IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1239-1251

* @ International Journal of Engineering
\ "/.“

Journal Homepage: www.ije.ir

Synchronous Generator Dual Estimation Using Sigma Points Kalman Filter

M. Zoghi, H. Yaghobi*

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

PAPER INFO ABSTRACT

Paper history: In this article, the central difference Kalman filter (CDKF) has been used to estimate the parameters of
Received 11 December 2023 two different models of synchronous generator (SG) in the presence of noise. It should be mentioned
Received in revised form 01 January 2024 that there are different models of synchronous generators with different levels of accuracy for use in

Accepted 21 January 2024 estimation algorithms. The estimation algorithm in this paper uses a smaller number of measurement

inputs to estimate the states and unknown parameters for two exact models of the synchronous generator.
The central difference Kalman filter (CDKF) is a member of the Kalman filter family, which, like the

é(ye,,yc‘;,vs,r,,ﬁs Generator unscented Kalman filter (UKF), uses sigma points to model nonlinear equations. The differential Kalman
Kalman Filter filter (CDKEF) provides better results than the unscented Kalman filter. In this research, by using two
Centeral Diffrence Kalman Filter synchronous generator models with different parameters in three scenarios, the ability of the Kalman
Estimation filter of the central difference is challenged, which shows that this method is very efficient and reliable.

doi: 10.5829/ije.2024.37.07a.04

Graphical Abstract

synchronous generator

Xikg X — ;
/S Cen A Gen B
{/)-ﬁl H Two Cases: Generator A & B - - [ e, #
“ases: Gi . = a PN
r d With measuring available objects : i @ d
q)kd r rkd [ It - Vit - Speed - Pe -T ra (XXX @, _ﬂ’q_,_
S F kq xc i “tq J (pou Pois
= =] D (p-u. Prg
] 1-Traditional test = T.’in(s) Prq
= 2-Combinatorial test "E
b 3-Load rejecton tests = X4 (p-u.) P
E 4- On-line frequency response ; Xg (pu) | __r puy
= e 5-Field decrement test E x:i(ll-w) Trg (Pu)
= 6- Applied voltage test 1 KF P Trgipu)
2 7-Evolutionary Programming 2 EKF E Tra (P}
] I8 Estimation process | @ 3 UKF = X (p)
s [ — 1 ckr ¥° T
e
- Q) Innovation :Isn't it better to estimate both states and f "‘fl‘;i(f')“
J parameters at same time with an efficient estimator 72?77?
1. INTRODUCTION before. So we need comprehensive and efficient models
for all components to work together in this set. One of the
Today and after a long time, power grids are being spread most important parts is the synchronous generator (SG).
and keeping the security issue feels more like it did There are many kinds of models used for SGs, and each
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of these models contains some parameters, that their
values are playing an important role in grid analysis.
Usually, some of these parameters are specified by their
manufacturers and assumed to be constant. However,
some changes in power or terminal voltage may cause
special operational point that needs to update these
parameters.

The bases of the ways for determination of SG
parameters in practical mode are discussed in literature
(1-3) that used in many analysis. In addition, Mouni et al.
(2) have conducted parameter estimation by applying a
short circuit and least the square method, which may
cause damage to the SG’s structure. The other methods
that are related to the direction of this research discussed
by Chowdhury and Senroy (4) used five measuring
quantities of SG and importing them in the unscented
Kalman filter (UKF); although an example of estimating
the state of a power system using the Kalman filter are
given in literature (3) in a basic form. However, it is not
possible to measure all these quantities at a low cost in
practice. Appropriate estimation was made by
Ghahremani and Kamwa (5) Ren et al. (6), for just
dynamic states of SG with low order models and
extended Kalman filter (EKF). Huang et al. (7)
introduced fourth-order model parameters estimation
with square root unscented Kalman filter (SRUKF) that
they do not contain more details in comparison with high-
order models of SGs. To fix this issue, Geraldi et al. (8)
Zhao and Mili (9), Valverde et al. (10) estimated
parameters or dynamic states with UKF. However, in
UKF algorithms some coefficients need to be set
accurately and may be necessary to fix them in other
equations or different SG’s types. For both parameter and
state estimation, good results with a modified type of
UKF to be achieved. Rouhani and Abur (11) dond
parameter estimation for fully regulated SG, but uses a
noncomplex model like two axes model with UKF.
Gonzélez-Cagigal et al.(12) , Li et al. (13) used cubature
kalman filter (CKF) to estimate the dynamic state of SG
in detailed. CKF algorithm for implementation needs a
powerful computing platform, but can clearly say that the
results of this filter are one of the most exact results, also
the phasor measurement units (PMUs) are widely used in
data acquisition of synchronous generator operation
parameters, which can capture the dynamic response of
generators. For many reasons it is hard to transmit
gigantic volumes of data to the information center due to
limited communication bandwidth, so to reduce
communication pressure, an improved regularized
particle filter (IRPF) is designed to guarantee the
estimation performance by Bai et al. (14).

According to reviews, this research is the first
analysis to challenge the CDKF performance in
estimating both parameters and dynamic states for two
different dynamic models. It should be noted that in this
research, the estimation process will be implemented on
SGs behaviour consisting of increasing excitation

voltage and input torque for generator A and instant short
circuit for another generator (i.e. B). The measurements
also used in this work is the easily accessible outputs of
SG. Furthermore, the algorithm used has good stability,
and even it does not need to specify parameters like UKF,
and it is compatible with a wide range of dynamic
equations. Also Using the CDKEF filter in the hybrid
form, where the discrete measurements are placed next to
the continuous state equations that are known as
HCDKEF, and because discrete measurements are used,
the answers are closer to reality.

The remaining parts of this work are organised as
follows. Section 2 is allocated to describe and formulate
the CDKEF algorithm and after that in section 3 presents
the models of SG used in the estimation process. Match
the models with the CDKF algorithm for dual estimation
described in section 4. Two study cases, including
generators A and B with their details for testing the
accuracy of the process, is presented in section 5. The
conclusion and recommendation are obtained from the
results presented in section 6.

2. CENTRAL DIFFERENCE KALMAN FILTER

The basis of all Kalman filter derivatives goes back to its
linear type and is used to filter noisy data, produce
nonobservable states and forcast future state (15). But for
nonlinear states, these particle filters have the ability to
estimate states with different tension that can be
considerd (16, 17). In nonlinear forms of this filter, the
central difference Kalman filter (CDKF) is one of the
exact forms with good results. For implementing this
filter to SG’s dynamic, a complete description of the
states and measurements is required. Equations 1 and 2
represent the usual form of the states and measurement,
Also, special attention should be paid to the discontinuity
and continuity of these equations with respect to time,
which will be explained more (18, 19).

() = f(x(0), u(®) + v(o) )

y(t) = h(x(t), u(tq) + n(t) @

where X(t) represents a state vector, u(t) is the system
input, and v(t) is the process noise which is assumed to
be Gaussian with covariance Ry. These values together
form a continuous nonlinear function as f. In the second
equation, y(t) represents available measurement which is
described by the function h. The measurement noise n(t)
is assumed to be Gaussian with the covariance R, at
instant t. Since this filter is supposed to be implemented
on generator equations, a hybrid form of the filter should
be mentioned. Generators like many nonlinear systems
have continuous state equations and discrete
measurement equation. Because sensors which record the
measurements based on a sample time and finally



M. Zoghi and H. Yaghobi / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1239-1251 1241

generate a data series with a specified step, so the
measurement equation is modified as follows (20):

Yk = h (Xk, Uk) + Nk ?3)

If the EKF algorithm was used to estimate, Equation
1 should linearize and then enter into the process (21).
However, in CDKF, the state equation evaluates in a
continuous nonlinear form, that is based on Sterling’s
polynomial interpolation functions (16). This method is
known for approximating nonlinear function and uses a
finite number of the main function evaluations instead of
analytical derivatives. For scaler form and if supposed
that g(x) is a nonlinear function with a random variable x
and its mean x, the 2nd order case is given by:

9(x) = 9() + Daxg + D29 @

where Dg is the first and D?4g is the second-order
central divided difference operators and given by:

Daxg = (x-5) é%};g@-m .
Bing = (e LD LG 20 o

h is known as interval length in these equations, except
that, the derivatives are not analytically solved by
extending the sterling formula to make a multi-
dimensional mode. It’s necessary to provide a new
variable that is stochastically decoupled. So z can be
expressed as Equation 7 and then put in a nonlinear
function to create g(z) in Equation 8.

z=S%x (7)

8@ =9(5x2) = g(x) ®)

where Sy is obtained from the Cholesky factorization of
covariance matrix x called Pyx. Furthermore, by putting
this transformation in the sterling formula instead D g &
[32Axg, it’s easy to calculate mean, covariance and cross-
covariance, which is summarized in two stages in the
following. At first, it is necessary to specify initial values
as below:

Xo = E[x0] 9)

Pxo = E[(Xo-%0) (Xo-x0) T] (10)

where xo is the initial estimation or mean value for the
first step and Py, is the initial estimation covariance that
can have a significant influenced on the estimation result.

2.1. Time Update  Time update in CDKF is similar
to UKF and starts by specifying the number of sigma
points which have 2L+1 points for each instant k. L is the
state space dimension or in other words, the number of
states. x«.1 is the previous value of estimation to calculate
sigma points (x.1) as follows:

X1 = [Xkr Xka+hy /Py, Xka-hy/Py ] (11)

Now it’s time to propagate sigma points through a state
equation that can obtain,

Xigk-1 = f(Xk-1, Uk-1) (12)

Then, using these points to calculate a priori estimation
of the mean () and covariance (Pxx) as follows:

. 0
Se= S oW x s (13)

—yL (c1) 2
Pxi =X [ w1 XL pe)” +

14)
2, 2 (
ch.)(xi,k\k-l XL e 1-2%0 k1)1 + Ry

where wi™ is the weighting vector of mean and w;" &
wi®@ are weighting vectors of covariance and calculated
by Equation 15. In addition, the power of two in Equation
14 represents the outer product.

2
WO(m) = h—;L
h
W= =1, 2L
h
1 (15)

.(cl) —
Wl(c)—4h2

©@ ="
_Wi _W i=1,.. 2L

2. 2. Measurement Update In this stage, sigma
points must be recalculated, but this time with prior
estimation (x) and its covariance (Px) that comes from
the previous stage as follows:

X1 =[Fk Xk+h ’p}‘ck Xk-h |p; ] (16)

Then new sigma points (X"q-1) are propagated trough
measurement function as Equation 16.
Yigeer = h(X 1) 7

With the weights were calculated in Equation 15, mean
(¥x), covariance (py ) and cross-covariance (pw ) Can be
k k

easily found in Equation 18.

s 2L (M)
Vk=Xizow; Vi klk-1

5., =\'L (c1) 2
Py =Y [w; Ot rYierier) +

(c2) 2 18
w; Oitper WV ier e 12V o k1) I+Rn (18)

_ (D) _ _ T
Py = "1 Py [VI.-l,k\k-l y/+1:2L,k|k—1]

And in the last step, one of the filter’s output that named
Kalman gain (k) is calculated in Equation 19.

Kv«=p

Xk

r, (19)

Then the final results of the estimation process (x«) as a
posterior estimation and its covariance (pXk) Can be

obtained,

X=Xk + ke (Ye- Fk) (20)
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Px= Py, - kep, K (1)

Xje
where these values are the final estimation for the kth
instant, and the first step for k+1th.

3. SYNCHRONOUS GENERATOR MODELS

One of the most important parts in dual estimation is
recognizing the dynamic model of the system under
discussion. In this work, two models of SG are described
that if not done correctly, can cause bad results. The third
and seventh order model of SG presented in the next two
sections.

3. 1. Third-Order Dynamic Model The third-
order model is the flexible and accessible model in the
dynamic analysis (19, 22). It’s not very detailed and to
achieve the equations, some assumptions must be taken.
For example, neglecting the dynamic changes of stator
and damper windings, stator resistance is assumed to be
zero and also rotor speed is considered to be equal with
synchronous speed (1p.u.). However, using this model is
favored in the filter and makes it, easy to estimate. The
equations in this model consist of rotor angle (), rotor
speed (w) and transient internal voltage of the armature
(eq) that are calculated as follows:

$=w (22)
Cb:]_{ (Tm_Te_Dw) (23)
é,; = T#do (B - eé- (% - X a)ia) (24)

To complete the above equations, mention the direct and
quadrature current (i; & i,) and electrical torque (7,) is
required, which represent in Equations 25 to 27,
respectively. Unknown parameters and states that should
be estimated are discussed separately in the following
sections.

i, = s (25)
xX'q
. vsind
jy =2 (26)
q
Voo Vo1
7,=P, EX—,deq szn5+3(x—q) (27)

After determining the state equations, it’s time to specify
the measurement equations. There are many quantities in
a generator that have a certain equation, but that’s not
enough alone. Quantities are selected, which can be
easily measured. So in this work terminal current (i,),
terminal voltage (v,), electrical power (p,) and rotor
speed (w,) are used. The following procedure can be
followed to extract their equations. Equation 28, stator
current is defined.

Q= ’if]ﬂi (28)

For v,, it’s needed to calculate direct and quadrature
voltage as follows:

vy = (1-Z)vsin o (29)
Xq

v, = (1- )veos 42 (30)
x'y x'y

and then put them in Equation 31 to form the following
equation.

v, = ’vfﬁ-vg (32)

The Equations 23 and 27 can be used for w, and p,
respectively to establish a good connection between the
states and measurement equations. In addition, this
combination gives accurate results in the estimation
process. All equations in this section are implemented on
generator A and the details are given in the appendix.

3. 2. Seventh-Order Dynamic Model The
seventh-order model has more details than the third-order
model. That is why implementing the estimation
algorithm for this model is a challenging issue. There are
five electrical equations and two mechanical equations in
this model which form the dynamic states. Unlike the
third-order model, the damper winding behavior is not
neglected here. Krause et al. (23) is used to review these
equations. The magnetic flux of the stator, rotor and
damper windings are considered as electrical equations
and written as follows:

0y = 0l 55 04 - (0,7 0,)] (32)
Og = 00000 T2 0+ 0,07 0,)] (33)
Dy = Olig* 25 (0,07 04,)] (34)
Prg = Opliat % (0~ P4)] (35)
b= Ot 22 (0,0 0,0)] (36)

In coordinates transformation from abc to qdo the
magnetic flux of the o axis (¢, ) becomes zero. ¢, and

0, Ar€ defined as middle variables to make writing
equations easier and calculated as follows:

[
? e = *a —++ ﬂ)
mq xiy xug
— Pas o Pk Ppa
¢md _xad(_+_ +f
Xis Xikg  Xifd 37
[ R (37)
Xag =(—+—+—
Xmg Xis Xlkq
1 1 1 1
Yoy = (L L Lyt
Xmd — Xis  Xikg  Xigd
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and mechanical equations also calculated as:

(2) =L @1 (39)

®p
0= mp( 3= 1) (39)

where w, is the synchronous speed and equal to 2nxf.
Now, and after completing the state equations, it is time
to choose the measurable quantities.

In this model, rotor speed, field winding current (i),
stator voltage and current were chosen, and they are
calculated according to Equations 39, 40, 28 and 31,
respectively. Except that the direct and quadrature
voltages are calculated with Equations 41 and 42.

L1

= (P~ Pma) (40)
Vg = VSinod - X,i, (41)
Vg = VC0oS 0 - X,lg (42)

As it was reviewed, this model has seven states and
nine parameters which should be estimated separately.
These equations together, form the structure of generator
B, which its real values for simulation are listed in the
appendix.

4. IMPLEMENTATION OF CDKF

The CDKEF is the most accurate filter among all sigma
point Kalman filters and uses the Sterling interpolation
formula. This filter has the computational complexity in
the order of EKF but achieves a second or higher-order
accuracy in the posterior mean and covariance which can
be observed in some recent works (24). Any filter from
sigma points filters or even a linear or nonlinear form of
them can be used for state, parameter and dual
estimation. However, for each of them, it is necessary to
modify the base filter’s structure. There are two
approaches for dual estimation. One of them uses two
filters that work together to estimate states and
parameters. The other method uses just one filter, and the
equations are written in such a way that states and
parameters are estimated simultaneously. The second
type is used in this work. Dual estimation has its
difficulties; for example, Gonzélez-Cagigal et al. (12)
used two steps to estimate. In the first step, implement
the algorithm on a simple model and then add other
components and estimate whole parameters. However, in
this work, the estimation process is implemented on
complete forms of equations. Furthermore, to understand
the structure of dual estimation in the form of a joint
filter, Qi et al. (25) have used. According to the state
equations from section (3), unknown states in third and
seventh-order models of SG can be written as:

x(Tsth-order) = [0, w,, e’]

and

xﬁth-order) = [(05,‘?1 (ods‘ (ﬂkql (ﬂkd: Qfdl @, 5]

respectively. In addition, the unknown parameters vector
(w) for the mentioned models are

Wistheorder) = [ D Tdor X Xgr X 4]

and

W(Tnh-order) = [r,, Trgr Tkdy Vfds Xiss Xikgs Xikdr Xifds H]

then the augmented vector of states and parameters
(ag=[x", w1") must be formed, which is an important
part of the estimation process. The size of the augment
vector for the third-order model is Lz or4ery = 9 and
L7th-oraery= 16 for the other. Now the augment vector

should be replaced with the state vector in Equations 3
and 1 to perform the new structure as follows:

[ ®
y=l 0 .. o0 fvl;;]+nk (44)

where 7y, is the parameters noise and depending on their
equation, their values are set. For the measurement vector

’ - .
Y honden™ [, I, v, p,] is used for generator A and

Y rhonder™ [, I, v, if] is used for generator B, which

their equations have already been specified. Finally, it
should be noted that the input vector (u) consists of
excitation voltage (v,) and input torque (77) in case (1)
and terminal voltage in case (2).

5.CASE STUDIES

CDKEF algorithm is tested on generators A & B, which
reviewed their equations in the previous sections. For
measuring the output signals of generators, their structure
was simulated in Matlab’s code environment. To better
determination of each case’s details, two sections are
considered.

5. 1. Casel: Generator A As shown in Figure 1,
generator A connected to an infinite bus in a steady state
condition through a line with impedance jO.2 p.u.
Generator outputs, which should enter to estimation
process, are recorded by sensors at sample time At=1
ms. They will be ready to use after the noise is added to
them, which is shown in Figure 2. The additional noise
has a Gaussian distribution with zero mean and standard
deviation R, = 105,

The algorithm performance will be challenged in two
changes. The first one is increasing the field voltage by
20% its real value at second 2, and after 10 seconds, the
next change will happen with an increase of 2% in input
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Figure 1. Structure of the system under study
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Figure 2. Diagrams of measurement changes for 20 seconds
in generator A (a) Real and noisy values of rotor speed (b)
Real and noisy values of terminal current (c) Real and noisy
values of terminal voltage (d) Real and noisy values of
electrical power

torque. Steady state calculation before changes take
effect, listed in the appendix.

In this case, process noise (r;) that being in state
equations, is specified by its covariance matrix (Q ) and

also the parameter noise with covariance matrix (Q, ).
These covariance matrixes combined each other as a
diagonal form that, being ready for the dual estimation
purpose as Q.= diag([0’, 0'1). The usual value of
Q_ in the UKF algorithm is 10 like Qi et al. (25), but in
this work for better results, O ... consider as:

QgDKF = diag ([10, 105, 107, 10°®, 105, 106, 105, 10°%))

The initial value of parameters is an important issue
in the implementation algorithm. For this case, initial
values are set at 80% and 130% of their real values, and
for both of them, estimation results for states and
parameters are shown in Figures 3, 4 and 5. Their results
are named HCDKEF, because the filter reformed for the
SG’s equations in hybrid structure and defined in section
2. In addition, the initial estimation error covariance,
which indicates the confidence to the initial parameters
is a diagonal matrix as:
pfnz diag ([10°°, 10®, 105, 103, 103, 104, 103, 10%])

0.54 ‘ ‘ ‘ .
| —True
0.52 —— HCDKF80%
——HCDKF130%
~ 05 0.435 _—
3
5048 0.434
b 0.433
0.46 31 344
0.44 p—
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(@)

1.005 T T T
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| ' ——HCDKF130%
1
1.0002
1
0.995 - 0.9998

318 3.2 322 324
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1451 22 23 24
14 \ . . . \ ,
0 2 4 6 8 10 12 14 16 18 20
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Figure 3. Diagrams of state estimations in generator A (a)
Diagrams of true and estimated values of & (b) Diagrams of
true and estimated values of w, (c) Diagrams of true and
estimated values of e
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Figure 4. Diagrams of parameters estimation in generator A
(a) Diagrams of true and estimated values of ] (b) Diagrams
of true and estimated values of D (c) Diagrams of true and

estimated values of Ty,

For better comparison, the final estimated values in
the second 20 are listed in Table 1. Two rows of this table
are allocated to UKF estimation with similar noise to
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Figure 5. Diagrams parameter estimations in generator A (a)
Diagrams of true and estimated values of x4 (b) Diagrams of
true and estimated values of x4 (c) Diagrams of true and

estimated values of x;

CDKEF and tunable parameters a = (0.5), = (2) and k =
(-6). The only tunable parameter in CDKF is h, which is
equal to /3. The time duration (20 S) seems to be
sufficient because the filter responses are being fixed. As
it seen, estimation values are very close to the real values,
also tracking states by the filter is admirable. On the other
hand, to evaluate the estimation accuracy, relative errors
for the last data in the filter’s memory are calculated and
listed in Table 2.

TABLE 1. Estimations of CDKF and UKF for generator A
parameters in two initial conditions

CDKEF estimations

UKF estimations

Parameters €@ 80%  130% = 80%  130%
values  jnjtia| initial initial  initial

valve value valve value

J (p.u) 0.0252 0.025193 0.0251217 0.025258 0.026209
D (p.u.) 0.05 0.049956 0.050007 0.050016 0.050336
T}o(5) 0.1310 0.131622 0.130642 0.12787 0.126155
xq (pU.) 2.072 207196 2071871 207199 2.092736
Xq (P.U.) 1559 155959 156673 1.55335 156293
x4(p.u.) 0568 0568036 0.571634 0.56776 0.56858

TABLE 2. Relative errors for CDKF and UKF estimations in
generator A with two initial conditions

CDKEF relative errors

UKEF relative errors

2} 1.57 |~

1.56
1.55

——HCDKF130%

2 4 6 8 10 12
Time (s)

(b)

(%) (%)

Parameters

80% initial 130%o initial 80% initial 130%

valve value valve initial value

J (p.u) 0.0253 0.3104 0.2337 4.004
D (p.u.) 0.08161 0.0159 0.0321 0.6735
Tgo (S) 0.4753 0.2727 2.3819 3.6981
Xq (p.u.) 0.0015 0.062 3.53x10°% 1.0008
X4 (p.u) 0.0383 0.4961 0.3472 0.2525
x4(p.u.) 0.6440 0.6399 0.0409 0.1073
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5. 2. Case2: Generator B For generator B, using
the same connection to the grid as generator A, but the
difference is that, in this case, a three-phase short circuit
occurred at generator terminal in second 1 and cleared in
0.3 second later. Measurements change with the added
noise to them showed in Figure 6. The noises have a
Gaussian distribution with zero mean and standard
deviation R, = 105,

—Fault cleared-1.3 s

—Real value

‘—With noise
1.02 - 1

i-—Three phase short circuit occurred-1s

0.96 | I |
0 5 10 15 20 25 30

Time (s)

@

—With nolise
8l 1 ~——Real value | |

15 20 25 30

Time (s)
——With noise
——Real value

(b)
1.16
A4
/o

1148 115 1152

¥
10 15 20 25 30
Time (s)
(©
6 T T
——With noise
—Real value
15 20 25 30
Time (s)
(d)

Figure 6. Diagrams of measurement changes for 30 seconds
in generator B a) Real and noisy values of rotor speed b)
Real and noisy values of terminal current c) Real and noisy
values of terminal voltage d) Real and noisy values of filed
current

Since this model has more details, the generator’s
operation is simulated for 30 seconds and filter should
estimate states and parameters in this duration. Process
and measurement noises are defined by 16x16 diagonal
matrix (Q k) and in this case,

QngF = diag ([10%, 10°%, 105, 105, 10°, 10, 10,
107,
108, 107, 108, 10°, 10°, 10°, 10,
107)

The initial values of parameters set 90% and 120% of
their real values and the covariance error of the initial
estimation (P, ) defines as:

P! =diag ([10°%, 10, 10, 10, 10, 10°%, 10°%, 10,
104, 10, 104, 104, 104, 104, 104, 10])
with these values for noise and initial objects, as
mentioned above, Figures 7 and 8 show the states and
parameter estimation with both initial values of
parameters. And Figures 9 and 10 show the performance
of the filter to estimate the parameters. The result figures
for this model, which are estimated by only four
measurements signal are very acceptable.

The last estimation in 30 seconds for CDKF with h =
/3 and for UKF with « = (1), £ = (2) and k = (-13) with
similar noises to the CDKF process are listed in Table 3.
For better comparison, relative and definite errors are

——True
. 'T: ——HCDKF90%
3 b42 HCDKF120%
=X 997 998  9.99
g‘ Y
-
- F
2 . ‘ ‘ ‘
0 5 10 15 20 25 30
Time (s)
(a)
: : : :
10 A 3
True
- 0.93 ~——HCDKF90%
= _—— 0
ki 0 0.92 HCDKF120%
" 0.91
-
& af 9.43 9.44 ]
2 ‘ . . . .
0 5 10 15 20 25 30
Time (s)
(b)

—True
—— HCDKF90%
- - - "HCDKF120%

P g (P0)

NN

85 9
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Time (s)

(©



M. Zoghi and H. Yaghobi / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1239-1251

12 r . :
True 1
——HCDKF80%
- - - "HCDKF120%
04F 11.2 114 116 11.8 7
02 - : :
0 5 10 15 20 25 30
Time (s)
(d)

Figure 7. Diagrams of state estimations in generator B (a)
Diagrams of true and estimated values of @45 (b) Diagrams
of true and estimated values of ¢4 (c) Diagrams of true and
estimated values of ¢4 (d) Diagrams of true and estimated
values of @yq

presented in Table 4; which shows CDKF has done its
job properly and in some parameters better than UKF
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Figure 9. Diagrams of parameter estimations in generator B
(a) Diagrams of true and estimated values of riq (b)
Diagrams of true and estimated values of ryq (c) Diagrams
of true and estimated values of r¢y (d) Diagrams of true and
estimated values of x;g

except rs. However, the important thing about the filter is
the number of tunable parameters and its compatibility
with many structures.

1

Figure 8. Diagrams of state and parameter estimations in
generator B (a) Diagrams of true and estimated values of
®rq (b) Diagrams of true and estimated values of w, (c)
Diagrams of true and estimated values of § (d) Diagrams of
true and estimated values of ry
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Figure 10. Diagrams of parameter estimations in generator
B (a) Diagrams of true and estimated values of xq (b)
Diagrams of true and estimated values of x4 (c) Diagrams
of true and estimated values of x¢4 (d) Diagrams of true and
estimated values of H

Steady states equations and real values of generators
A and B defined in Tables 5 and 6.

TABLE 3. Estimations of CDKF and UKF for generator B
parameters in two initial conditions

CDKF estimations UKF estimations

Parameters ¢ 90%  120%  90%  120%
values nitial  initial  initial initial
valve value valve value

rs (p.u.) 0.003  0.00676 0.006953 0.0306 0.00287

Tiq (PU) 00178 0.001742 0.001826 0.001753 0.00167
Tea(PU) 00133 0.012947 0.013647 0.013618 0.01267
T4 (PU)  0.000929 0.000932 0.000928 0.000932 0.000893
x5 (p.UL) 019  0.18988 0.189887 0.18989 0.18060

Xieq (P-U.) 0.8125 0.80454 0.82359 0.8176 0.77187

Xuaq (D-U) 008125 0.080166 0.08463 0.08320 0.07719
Xiya (PU) 01414 0139176 0.14650 0.14417 0.14037
H (s) 56 54320 58520 6.1600  5.3200

TABLE 4. Relative errors for CDKF and UKF estimations in
generator B with two initial conditions

CDKEF relative
errors (%)

UKEF relative
errors (%)

p t Real
arameters . olues 20%  120%  90%  120%
initial initial initial initial
valve value valve value
rs (p.u.) 0.003 12525 131.79 2.003 4.2141
Tkq (p.u.) 0.0178 2.1175 2.6159 1.447 5.6456
Ta (PU) 0.0133 29508 2.3097 2.095  4.9994
Tfa (p.u.) 0.000929 0.3828 0.0204 0.3532 3.8986
x5 (p-u.) 0.19 0.0610 0.0593  1.959 4.945

Xpeq (P.U) 08125 09796 1.3652 1997  4.9996
Xpa (PU) 008125 13337 41670 2067  4.9939
Xypq (pU) 01414 15528 3.6079 00919 0.7246
H (s) 5.6 29997 45000 1998 5000

6.CONCLUSION

In this paper, a CDKF algorithm is implemented on two
dynamic models of different generators, with the purpose
of dual estimation of states and parameters.

Although many kinds of Kalman estimation
algorithms EKF, UKF and CKF with different levels of
accuracy tested on SG’s equations. In each of them, some
parameters have to be set. While in CDKF just by tuning
one parameter can achieve good results the same as other
methods. In addition, the 7-order model used in this work
has 16 unknown states and parameters which are
estimated only by four external measurements from
accessible quantities of the generator.

The case studies have shown that the algorithm has
acceptable accuracy in different working conditions and
also in different initial values of parameters for the first
step of estimation. Furthermore, in some parameters, it
works better than UKF.

Also, due to the volume of equations and
computational complexity of the CDKEF algorithm,
special attention can be paid to the implementation of this
process on a low-cost and powerful computing platform
such as PIC as future activities, and its results will be
evaluated in the form of another research.
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8. APPENDIX

The main variables of 7-order model are:

Py Quadrature axis magnetic flux
Py Direct axis magnetic flux
The main variables of 3-order model are: Piq Q.uadratu.re axis damper mr_:lgnetlc flux
e Transient internal voltage of armature Pra Direct axis damper magnetic flux
J Rotor angle P Filed winding magnetic flux
w, Rotor speed i Filed winding current
Ey The equivalent EMF in the excitation coil ’ Stator resistance
T, Output electrical torque Fig Quadrature axis damper resistance
Ve Generator terminal voltage ra Direct axis damper resistance
4 Infinite bus voltage T Field winding resistance
iy i,  Directand quadrature axis stator currents X, Stator leakage reactance
Tao Direct axis transient time constant xy,  Quadrature axis damper leakage reactance
jd RD |:ect_ aX|i_tran5|ent reactance Xikd Direct axis damper leakage reactance
D D(;r(:][)ilrzlgrf;cltor Xy Filed winding leakage reactance
X4 Direct axis reactance iI (Ignue;g;tcfrls;ax?; voltage
X, Quadrature axis reactance q Direct axis voltage g
Va
Vig Quadrature axis damper voltage
Vid Direct axis damper voltage
Vi Field winding voltage
[ Generator voltage angle

TABLE 5. Generator A [20]

Real values

Steady state calculations

wy = 120%7 (rad/s)
S=1(p.u.)

7, =0.8(p.u)
J=0.0252 (p.u.)
D =0.05 (p.u.)
x’;=0.568 (p.u.)
x;=2.072 (p.u)
x, =1.559 (p.u.)
T4, =0.1310 (s)

V=1 (p.u)
x,=0.2 (p.u.)
ii=>=1(p.u)

0=cos” (2222) = 07227 (pu.)

o= tan”! (—9) = 0.5223 (p.u.)

V+Xq X sin @
w =1 (pu)
Ep=vx cos d +x, i x sin(6+6) = 2.8297 (p.u.)
e’ ,=vxcosd +x'yxigx sin(d+6) = 1.4048 (p.u.)

TABLE 6. Generator B [21]

Real values

Steady state calculations

S = 835x1000000 (VA)
V., = 26000 (v)

v
Vs = V3 (V)
PF =09

w,= 377 (rad/s)

P=2
H=5.6(s)
x,=0.2 (p.u.)

r,=0.003 (p.u.)

x;,, = 0.19 (p.u.)
xg=1.8(p.u)

77 = 0.000929 (p.u.)
x;; = 0.1414 (p.u.)
= 0.01334 (p.u.)
Xjq = 0.08125 (p.u.)
x,=18(p.u)

7, = 0.00178 (p.u.)

X = 0.8125 (p.u.)

0= cos™ (PF)=0.4510 (p.u.)
v,s= 1 (p.u.)
iys=cos 0-(sin 0 x1)i=
0.90-0.435i (p.u.)
E=vyt(ry %, x 1 )ixi,=
1.787 + 1.618 i (p.u.)
o=4(E,)=0.7359 (p.u.)

i4=-sin(-6-0) = 0.9272 (p.u.)

i,y=cos(-0-6) = 0.3745 (p.u.)
xmd:xd-'—x]s =1.61 (pu)
Xing=Xq X3, = 161 (pu.)

Ey=|E,|+(x4x,) ¥ig = 2.4114 (p.u.)
= E—": =1.4977 (p.u.)
Iy =ik =10s=0 (P-U.)
P g =X Xgs T g Xlgg = - 0.6741 (p.u.)

P g =X s T XigFXpq ¥y = 0.7423 (p.u.)
Pry™X1kg kg Tmg X('iquriAv) =-0.6029 (p.u.)
¢kd:x1kdXl’kd*'xmdx('idq‘*'lffd‘*'ikd) =0.9185 (p.u.)
(pfd:xWXszd+xmd><(-idq+szd+ikd) =0.1303 (p.u.)
o, =1(p.u.)

T,=0, Xiq.v‘(ﬂqs xi, =0.9030 (p.u.)
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