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A B S T R A C T  
 

 

Accurate crop classification is crucial for agricultural monitoring and decision-making. Remote sensing's 

ultimate goal is the precise extraction and classification of crops. Based on a cloud platform, the study 

area of Guntur district, Andhra Pradesh India, presents a multi-crop classification approach using 
Sentinel-2 satellite imagery and machine learning techniques. The study area encompasses a diverse 

agricultural region with three major crop types. After pre-processing, spectral and textural features were 

extracted. It compares the traditional four machine learning algorithms employed, adding the NDVI, 
NDBI, MNDWI, and BSI vegetation indices for multi-crop classification enhances accuracy, and offers 

diverse and complementary information. The overall classification accuracy achieved 95%, with 

individual crop accuracies ranging from 85 to 96%. The scalable and simple classification method 

proposed in this research gives full play to the advantages of cloud platforms in data and operation, and 

the traditional machine learning compared with other algorithms can effectively improve the 

classification accuracy, and individual areas of crop production are calculated. The results underscored 
the reliability of GEE-based crop mapping in the region, demonstrating a satisfactory level of 

classification accuracy, surpassing 97% across distinct time intervals in overall accuracy values, Kappa 

coefficients, and F1-Score. 
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1. INTRODUCTION 

 
Understanding the spatial arrangement of crops within 

farmland holds significant importance in shaping macro 

agricultural policies, guiding farmers' production 

practices, detecting food production trends, and 

predicting future yields (1-3).  

Conventional crop classification methods heavily 

rely on extensive manual fieldwork, resulting in low data 

timeliness. Therefore, there's a growing need for 

instantaneous observation of regional crops (4, 5). The 

swift progress in recent advancements in agricultural RS 

technologies has offered robust technical assistance in 

promptly identifying and monitoring vast crop areas.At 

present, numerous studies have validated the viability of 

utilizing visuals from remote sensing for crop labelling. 

Li et al. (6) demonstrated precise identification of winter 

wheat by leveraging spectral features. Similarly, Jiang et 

al. (7) successfully retrieved data pertaining to rice from 

Landsat images, analyzing the evolving rice planting 

systems in Southern China. These studies affirm that 

spectral features serve as a viable basis for crop 

recognition. However, relying solely on single spectral 

features for multi-crop classification has limitations due 

to the "same matter different spectrum" and "foreign 

matter same spectrum" phenomena, particularly in areas 

with intricate planting   architectural. RS images 

encompass diverse textural characteristics that mirror the 

ground object dispersion in space.  

Incorporating these textural features enhances the 

differentiation between multiple crops and elevates 

classification accuracy (8). Researchers have examined a 

number of techniques for extracting textural features and 

confirmed their utility in crop classification (9, 10). 

Furthermore, environmental attributes significantly 

influence crop growth characteristics. Leveraging 

environmental indicators to discern crops based on 

environmental disparities can notably enhance 

classification accuracy (11). Zhang et al. (12) for 

instance, integrated agricultural categorization using 

spectral and environmental indices, producing very 

precise results. 

Thus, devising an effective strategy that amalgamates 

these three types of information—spectral, textural, and 

environmental features— for the categorization of many 

crops to fulfil practical agricultural needs warrants 

further exploration. Machine learning (ML) models are 

often used in identification of crops, encompassing 

techniques like random forest (RF) (13), support vector 

machine (SVM) (14), K-nearest neighbor (KNN) based 

algorithms (15), naive Bayes (NB) which was utilized 

(16), artificial neural network (ANN) (17), and Extreme 

Gradient Boost (XGBoost) (18). For instance, Xu et al. 

(13) and Liu et al. (19) used RF to track winter wheat, 

investigating different feature combinations and how 

they affected the precision of categorization. Saini and 

Ghosh (20) demonstrated the superior performance of 

XGBoost over RF and SVM in crop mapping based on 

spectral features. Asghari Beirami and Mokhtarzade (21) 

integrated multiple data sources, discovering that RF and 

XGBoost exhibited the highest accuracy across different 

datasets.  

Sentinel-1, using a semi-empirical WCM model in 

RS & GIS, assesses soil moisture in varied agricultural 

regions (22). The paper outlines a technique to identify 

topographical characteristics and design structure in the 

Abbassia reach of the Euphrates River (23). Employing 

Grim Schmidt spectral analysis on thermal satellite data, 

surpassing MH. This study refines the CD method for 

precise LU/LC pattern calculation (24). Study assesses 

optimal LU/LC mapping in Serdang, Selangor, Malaysia, 

comparing spatial resolutions (UAV, WorldView-2, 

Sentinel-2) with GS and Brovey algorithms for accuracy 

(25). 

However, the selection of classification features and 

the quantity of classification indices significantly impact 

ML classifier performance. Inclusion of excessive 

indices can affect prediction efficiency and accuracy, 

while too few may not adequately represent crop 

characteristics, thereby reducing model accuracy. As a 

result, in order to maximize machine learning classifiers, 

index screening is frequently used to reduce redundant 

data and get crucial indices for crop identification. 

In summary, this paper aims to mention challenges 

through a comprehensive comparative analysis, a topic 

that, to the best of our knowledge. The objective is to 

amalgamate spectral, textural, and environmental 

features to develop a more precise and efficient method 

for multiple crop classification, employing various ML 

classifiers. This study involves constructing multiple 

crop which have taken paddy, chilly, and maize crops 

with data from the ground truth points, and satellite 

images which apply the ML models by integrating four 

classifiers (RF, SVM, NB, and XGBoost) with diverse 

methodologies. For these algorithms to improve the 

efficiency we added the parameters of vegetation indices. 

Guntur, known for its flourishing agriculture, serves as 

the study area. Spectral, textural, and environmental 

variables are utilized to quantify crop growth 

characteristics, forming the foundation for the developed 

classification methods aimed at recognizing multiple 

crops. The evaluation of results will employ metrics like 

the Kappa coefficient, F1-score, and accuracy, and 

finally classify the individual crops and their crop 

production stages among additional improvements. 

 

 

2. STUDY AREA  
 

As depicted in Figure 1, the research encompasses the 

Guntur district situated in Andhra Pradesh, India. This 

region is bordered by the Bay of Bengal to the southeast, 
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Bapatla District to the south, Palnadu District to the west, 

NTR District to the northwest, and Krishna District to the 

northeast. Covering an approximate area of 2,443 km2 

(943 mi2). Its coordinates are located between 

16.314209° N latitude and 80.435028° E longitude, 

pinpointed at 16° 18' 51.1524" N latitude and 80° 26' 

6.1008" E longitude, Guntur district. The climate in the 

region is tropical, with an average annual temperature of 

28.5°C (83.3°F) and a yearly rainfall averaging around 

905 mm (36 in). The influence of the southwest monsoon 

is prominent, particularly in the months of June and July, 

witnessing the highest monthly rainfall, reaching up to 

280 mm. Conversely, December records the lowest 

monthly rainfall at 1 mm. Utilizing sensing and GIS 

techniques, the study focuses on multi-crop classification 

within the coastal region. This area showcases varied 

land usage patterns, encompassing agricultural practices, 

water bodies, barren land, and forested areas. Notably, 

rapid urbanization has significantly impacted crop 

production management within this region.  

 
 
3. METHODOLOGY  

 
Figure 2 depicts the method of conducting research. The 

primary contents comprise: (1) Pretreatment and data 

acquisition; (2) Gathering of samples, examination of 

features in the Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Built-up Index (NDBI), 

Modified Normalized Difference Water Index 

(MNDWI), and Bare Soil Index (BSI) as a component of 

the work done prior to categorization; (3) The Crops 

maps were identified using Random Forest, 

Classification and regression, Gradient Tree Boost 

classifier and , Naive Bayes, using feature collaborative 

data; and (4) Analyzing and assessing the outcomes and 

correctness of the classification. 

 

3. 1. Acquiring and Analyzing Data within the 
Study Region 
3. 1. 1. Data Source           The dataset utilized comprises 

crop types and geographic coordinates extracted from the 

Guntur district crop dataset of 2022. This dataset  

 
 

 
Figure 1. Regional geological map of the study area 

 
Figure 2. work flow of study region 

 

 

primarily features chilies, paddy, and maize as the 

prominent crop types, aligning with the focus crops in 

this area. The sources of the remote sensing data used 

include the 2022 Sentinel-2 product, processed through 

image mosaicking and clipping procedures using 

ArcMap software and GEE. 

 

3. 1. 2. Crop Phenology Information        Phenology 

represents the cyclic alterations shaped by organisms' 

prolonged adjustment to diverse external factors like 

temperature and humidity, encompassing the growth and 

developmental rhythms synchronized with the 

surrounding environment. Various crops typically 

exhibit distinct phenological characteristics. The 

phenology specifics of the crop types under examination 

(e.g., Chilies, paddy, and maize) within the topic of study 

has been acquired by consulting a range of studies. 

Figure 3 illustrates the dispersion of crop growth 

periods spanning from January to December, presenting 

the data from the time series encapsulating the crop 

calendar utilized in this study. 

 

3. 1. 3. Sentinel-2 Data                 Sentinel-2 is an optical 

image with 14 bands of multispectral data offering 

acceptable spatial resolution. It comprises 4 bands at 10 

meters (blue, green, red, and near-infrared), 6 bands at 20 

meters (including red edge and swir bands), and 4 bands 

at 60 meters (covering aerosol, water vapor, cirrus, and 

cloud cover). For this study, the 20-meter and 60-meter 

reflectance was adjusted to 10-meter resolution using the 

nearest-neighbor method. Consisting of two satellites, 
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Figure 3. Crop calendar 

 

 

Sentinel-2A and Sentinel-2B, this system grants a revisit 

time of ten days per satellite, with a five-day overlapping 

period between them. Cloud cover information obtained 

from Sentinel-2's cloud-masking band was essential for 

ensuring cloud-free operations in the study. The standard 

product, known as Level-1C ("COPERNICUS/S2"), 

delivers top-of-atmosphere reflectance data in Universal 

Transverse Mercator (UTM) map projection. Widely 

employed in crop type classification, Sentinel-2's Level-

1C data has a minimal impact about crop labelling 

accuracy results. 

 

3. 2. Construction of Spectral Indexes              Several 

studies indicated that the different growth characteristics 

between crops are mainly reflected in the temporal 

sequence of the NDVI values, in this research progress to 

improve the accuracy of the algorithm to performance 

better way and compares to the other algorithms the 

spectral indices are to be utilized, where NDVI used for 

the vegetation NDVI's ability to capture variations in 

vegetation health and density is leveraged in crop 

classification studies to differentiate between various 

crop types, monitor their health, and assess changes in 

agricultural landscapes over time. NDBI's capacity to 

highlight built-up areas makes it a valuable tool in the 

context of crop classification by helping differentiate 

between urbanized and agricultural or natural landscapes 

within satellite imagery. MNDWI plays a crucial role in 

identifying and excluding bodies of water captured using 

satellite images, thereby refining the scope of crop 

classification analyses to focus specifically on 

agricultural or non-water land cover types, consequently 

enhancing the accuracy of classification models. BSI is 

valuable in identifying and isolating bare soil surfaces 

within satellite imagery, enabling the exclusion of these 

areas from analysis or specifically focusing on vegetated 

regions for crop classification, thereby refining the 

accuracy and precision of classification models. 

 

3. 3. Machine Learning Classifiers           The paper 

employed various classifiers, including Random Forest 

(RF), Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Naive Bayes (NB), and Extreme 

Gradient Boost (XGBoost). The optimization of these 

classifiers' hyper parameters was conducted by assessing 

the acknowledged error rate and employing cross-

validation. 

Random Forest (RF), based on decision trees, 

constructs multiple trees for classification purposes and 

has extensive applications in various fields related to 

pattern recognition and classification (21). This classifier 

requires establishing critical hyper parameters like the 

number of decision trees (NTREE) and the number of 

variables sampled randomly for building each tree 

(MTRY). 

Support Vector Machine (SVM), a powerful 

nonlinear classification algorithm, was chosen due to the 

complex relationships between data and diverse crop 

types. SVM's selection involved configuring the kernel 

function (e.g., linear, polynomial and radial kernels) and 

tuning two crucial hyper parameters: gamma, influencing 

the class-dividing hyperplane's shape, and cost, used for 

misclassification penalization (26). 

Naive Bayes (NB) is a straightforward probabilistic 

classifier rooted in Bayes' theorem, selecting the 

classification type based on the highest posterior 

probability. Tuning for the NB classifier involved 

considering the hyper parameter Laplace (26). 

Extreme Gradient Boost (XGBoost), an advancement 

of traditional boosting, aims to create a robust classifier 

by combining weak classifiers' outputs. This involved 

tuning parameters such as the number of trees (nrounds), 

the learning rate (eta), and the tree's depth (depth). 

 

3. 4. Accuracy Evaluation             The paper assessed 

the effectiveness of a classification approach using 

accuracy, recall, precision, and F1-score. Recall signifies 

the ratio of accurately recognized positive samples from 

all actual positives.  

Precision gauges the ratio of true positive samples 

among the predicted positives, while the F1-score 

represents the accuracy of positive sample predictions. 

However, it is usual to find high recall with poor 

accuracy as well as high precision with low recall, which 

makes it difficult to distinguish between the efficacy of 

positive sample categorization. For instance, the recall 

and precision results are not comparable when the recall 

is 0.93 and the accuracy is 0.96 with an F1-score is 0.9. 

This problem is introduced as the harmonic value of 

recall and accuracy, which can be solved using the F1-

score. As a result, rather than using recall and accuracy 

as assessment indicators, the F1-score was used. 

Furthermore, accuracy in Equation (3) is the percentage 

of the entire sample's accurately anticipated rate. 

Moreover, the paper emphasizes the calculation of 

error matrices individually for algorithms using distinct 

training and testing datasets. Accuracy, representing the 

ratio of correctly predicted instances among the entire 
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dataset, is highlighted as an essential metric (as outlined 

in Equations). 

Precision: P(c) =  
𝑇𝑃𝐶

𝑇𝑃𝐶+𝐹𝑃𝐶
 (1) 

Recall: R(c) =  
𝑇𝑃𝐶

𝑇𝑃𝐶+𝐹𝑁𝐶
 (2) 

F1-Score: F1(c) =   2 ∗   
𝑅(𝑐)∗𝑃(𝑐)

𝑅(𝑐)+𝑃(𝑐)
 (3) 

Accuracy: A(c) = 
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
 

(4) 

where c is the crop type; 𝑇𝑃𝐶  is the true positive for crop 

class (c), 𝐹𝑃𝐶  is the false positive for crop class (c), 𝐹𝑁𝐶 

is the false negative for crop class (c)  

Recall, primarily designed for binary classifications, 

lacks the capacity to adequately assess the outcomes of 

multiple crop classifications. Consequently, in order to 

assess a multi-crop classification model's overall 

effectiveness, for this work introduced the kappa 

coefficient. Combining the use of Recall and the kappa 

coefficient provides a comprehensive evaluation of the 

model's performance, offering insights into the multi-

crop scenario and classification efficacy. Based on prior 

research, specific thresholds for the kappa coefficient 

help categorize the effectiveness of the model A kappa 

coefficient below 0.2 indicates a slight model effect. A 

kappa value of 0.21 to 0.40 indicates a reasonable 

classification skill for the model. When values are more 

than 0.40 but less than 0.60, the model shows mediocre 

classification performance. A kappa coefficient ranging 

from 0.61 to 0.80 signifies substantial model 

performance. A kappa coefficient surpassing 0.80 

denotes almost perfect model accuracy. In general, the 

evaluation of classification results commonly involves 

the consideration of the kappa coefficient, F1-score, and 

accuracy. These metrics collectively offer a 

comprehensive assessment of the model's effectiveness 

in multi-crop classification scenarios, providing a 

nuanced understanding of its performance across various 

dimensions. 

 

 

4.RESULTS 
 

4. 1. Classification Results           Ground points from 

the study region were merged with Sentinel-2 satellite 

data to validate the results obtained from multi-crop 

classification. This validation process involved the 

application of six classifiers and the creation of four 

distinct models. The primary objective was to assess the 

precision of the classification of the crops and calculate 

the individual fields of the production area. For visual 

representation, the results generated by the ML 

algorithms are presented below. In these visual 

classifications: The color red signifies the classification 

of chilly crops. Yellow indicates the classification of 

maize crops. Green is assigned to identify paddy fields. 

Orange represents built-up areas. Blue is used to indicate 

bare land. The gray color is assigned to represent water 

bodies within the region. The outcomes of the four 

models are visually depicted in Figure 4. Then, finally 

knowing how much crops are growing in a particular area 

showcases the distinct categorization of various land 

types based on the multi-crop classification approach. 

The classifications of support vector, Naïve Bayes and 

XG Boost are shown in Figures 5 to 7, respectively. 

Figure 8 shows the overall accuracy of different models. 

Figure 9 depicts training and accuracies of different 

models. 

 

 

 
Figure 4. (a) Random forest classification, (b) chilly, (c) 

maize, (d) paddy, (e) bare land, (f) built-up, (g) water 

 

 

 
Figure 5. (a) Support vector (SVM) classification, (b) chilly 

crop, (c) maize crop, (d) paddy crop, (e) bare land, (f) built-

up area, (g) water bodies 

 

 

 
Figure 6. (a) Naïve Bayes classification, (b) chilly field, (c) 

maize crop, (d) paddy crop, (e) bare land, (f) built-up area, 

(g) water bodies 
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Figure 7. (a) XG Boost classification, (b) chilly area, (c) 

maize crop, (d) paddy field (e) bare land, (f) built-up region, 

(g) water bodies 
 

 

 
Figure 8. Overall Accuracy 

 

 

 
Figure 9. Accuracy of the models 

 

 

4. 2. Evaluation Metrics Analysis 
4. 2. 1. Accuracy         It evaluates the general accuracy 

of predictions by indicating the proportion of correctly 

predicted instances out of the total. The random forest 

model demonstrates superior accuracy in comparison to 

others. In this approach, RF will get the highest accuracy 

when compared to other algorithms. 

 

4. 2. 2. Precision          Precision evaluates the percentage 

of actual positive predictions among all of the model's 

positive predictions. Table 1 summarized the Precision of 

the crops. 

The precision of the chilly crop stands at 0.92, much 

greater   than   that   of   maize   and   other    classes    in 

TABLE 1. Precision of the crops 

Precision 

Crop Random Forest Naïve Bayes XG Boost SVM 

Chilly 0.92 0.05 0.8 1.0 

Maize 1.0 1.0 1.0 1.0 

Paddy 1.0 0.02 0.83 1.0 

Built up 0.99 0.89 0.98 0.97 

Water 0.99 0.99 0.98 0.99 

Bare land 0.99 0.98 0.98 0.97 

 

 

comparison to various models. Among these models, the 

random forest demonstrates the highest precision when 

compared to the others for these classes. Figure 10 shows 

the precision of the models. 

 

4. 2. 3. Recall                The percentage of genuine positive 

predictions among all real positive cases in the dataset is 

calculated using recall. The recall samples reported in 

Table 2. Figure 11 depicts the recall representation. 
 

4. 2. 4. F1-score           The accuracy and recall harmonic 

means are represented by the F1-score. It provides a 

single score that strikes a balance between recall and  

 
 

 
Figure 10. Precision of the Models 

 

 

TABLE 2. Recall samples 

Recall 

Crop Random Forest Naïve Bayes XG Boost SVM 

Chilly 0.92 0.53 0.30 0.23 

Maize 0.72 0.3 0.09 0.09 

Paddy 0.81 0.45 0.45 0.30 

Built up 1.0 0.91 1.0 1.0 

Water 1.0 0.92 1.0 0.97 

Bare land 0.99 0.57 0.99 0.98 
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Figure 11. Recall Representation 

 

 

accuracy. Table 3 summarized the F1-score values of the 

stated models. F1-score graph representation is 

illustrated in Figure 12. 

 

4. 2. 5. Error Matrix (Confusion Matrix)         This 

matrix tabulates the model's performance by classifying 

instances into true positives, true negatives, false 

positives, and false negatives across multiple classes. The 

confusion matrices of training and test analysis are shown 

in Figures 13 and 14, respectively. 

 

4. 2. 6. Kappa Coefficient (Cohen's Kappa)            The 

kappa coefficient measures the agreement between 

observed and expected classification results, adjusted for  

 

 
TABLE 3. F1-score values of models 

F1-Score 

Crop Random Forest Naïve Bayes XG Boost SVM 

Chilly 0.92 0.09 0.43 0.37 

Maize 0.84 0 0.16 0.16 

Paddy 0.899 0.03 0.58 0.46 

Built up 0.99 0.89 0.98 0.96 

Water 0.99 0.95 0.98 0.97 

Bare land 0.99 0.72 0.98 0.71 

 

 

 
Figure 12. F1-score graph representation 

 
Figure 13. Confusion Matrix of training analysis 

 

 

 
Figure 14. Confusion Matrix of test analysis 

 

 

chance. It's particularly useful when evaluation classifier 

performance in multiclass scenarios. Kappa Coefficients 

of models for training and testing are shown in Figure 15. 
 
4. 2. 7. Crop Areas                 The crop production areas 

have been delineated using four machine learning models 

within the Google Earth Engine tool. Chilly crops are 

represented by the color red, maize by yellow, paddy 

fields by green, built-up areas by orange, water bodies by 

 
 

 
Figure 15. Kappa Coefficient of models 
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blue, and bare land by pink. This mapping process 

encompasses multi-crop classification across the 

specified regions. Figure 16 shows the crop production 

areas of all models. 

According to Table 4 which represents the 

performance of multi-crop classification in conjunction 

with various crops and machine learning classifiers, as 

explored in existing references. These studies reported 

accuracies of 0.95 and 0.94, whereas our current 

research, employing four classifiers, demonstrates an 

enhanced accuracy of 0.97. 

 

 

 
Figure 16. Crop production areas of all models 

 

 
TABLE 4. Comparison table 

Ref. 

no 
crops Metrics 

Random 

Forest 
SVM 

Naive 

Bayes 
XGBoost 

11 
Single 

crops 
Accuracy 0.92 0.87 0.82 0.91 

14 
Two 

crops 
Precision 0.95 0.86 0.81 0.92 

17 
Single 

crop 
Recall 0.90 0.88 0.84 0.90 

18 
Two 

crops 
F1-Score 0.88 0.87 0.82 0.91 

This 

work 

Three 

crops 

All 

metrics 
0.98 0.97 0.82 0.97 

 

 

5. CONCLUSION 
 

Generating comprehensive crop categorization maps for 

sustainable development in large regions like the Guntur 

district is challenging due to limited samples and vast 

areas for analysis. To address this problem, our article 

introduces a classification framework utilizing four 

algorithm Classifiers. These models leverage spectral, 

textural, and environmental indexes to ascertain the most 

efficient classification method. Our approach offers 

several benefits:(1) Government Survey Data Utilization: 

We used the government survey data that impact crop 

information of the three crops in Guntur. Using machine 

learning models, we establish an optimal strategy despite 

the region's constraints. Random Forest (RF), Support 

Vector Machine (SVM), Naive Bayes (NB), and 

XGBoost emerge as the best techniques for this region. 

(2) Integration of Indexes with Satellite Data: By 

merging various indexes into satellite data, we improve 

the enhanced classification accuracy. (3) Multi-Crop 

Classification: Our coupled approach facilitates 

automated result generation without in-depth prior 

knowledge of the area. This suggests broad applicability 

for our optimal classification method in diverse settings. 

Across all models, Random Forest consistently 

demonstrates higher accuracy, recall, and precision 

compared to other analyses and classified the individual 

areas to be classified and confusion matrices of the 

method. Our future work involves applying our coupling 

strategy to diverse machine learning classifiers, with a 

particular emphasis on its potential in smaller, 

fragmented crop areas, using high-resolution satellite 

images, and extending its application to various crops, 

including greenhouse crops. 
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Persian Abstract 

 چکیده 
ت است. بر اساس یک طبقه بندی دقیق محصولات برای نظارت بر کشاورزی و تصمیم گیری بسیار مهم است. هدف نهایی سنجش از دور استخراج و طبقه بندی دقیق محصولا

و تکنیک های    Sentinel-2، آندرا پرادش هند، یک رویکرد طبقه بندی چند محصول را با استفاده از تصاویر ماهواره ای  Gunturپلت فرم ابری، منطقه مورد مطالعه منطقه  

ای طیفی و بافتی استخراج یادگیری ماشین ارائه می دهد. منطقه مورد مطالعه شامل یک منطقه کشاورزی متنوع با سه نوع محصول عمده است. پس از پیش پردازش، ویژگی ه

بندی چند محصول اضافه  را برای طبقه   BSIو    NDVI  ،NDBI  ،MNDWIهای پوشش گیاهی  کند و شاخصشد. این چهار الگوریتم سنتی یادگیری ماشین را مقایسه می 

افزایش می می را  ارائه می کند و دقت  را  به  دهد. دقت طبقهدهد و اطلاعات متنوع و مکملی  از    ٪95بندی کلی  با دقت محصول فردی  بندی . روش طبقه ٪96تا    85رسید، 

تواند به ها میدهد و یادگیری ماشین سنتی در مقایسه با سایر الگوریتم ها و عملیات کاملاً نشان می های ابری در دادهشده در این تحقیق به مزایای پلتفرم پذیر و ساده ارائهمقیاس 

کند در منطقه تأکید می   GEEبرداری محصول مبتنی بر  شوند. نتایج بر قابلیت اطمینان نقشه بندی را بهبود بخشد و مناطق جداگانه تولید محصول محاسبه میطور موثر دقت طبقه

 رود.فراتر می  F1در فواصل زمانی متمایز در مقادیر دقت کلی، ضرایب کاپا و امتیاز  ٪97دهد که از بندی را نشان میبخشی از دقت طبقه و سطح رضایت 
 

 


