summarized the Precision of
the crops.

The precision of the chilly crop stands at 0.92, much
greater than that of maize and other classes in

TABLE 1. Precision of the crops

Precision
Crop Random Forest Naive Bayes XG Boost SVM
Chilly 0.92 0.05 0.8 1.0
Maize 1.0 1.0 1.0 1.0
Paddy 1.0 0.02 0.83 1.0
Built up 0.99 0.89 0.98 0.97
Water 0.99 0.99 0.98 0.99
Bare land 0.99 0.98 0.98 0.97

comparison to various models. Among these models, the
random forest demonstrates the highest precision when
compared to the others for these classes. Figure 10 shows
the precision of the models.

4.2.3.Recall The percentage of genuine positive
predictions among all real positive cases in the dataset is
calculated using recall. The recall samples reported in
Table 2. Figure 11 depicts the recall representation.

4.2.4.F1-score The accuracy and recall harmonic
means are represented by the F1-score. It provides a
single score that strikes a balance between recall and

Precision far Different Classes by Algorithms
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Figure 10. Precision of the Models

TABLE 2. Recall samples

Recall

Crop Random Forest Naive Bayes XG Boost SVM
Chilly 0.92 0.53 0.30 0.23
Maize 0.72 0.3 0.09 0.09
Paddy 0.81 0.45 0.45 0.30
Built up 1.0 091 1.0 1.0

Water 1.0 0.92 1.0 0.97
Bare land 0.99 0.57 0.99 0.98
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Figure 11. Recall Representation

accuracy. Table 3 summarized the F1-score values of the
stated models. F1-score graph representation is
illustrated in Figure 12.

4. 2. 5. Error Matrix (Confusion Matrix) This
matrix tabulates the model's performance by classifying
instances into true positives, true negatives, false
positives, and false negatives across multiple classes. The
confusion matrices of training and test analysis are shown
in Figures 13 and 14, respectively.

4. 2. 6. Kappa Coefficient (Cohen's Kappa) The

kappa coefficient measures the agreement between
observed and expected classification results, adjusted for

TABLE 3. F1-score values of models

F1-Score
Crop Random Forest Naive Bayes XG Boost SVM
Chilly 0.92 0.09 0.43 0.37
Maize 0.84 0 0.16 0.16
Paddy 0.899 0.03 0.58 0.46
Built up 0.99 0.89 0.98 0.96
Water 0.99 0.95 0.98 0.97
Bare land 0.99 0.72 0.98 0.71

F1 Scores for Different Classes by Algorithms

F1 Score

—e— anilly
021 o Maize
—e— Paddy
~o— Built-up
—o— Water
~e— Bare land

Random Forest Naive Bayes VM XGBoost
Agorithms

Figure 12. F1-score graph representation
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Figure 13. Confusion Matrix of training analysis

Figure 14. Confusion Matrix of test analysis

chance. It's particularly useful when evaluation classifier
performance in multiclass scenarios. Kappa Coefficients
of models for training and testing are shown in Figure 15.

4.2.7.Crop Areas The crop production areas
have been delineated using four machine learning models
within the Google Earth Engine tool. Chilly crops are
represented by the color red, maize by yellow, paddy
fields by green, built-up areas by orange, water bodies by

Training and Test Kappa Coefliciant of multi crop

- Tran kappa
st knppa

Eappacosmoient (%)
8

e o ] e
Modis

Figure 15. Kappa Coefficient of models
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blue, and bare land by pink. This mapping process
encompasses multi-crop classification across the
specified regions. Figure 16 shows the crop production
areas of all models.

According to Table 4 which represents the
performance of multi-crop classification in conjunction
with various crops and machine learning classifiers, as
explored in existing references. These studies reported
accuracies of 0.95 and 0.94, whereas our current
research, employing four classifiers, demonstrates an
enhanced accuracy of 0.97.

JL A

Random Forest XG Boost

Naive Bayes SVM
Figure 16. Crop production areas of all models

TABLE 4. Comparison table

Ref. crops  Metrics Random SVM Naive XGBoost

no Forest Bayes

11 SS9 Accracy 092 087 082 091
crops
Two L.

14 crops Precision 0.95 086 0.81 0.92

17 Sidle pecall 090 088 084  0.90
crop

18 Two F1-Score 0.88 0.87 0.82 0.91
crops

This  Three All

work  crops  metrics 0.98 097 082 0.97

5. CONCLUSION

Generating comprehensive crop categorization maps for
sustainable development in large regions like the Guntur
district is challenging due to limited samples and vast
areas for analysis. To address this problem, our article
introduces a classification framework utilizing four
algorithm Classifiers. These models leverage spectral,
textural, and environmental indexes to ascertain the most

efficient classification method. Our approach offers
several benefits: (1) Government Survey Data Utilization:
We used the government survey data that impact crop
information of the three crops in Guntur. Using machine
learning models, we establish an optimal strategy despite
the region's constraints. Random Forest (RF), Support
Vector Machine (SVM), Naive Bayes (NB), and
XGBoost emerge as the best techniques for this region.
(2) Integration of Indexes with Satellite Data: By
merging various indexes into satellite data, we improve
the enhanced classification accuracy. (3) Multi-Crop
Classification: Our coupled approach facilitates
automated result generation without in-depth prior
knowledge of the area. This suggests broad applicability
for our optimal classification method in diverse settings.
Across all models, Random Forest consistently
demonstrates higher accuracy, recall, and precision
compared to other analyses and classified the individual
areas to be classified and confusion matrices of the
method. Our future work involves applying our coupling
strategy to diverse machine learning classifiers, with a
particular emphasis on its potential in smaller,
fragmented crop areas, using high-resolution satellite
images, and extending its application to various crops,
including greenhouse crops.
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