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A B S T R A C T  
 

 

The relentless growth of global energy consumption poses a multitude of complex challenges, including 

the depletion of finite energy resources and the exacerbation of greenhouse gas emissions, which 
contribute to climate change. In the face of these pressing environmental concerns, the manufacturing 

sector, a significant energy consumer, is under immense pressure to adopt sustainable practices. The 

critical intersection of energy consumption management and production operation scheduling emerges 
as a pivotal domain for addressing these challenges. The scheduling of common operations, exemplified 

by the cutting stock problem in industries like furniture and apparel, represents a prevalent challenge in 

production environments. For the first time, this paper pioneers an investigation into an identical parallel 
machine scheduling problem, taking into account common operations to minimize total energy 

consumption and total completion time concurrently. For this purpose, two bi-objective mixed integer 

linear programming models are presented, and an augmented ε – constraint method is used to obtain the 
Pareto optimal front for small-scale instances. Considering the NP-hardness of this problem, a non-

dominated sorting genetic algorithm (NSGA-II) and a hybrid non-dominated sorting genetic algorithm 

with particle swarm optimization (HNSGAII-PSO) are developed to solve medium- and large-scale 
instances to achieve good approximate Pareto fronts. The performance of the proposed algorithms is 

assessed by conducting computational experiments on test problems. The results demonstrate that the 

proposed HNSGAII-PSO performs better than the suggested NSGA-II in solving the test problems. 
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1. INTRODUCTION 
 
Energy plays a critical role in human society, and as 

nonrenewable energy resources continue to deplete, the 

need for effective and efficient use of energy becomes 

increasingly vital. The management of energy 

consumption across diverse processes and sectors has 

garnered significant attention among researchers owing 

to its demonstrated ability to mitigate energy 

expenditures, alleviate environmental repercussions, and 

enhance energy security (1-4). The production and 

consumption of energy are major sources of greenhouse 

gas emissions. The manufacturing sector, which accounts 

for roughly half of the world's total energy consumption, 

is a major contributor to greenhouse gas emissions (5-7). 

It is essential for manufacturing industries to prioritize 

improving energy efficiency and minimizing greenhouse 

gas emissions. To achieve this, production managers can 

choose from a variety of energy-saving strategies. 

Implementing energy-efficient machines is one potential 

strategy, although this approach may incur greater 

upfront costs, which can strain a company's finances. To 

reduce the impact of this issue, production managers may 

need to implement scheduling strategies that strike a 

balance between energy conservation and cost reduction 

(8). Scheduling problems have been classified into well-

known categories based on the machine environment. 

The most common types of scheduling problems are 

single machine, parallel machine, flow shop, and job 

shop. Among these, parallel machine scheduling is 

particularly significant in scheduling problems because it 

is a generalization of single machine scheduling and a 

specific mode of flexible flow shop scheduling (9). Over 

the past few years, scheduling problems that involve 

simultaneously obtaining objectives for scheduling and 

energy have been the subject of extensive research. The 

related literature has introduced and accepted various 

electricity consumption strategies, such as power-down 

and speed-scaling. Furthermore, different policies for 

determining electricity consumption costs, including 

fixed, time-of-use (TOU), and tiered pricing, have also 

been formulated and employed (10-13). Parallel machine 

scheduling problems that consider energy consumption 

account for a significant portion of the studies mentioned. 

Li et al. (14) investigated the unrelated parallel 

machine scheduling problem to minimize energy costs 

and tardiness. In this problem, energy consumption has 

been considered for various machine modes, including 

setup, idleness, and processing. For this problem, a 

mathematical model has been developed so that two 

objectives are regarded as one single objective. To solve 

the problem, ten heuristic methods based on the priority 

rules, combination rules, and energy consumption have 

been proposed. Che et al. (15) investigated an energy-

efficient unrelated parallel machine scheduling problem 

to minimize total electricity consumption costs. In this 

problem, the cost of electricity consumption is calculated 

using the TOU tariffs, and the makespan is limited. These 

researchers proposed a two-stage algorithm to solve the 

problem. Wang et al. (16) studied the parallel machine 

scheduling problem with a bounded power demand peak. 

In this problem, the jobs can be processed at different 

speeds and therefore have various processing times and 

power demands. The goal of this problem is to minimize 

the makespan, and to solve it, the researchers proposed a 

genetic algorithm based on a two-stage heuristic method. 

Zeng et al. (17) conducted a comprehensive 

investigation of a bi-objective optimization problem 

pertaining to uniform parallel machine scheduling. The 

aim of their study was to minimize both the number of 

machines employed and the total electricity cost within 

the framework of TOU tariffs. To accomplish this, the 

researchers devised an iterative search framework, 

facilitating the attainment of the Pareto front. Wu & Che 

(18) investigated an energy-efficient bi-objective 

unrelated parallel machine scheduling problem with the 

goal of minimizing both total energy consumption and 

makespan. They suggested a memetic differential 

evolution (MDE) algorithm to solve the problem, and 

they developed a local search approach to improve the 

proposed algorithm. Cota et al. (19) conducted an 

investigation into the unrelated parallel machine 

scheduling problem, incorporating sequence-dependent 

setup times to minimize both total electrical energy 

consumption and makespan. Furthermore, to find 

solutions close to the Pareto optimal front, they 

developed and tested a novel heuristic algorithm called 

Smart Pool. Safarzadeh & Niaki (20) investigated bi-

objective green scheduling in uniform parallel machine 

environments. In this problem, various green cost rates 

for every machine were considered to model the impact 

of production resources on sustainability, such as energy 

consumption and carbon emissions. The researchers 

modeled the problem with the objective of minimizing 

the total green costs and makespan, and they used the ɛ-

constraint method to identify Pareto optimal solutions. 

Wang et al. (21) investigated the identical parallel 

machine scheduling problem with the goal of minimizing 

both the makespan and total energy consumption. In this 

problem, the cost of electricity consumption is calculated 

using the TOU tariffs. The researchers used the 

augmented ɛ-constraint method to solve the problem in 

small-scale instances, and they developed a constructive 

heuristic (CH) method with a local search strategy based 

on the problem's characteristics to solve the problem in 

larger-scale instances. Anghinolfi et al. (22) developed 

an ad hoc heuristic method to solve the problem proposed 

by Wang et al. (21). This method is divided into two 

parts. The first section of the method is an improved and 

modified version of the constructive heuristic (CH) 

algorithm proposed by Wang et al. (21). The second 

section introduces a new local search method for 
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enhancing the efficacy of Pareto solutions. They 

conducted computational tests to assess the suggested 

method's efficiency and effectiveness. Zhang et al. (23) 

delved into a two-stage parallel machine scheduling 

problem, aiming to minimize total electricity costs under 

TOU tariffs. Their study considered a two-stage parallel 

machine system comprising identical parallel speed-

scaling machines at stage 1 and unrelated parallel 

machines at stage 2. The researchers modeled the 

investigated problem as mixed-integer linear 

programming and developed a Tabu Search-Greedy 

Insertion Hybrid (TS-GIH) algorithm to solve it. 

Keshavarz et al. (24) studied the unrelated parallel 

machine scheduling problem with sequence-dependent 

setup times to minimize the energy consumption costs 

and makespan. They used the ɛ-constraint method to 

solve the problem in small instances, and they developed 

the multiple objective simulated annealing and multiple 

objective particle swarm optimization algorithms to solve 

the problem in medium and large instances. Zhou & Gu 

(25) examined the unrelated parallel machine scheduling 

problem by taking into account multiple resource 

constraints to minimize total energy consumption and 

total completion time. They developed a multi-objective 

artificial immune algorithm to solve the problem. Módos 

et al. (26) examined the problem of parallel dedicated 

machines while keeping energy consumption constraints 

in mind. In this problem, the peak energy consumption at 

specific time intervals should not exceed a specified 

limit. The researchers studied four different variants of 

the problem and designed a heuristic algorithm for the 

general problem. Rego et al. (27) proposed a novel bi-

objective unrelated parallel machine scheduling problem 

that considers TOU tariffs and sequence-dependent set-

up times. To tackle the problem, the researchers 

suggested a bi-objective mixed-integer linear 

programming formulation to minimize the total energy 

consumption and makespan. To solve small and large 

instances of the problem, they used the weighted sum 

method and the non-dominated sorting genetic algorithm 

(NSGA-II), respectively. Asadpour et al. (28) studied the 

identical parallel machine scheduling problem with the 

job-splitting property to minimize the total number of 

tardy jobs and total energy consumption. In this problem, 

the jobs can be further subdivided. An augmented ε-

constraint method was used to solve small-scale 

problems, and a simulated annealing (SA) algorithm was 

designed to solve medium- and large-scale problems. 
Heydar et al. (28) proposed an approximate dynamic 

programming (ADP) approach to address an energy-

efficient unrelated parallel machine scheduling problem 

characterized by random job arrivals. The objective of 

their work is to minimize a weighted combination of 

makespan and total energy costs. The energy costs 

encompass the energy consumption incurred during 

machine switching, job processing, and idle periods. At 

each stage of the ADP, a binary program was formulated 

to optimize the scheduling problem. The energy 

efficiency strategy considered in their study is TOU 

electricity tariffs. Gaggero et al. (29) investigated the 

problem of bi-objective scheduling on parallel identical 

machines with TOU costs (BPMSTP). They introduced a 

new mathematical formulation for the BPMSTP, which 

allowed them to develop a more efficient exact algorithm 

for finding the optimal Pareto front. Additionally, they 

proposed an alternative heuristic approach called the 

Enhanced Heuristic Scheduler (EHS), which proved to 

outperform existing heuristics in experiments. Not only 

did EHS demonstrate superior performance, but it also 

enhanced the computational efficiency of the exact 

approach. Sanati et al. (28) conducted a comprehensive 

investigation into an unrelated parallel machine 

scheduling problem considering sequence-dependent 

setup times under TOU electricity tariffs. Their study 

meticulously examined setup times in two distinct 

modes: disjointed from and jointed to processing time. 

For each of these problem variations, two mixed-integer 

linear programming models were meticulously 

formulated. The presented models for the problem with 

setup time disjointed from processing time demonstrated 

the capability of solving instances involving up to 16 

machines and 45 jobs. In contrast, this capability was 

extended to 20 machines and 40 jobs for the processing 

time jointed to the setup time problem. Furthermore, to 

address large-size instances effectively, a fix and relax 

heuristic algorithm was proposed. This algorithm 

exhibited the ability to solve instances of up to 20 

machines and 100 jobs for each of the two considered 

problems.  

In studies on parallel machine scheduling, after a job 

is assigned to a machine, that machine processes the job, 

and the job is ready to be delivered. In the real world, 

however, there are problems in which each job consists 

of several sub-jobs, and the job is ready to be delivered 

when all of its sub-units have been completed after 

processing one or more activities. Furthermore, 

processing an activity may have an impact on the 

completion of multiple jobs. These problems are 

introduced as "common operation scheduling" (COS) 

problems. Common operation scheduling problems are 

used to find the optimal arrangement of operations 

required by a set of jobs under the assumption that when 

an activity is completed, it is completed for all jobs that 

require it (30). These types of problems have different 

applications, including movie shooting (31), progressive 

network recovery (32), and pattern sequencing in cutting 

stock problems (33). 

The cutting stock problem includes cutting a set of 

available pieces in stock (objects) to produce a specific 

set of smaller pieces (items) that optimizes an objective 

function such as minimizing total waste, maximizing 

profit, or minimizing production costs, in order to meet 



1446                                              H. Ataei et al. / IJE TRANSACTIONS A: Basics  Vol. 37 No. 07, (July 2024)   1443-1465 

 

customer demand for different items. The cutting stock 

problem occurs in numerous industrial processes where 

the objects can be sheets of wood, sheets of metal, steel 

bars, paper or aluminum rolls, printed circuit boards, 

sheets of glass, etc. In these industries, using appropriate 

cutting programs is frequently associated with reducing 

production costs and increasing productivity. A cutting 

program is a solution to the cutting stock problem, which 

is proposed by a set of cutting patterns and the frequency 

of their use. A cutting pattern specifies a subset of items 

to be obtained from cutting an object. If the items in the 

cutting problem are two-dimensional or multi-

dimensional, then the cutting patterns also determine the 

arrangement of the items on each of the objects (34). For 

example, in a furniture factory, sheets of wood must be 

cut by one or more machines according to predetermined 

cutting patterns to produce smaller pieces. Each customer 

order (job) consists of several small pieces that may be 

placed in one or more different patterns. Therefore, an 

order is ready to be delivered to the customer when all of 

the patterns required by that order have been processed 

by cutting machines. 

Several papers in the related literature have attempted 

to categorize cutting stock problems, which can be used 

as references to study and gain more information about 

these categories (35-37). Different criteria can be used to 

categorize cutting stock problems. The most common 

criterion is cutting dimensions, used to describe cutting 

patterns according to the type of problem. Based on this 

criterion, cutting stock problems are divided into one-

dimensional, two-dimensional, three-dimensional, or 

multi-dimensional problems. According to the literature 

review, most cutting stock problems are focused on one- 

and two-dimensional cutting, which can be used in 

problems such as cutting paper, cables, pipes, sheet 

wood, etc. (37). In most related studies, the problem not 

only involves designing cutting patterns and selecting a 

number of them to produce items smaller than objects 

(customer orders), but also determining the sequence of 

patterns to achieve objectives related to completion 

times, due dates, production costs, etc. Arbib & Marinelli 

(38) studied the one-dimensional cutting stock problem 

by considering due dates to minimize the weighted 

tardiness of the jobs and raw material costs. In this 

problem, each job has a due date and consists of several 

pieces of the same size. Researchers developed and tested 

implicit enumeration, upper bounds, and heuristic 

methods to solve the problem. Cui et al. (39) studied the 

one-dimensional cutting stock problem, considering the 

setup costs. In their study, they developed an integer 

linear programming model to minimize the sum of setup 

and material costs over a given pattern set. To solve the 

problem, they introduced a heuristic algorithm based on 

sequential grouping to generate patterns. Wuttke & 

Heese (40) investigated the two-dimensional cutting 

stock problem with sequence-dependent setup times and 

permissible tolerances in the textile industry. For the 

problem under study, they provided a mixed-integer 

program, and to solve it, they used a sequential heuristic 

with a feedback loop based on Gilmore and Gomory's 

approach. 

While mentioning that the optimal cutting patterns for 

the production of items smaller than objects are designed 

by commercial software considering the minimum 

cutting waste, some papers have considered the pre-

designed patterns as the input of the problem and have set 

the sequence of patterns to achieve the objectives 

regarding completion time and due date (30, 33). Arbib 

et al. (30) studied the pattern sequencing problem, which 

is introduced as a common operation scheduling 

problem, with the goal of minimizing the weighted 

number of tardy jobs in the single machine environment. 

They reformulated the problem as a stable set problem on 

a special graph and analyzed the graph structure. In this 

problem, the processing times of the patterns on the 

machine are considered the same and equal to one unit. 

Arbib et al. (33) investigated the problem of common 

operation scheduling in single machine and parallel 

machine environments. In this study, in a single machine 

environment, the processing times of the patterns on the 

machine are variable, and in a parallel machine 

environment, the processing times of the patterns on each 

of the machines are considered the same and equal to one 

unit. The researchers formulated the problem as a set-

covering problem and solved it using the branch-and-cut 

algorithm. 

Table 1 provides a concise summary of the literature 

review conducted on energy-efficient parallel machine 

scheduling. The reviewed articles have been categorized 

based on the energy consumption strategy employed. To 

facilitate a comparison of the problem addressed in this 

article with those investigated in the literature, four 

criteria have been employed: problem properties, 

objective function, solution algorithm, and energy 

consumption strategy. These criteria and their 

corresponding details are also presented in Table 1. In the 

realm of energy-efficient parallel machine scheduling 

problems, an underlying assumption is that the 

processing of each operation by a machine exclusively 

affects the completion of a single job. However, this 

assumption may not always hold true for real-world 

problems. In certain scenarios, several jobs to be 

completed may require the common operation to be 

performed on a shared resource simultaneously, 

introducing a new dimension of complexity to the 

scheduling problem that has not been discussed in the 

literature.  

This study focuses on common operation scheduling 

in an environment of identical parallel machines while 

considering energy consumption. To this end, two 

mixed-integer linear programming models, a position-

based model and a sequence-based model, have been  
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TABLE 1. Summary of the Literature Review on Energy-Efficient Parallel Machine Scheduling 

Author Other properties of the problem Objective/ Solution method 

Strategy of 

energy 

consumption 

[14] 
unrelated parallel machine, energy consumption has 

been considered for various machine modes 
tardiness and energy consumption cost/ heuristic algorithms 

fixed 

[20] uniform parallel machine total green costs and makespan/ the ɛ-constraint method 

[25] 
unrelated parallel machine, multiple resource 

constraint 

total energy consumption and total completion time/ multi-

objective artificial immune algorithm 

[28] identical parallel machine, job-splitting property 
total number of tardy jobs and total energy consumption/ 

augmented ε-constraint, simulated annealing algorithm 

[16] bounded power demand peak makespan/ genetic algorithm 

speed-scaling 
[18] unrelated parallel machine 

total energy consumption and makespan/ memetic 

differential evolution  

[19] 
unrelated parallel machine, sequence-dependent 

setup times 

total energy consumption and makespan/ heuristic 

algorithm 

[15] unrelated parallel machine, makespan is limited energy consumption cost/ heuristic algorithm 

TOU 

[17] uniform parallel machine 
number of machines employed and the total electricity 

cost/ heuristic algorithm 

[21] identical parallel machine 
makespan and total energy consumption/ augmented ɛ-

constraint method, constructive heuristic, NSGA-II 

[23] two-stage parallel machine 
total energy consumption/ Tabu Search-Greedy Insertion 

Hybrid algorithm 

[24] 
unrelated parallel machine, sequence-dependent 

setup times 

energy consumption costs and makespan/ the ɛ-constraint 

method, multiple objective simulated annealing algorithm 
and multiple objective particle swarm optimization 

algorithms 

[26] 

parallel dedicated machines, peak energy 
consumption at specific time intervals should not 

exceed a specified limit 
makespan/ heuristic algorithm 

[27] 
unrelated parallel machine, sequence-dependent set-

up times 

total energy consumption and makespan/ weighted sum 

method, NSGA-II 

[29] unrelated parallel machine, random job arrivals 
weighted combination of makespan and total energy costs/ 

approximate dynamic programming  

[30] identical parallel machine 
total energy consumption and makespan/ Enhanced 

Heuristic Scheduler  

[31] 
unrelated parallel machine, sequence-dependent 

setup times, bounded makespan 
total electricity cost/fix and relax heuristic algorithm 

Current 

paper 

identical parallel machine, common operation 

scheduling  

total energy consumption and total completion time/ 

augmented ɛ-constraint method, HNSGAII-PSO, NSGA-II 
Speed-scaling 

 

 

proposed for the problem under study in order to 

simultaneously minimize the total energy consumption 

and the total completion time. To solve small-scale 

instances, the augmented ɛ-constraint method 

(AUGMECON) is used to obtain the Pareto optimal 

front. Since the problem is NP-hard, a non-dominated 

sorting genetic algorithm (NSGA-II) and a hybrid non-

dominated sorting genetic algorithm with particle swarm 

optimization (HNSGAII-PSO) have been developed to 

solve medium- and large-scale instances. In the proposed 

NSGA-II algorithm, each chromosome represents a 

solution from the problem-solving space, and the quality 

of each chromosome can be evaluated by calculating the 

objective functions of total completion time and total 

energy consumption. In the proposed HNSGAII-PSO 

algorithm, each chromosome represents a region of the 

problem-solving space where all solutions in this region 

have the same total energy consumption. To evaluate the 

quality of each chromosome, the best solution for the 

region covered by that chromosome is considered. In the 

investigated problem, the best solution in the region 

covered by each chromosome is the one that minimizes 

the total completion time. Therefore, to determine the 

best solution in each region, the PSO algorithm is 
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executed once for each chromosome. The total 

completion time for each chromosome of the HNSGAII-

PSO algorithm is determined based on the output of the 

PSO algorithm. According to the mentioned explain, the 

contributions of the paper can be summarized as follows: 

▪ Energy consumption is considered in the 

common operation scheduling problem. 

▪ Two bi-objective mixed integer linear 

programming models, namely the position-based 

and sequence-based models, are proposed to 

investigate the trade-off between total completion 

time and total energy consumption. 

▪ The NSGA-II and HNSGAII-PSO algorithms are 

developed to solve large-scale instances. 

▪ The performance of the methods is evaluated 

using computational experiments. 

The remaining sections of this paper are as follows: 

After the problem is described in section 2, mathematical 

models are proposed. In section 3, solution methods will 

be presented. Section 4 discusses the results of the 

computations. In section 5, the conclusion and future 

research are mentioned. 

 

 

2. PROBLEM DESCRIPTION AND MATHEMATICAL 
MODELING 
 

The common operation scheduling problem is one of the 

scheduling problems with numerous applications in the 

actual world. One of the applications of common 

operation scheduling in manufacturing environments is 

the cutting stock problem, which is posed in industries 

such as the furniture industry (cutting wooden panels) 

and the apparel industry (cutting fabric). This paper 

investigates common operation scheduling in an identical 

parallel machine environment, considering energy 

consumption. In the problem under study, each job 

includes several small pieces (items), and all the pieces 

of different jobs are placed on a number of cutting 

patterns to produce the required small pieces according 

to these patterns and by cutting larger pieces (objects). 

Therefore, each job is completed when all the small 

pieces related to it have been produced by cutting the 

required patterns. The relationship between jobs and 

cutting patterns is shown by the job-pattern matrix. In 

fact, this matrix indicates which patterns must be 

processed to complete each job. The optimal cutting 

patterns are predetermined using relevant software, 

taking the dimensions of small pieces into account, and 

will be available at time 0. Each pattern contains one or 

more pieces and contributes to the completion of one or 

more jobs. Energy consumption is investigated by 

considering the speed-scaling strategy. In accordance 

with this strategy, each machine possesses varying speed 

levels. Consequently, when the machine operates at a 

higher speed, the processing time is reduced while the 

consumption of electrical energy increases. In this 

problem, the assignment of cutting patterns to machines, 

the sequence of patterns on each machine, and the 

appropriate speed of the machine to process each of the 

assigned patterns are determined in order to 

simultaneously minimize the total completion time and 

the total energy consumption. The underlying 

assumptions are listed below: 

▪ Cutting patterns have already been designed and 

determined and will be available at time zero.  

▪ Larger pieces (objects) will be available at time 0 to 

produce smaller parts (items), and their number is 

equal to the number of cutting patterns. 

▪ Each machine processes a maximum of one pattern 

at a time. 

▪ Each pattern can be processed by only one machine 

at a time. 

▪ The processing time of each pattern at the varying 

speed levels of each machine is specified and 

definite. 

▪ The amount of energy consumed by each machine at 

various speed levels for processing each pattern is 

specified and definite. 

▪ There is no precedence relationship between 

different patterns. 

▪ There is no preemption in the processing of patterns. 

In the following, the notations and parameters are 

presented. 

Sets and Indices 

𝐼 Set of jobs {𝑖𝜖𝐼}. 

𝐽 Set of cutting patterns {𝑗, 𝑘𝜖𝐽}. 

𝑉 = 𝐽 ∪ {0} 
Set of cutting patterns that includes the fictitious 

pattern 0 {𝑗, 𝑘𝜖𝑉}. 

𝑀 Set of machines {𝑚𝜖𝑀}. 

𝑄 Set of positions on each machine {𝑞𝜖𝑄}. 

𝑆 Set of speed levels of each machine {𝑠𝜖𝑆}. 

𝑁𝑖 
Subset of cutting patterns set that must be processed 

to complete job 𝑖 (⋃ 𝑁𝑖 = 𝐽𝑖 ). 

 

Parameters 

𝑤𝑗 The required workload of pattern 𝑗. 

𝑣𝑠 
Machine processing speed at speed level 𝑠 (the workload 

processed per unit of time by the machine at speed level 𝑠). 

𝑝𝑗𝑠 
The time required to process pattern 𝑗 at speed level 𝑠 of the 

machine (𝑝𝑗𝑠 =
𝑤𝑗

𝑣𝑠
). 

𝜋𝑗 
Machine energy consumption rate for processing pattern 𝑗 

per unit of time. 

𝜋𝑗𝑠 
Machine energy consumption rate at speed level 𝑠 for 

processing pattern 𝑗 per unit of time (𝜋𝑗𝑠 = 𝜋𝑗𝑣𝑠
𝛼   ,    𝛼 > 1). 

𝑒𝑗𝑠 
The energy required to process pattern 𝑗 at speed level 𝑠 of 

the machine (𝑒𝑗𝑠 = 𝜋𝑗𝑠𝑝𝑗𝑠). 

𝐵 A large number. 
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The sequence-based mathematical model is 

presented here. 
 

Decision varibales 

𝑥𝑚𝑘𝑗𝑠 
Equal to 1 if pattern 𝑗 is processed immediately after 

pattern 𝑘 on machine 𝑚 with speed level 𝑠,and 0 

otherwise. 

𝑟𝑗 Completion time of pattern 𝑗. 

𝑐𝑖  Completion time of job 𝑖. 

 

Sequence-based model  

min 𝑍1 = ∑ 𝑐𝑖𝑖𝜖𝐼     (1 ) 

𝑚𝑖𝑛 𝑍2 =
∑ ∑ ∑ ∑ 𝑒𝑗𝑠𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆𝑗𝜖𝐽𝑘𝜖𝑉⋮𝑗≠𝑘𝑚𝜖𝑀   

  

 (2 ) 

∑ ∑ ∑ 𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆𝑘𝜖𝑉⋮𝑗≠𝑘 =𝑚𝜖𝑀

1  
∀ 𝑗𝜖𝐽  (3 ) 

∑ ∑ ∑ 𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆𝑗𝜖𝐽⋮𝑗≠𝑘 ≤ 1𝑚𝜖𝑀   ∀ 𝑘𝜖𝐽  (4 ) 

∑ ∑ 𝑥𝑚0𝑗𝑠𝑠𝜖𝑆 ≤ 1  𝑗𝜖𝐽   ∀ 𝑚𝜖𝑀  (5 ) 

∑ ∑ 𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆 −𝑗𝜖𝑉⋮𝑘≠𝑗

   ∑ ∑ 𝑥𝑚ℎ𝑘𝑠𝑠𝜖𝑆 = 0ℎ𝜖𝑉⋮ℎ≠𝑗      
∀ 𝑘𝜖𝐽 , 𝑚𝜖𝑀  (6 ) 

𝑟𝑗 − 𝑟𝑘 + 𝐵(1 − 𝑥𝑚𝑘𝑗𝑠) ≥ 𝑝𝑗𝑠  
∀ 𝑘𝜖𝑉 ⋮ 𝑗 ≠

𝑘, 𝑗𝜖𝐽 , 𝑚𝜖𝑀 , 𝑠𝜖𝑆  
(7 ) 

𝑐0 =  0   (8 ) 

𝑐𝑖 = 𝑚𝑎𝑥
𝑗𝜖𝑁𝑖

𝑟𝑗  ∀ 𝑖𝜖𝐼  (9 ) 

𝑥𝑚𝑘𝑗𝑠 =  {0 , 1}  ∀ 𝑗, 𝑘 𝜖𝑉 , 𝑚𝜖𝑀 , 𝑠𝜖𝑆  (10 ) 

𝑐𝑖  , 𝑟𝑗 ≥ 0  ∀ 𝑗𝜖𝑉 , 𝑖𝜖𝐼  (11 ) 

 

The objective functions 1 and 2 represent the 

minimization of total completion time and total energy 

consumption for the sequence-based model, respectively. 

Constraint 3 guarantees that each pattern is assigned to 

only one machine at a specified speed level and that only 

one other pattern is processed before it. Constraint 4 

indicates that after each pattern, a maximum of one other 

pattern can be processed. Constraint 5 ensures that in 

each machine, after fictitious pattern 0, a maximum of 

one other pattern can be processed. Constraint 6 ensures 

the right order for allocating patterns in each machine: if 

pattern 𝑘 is processed before pattern 𝑗, then another 

pattern must be processed before pattern 𝑘. Constraint 7 

computes the completion time of each pattern. If 𝑥𝑚𝑘𝑗𝑠 =

1, then the completion time of pattern 𝑗 is obtained from 

the sum of the completion time of pattern 𝑘 and the 

processing time of pattern 𝑗 with the speed level 𝑠 of the 

machine, and if 𝑥𝑚𝑘𝑗𝑠 = 0, then the large number 𝐵 

ensures the relation. Equation 8 shows that the 

completion time of the fictitious pattern 0 is zero. Each 

job's completion time is calculated by constraint 9. The 

completion time of job 𝑖 is equal to the maximum 

completion time of patterns that include the pieces of job 

𝑖. Constraints 10 and 11 show the range of decision 

variables.  

Considering Equation 9, the proposed model is 

mixed integer nonlinear programming. The proposed 

sequence-based model is converted into a mixed integer 

linear programming model by substituting Equation 12 

for Equation 9. 

𝑐𝑖 ≥ 𝑟𝑗   ∀ 𝑖𝜖𝐼  , 𝑗𝜖𝑁𝑖 (12 ) 

The position-based mathematical model is presented 

here. 
 

Decision varibales 

𝑥𝑗𝑚𝑞𝑠 
Equal to 1 if pattern 𝑗 is processed in position 𝑞 of 

machine 𝑚 with speed level 𝑠,and 0 otherwise. 

ℎ𝑞𝑚  Start time of position 𝑞 of machine 𝑚. 

𝑓𝑞𝑚   Finish time of position 𝑞 of machine 𝑚. 

𝑟𝑗𝑚 Completion time of pattern 𝑗 on machine 𝑚. 

𝑐𝑖  Completion time of job 𝑖. 

Position-based model  

𝑚𝑖𝑛 𝑍1 = ∑ 𝑐𝑖𝑖𝜖𝐼     (13 ) 

𝑚𝑖𝑛 𝑍2 =
∑ ∑ ∑ ∑ 𝑒𝑗𝑠𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆𝑞𝜖𝑄𝑚𝜖𝑀𝑗𝜖𝐽    

 (14 ) 

∑ ∑ ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆𝑞𝜖𝑄 =𝑚𝜖𝑀

1                       
∀ 𝑗𝜖𝐽  (15 ) 

∑ ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆 ≤ 1         𝑗𝜖𝐽   ∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄  (16 ) 

𝑓𝑞𝑚 = ℎ𝑞𝑚 +

 ∑ ∑ 𝑝𝑗𝑠𝑥𝑗𝑚𝑞𝑠  𝑠𝜖𝑆𝑗𝜖𝐽   
∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄  (17 ) 

𝑓𝑞𝑚 ≤ ℎ(𝑞+1)𝑚 ∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄  (18 ) 

∑ ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆 ≤𝑗𝜖𝐽

∑ ∑ 𝑥𝑗𝑚(𝑞−1)𝑠 𝑠𝜖𝑆𝑗𝜖𝐽      
∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄 ⋮
𝑞 > 1𝑀 , 𝑠𝜖𝑆  

(19 ) 

𝑓𝑞𝑚 ≤ 𝑟𝑗𝑚 + 𝐵(1 − ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆 )  
∀ 𝑗𝜖𝐽 , 𝑚𝜖𝑀 ,  

𝑞𝜖𝑄  
(20 ) 

𝑐𝑖 = 𝑚𝑎𝑥
𝑗𝜖𝑁𝑖 ,   𝑚𝜖𝑀

𝑟𝑗𝑚  ∀ 𝑖𝜖𝐼  (21 ) 

𝑥𝑗𝑚𝑞𝑠 =  {0 , 1}  
∀ 𝑗𝜖𝐽 , 𝑚𝜖𝑀 ,  

𝑞𝜖𝑄, 𝑠𝜖𝑆  
(22 ) 

𝑐𝑖  , 𝑟𝑗𝑚, 𝑓𝑞𝑚 , ℎ𝑞𝑚 ≥ 0   
∀ 𝑗𝜖𝐽 , 𝑚𝜖𝑀 ,  

𝑞𝜖𝑄, 𝑖𝜖𝐼  
(23 ) 

 

The position-based model's objectives are to 

minimize total completion time and total energy 

consumption, which are demonstrated by Equations 13 

and 14, respectively. Equation 15 guarantees that each 

pattern is processed only at one position on one machine 

and at a specified speed level. Constraint 16 indicates that 

at each position of each machine, a maximum of one 
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pattern is processed at a specified speed level. 

Constraints 17 and 18 compute the start time and end 

time of each position of each machine. Constraint 19 

ensures that the positions of each machine are assigned 

to patterns in numerical order from first to last. Each 

pattern's completion time is calculated by constraint 20. 

The completion time of each job is calculated using 

Equation 21. The completion time of job 𝑖 is equal to the 

maximum completion time of patterns that include the 

pieces of job 𝑖. Constraints 22 and 23 show the range of 

decision variables. 

Considering Equation 21, the proposed model is 

mixed-integer nonlinear programming. In order to 

linearize the mathematical model, Equation 24 is used 

instead of Equation 21. Due to the changes made, the 

proposed position-based model is a mixed integer linear 

programming model. 

𝑐𝑖 ≥ 𝑟𝑗𝑚   ∀ 𝑖𝜖𝐼  , 𝑗𝜖𝑁𝑖   , 𝑚𝜖𝑀 (24 ) 

Based on the triple notation provided by Wuttke and 

Heese (41), the problem studied in this paper is denoted 

as 𝑃𝑚|𝑐𝑜𝑠|𝑇𝐸𝐶, ∑ 𝐶𝑖, where 𝑃𝑚 indicates identical 

parallel machines, 𝑐𝑜𝑠 indicates common operation, and 

𝑇𝐸𝐶 and ∑ 𝐶𝑖 represent the total energy consumption and 

the total completion time, respectively. In this problem, 

if the machines have only one level in terms of processing 

speed and the objective function of the total energy 

consumption is not considered, and if each pattern is only 

effective in completing one job and the completion of 

each job only requires the processing of one pattern, then 

the problem becomes an identical parallel machine 

problem in order to minimize the total completion time 

and is shown as 𝑃𝑚|| ∑ 𝐶𝑖. According to the previous 

studies, the problem 𝑃𝑚|| ∑ 𝐶𝑖 is the NP-hard (42). 

Therefore, it can be concluded that the problem proposed 

in this article is at least NP-hard. 

 

 

3. NUMERICAL EXAMPLE 

 

To further illustrate the problem described, consider a 

small numerical example involving three jobs and two 

identical machines. In this example, job 1 includes pieces 

{1,2,3,4}, job 2 includes pieces {5,6,7,8,9,10,11}, and 

job 3 includes pieces {12,13,14,15}, and each machine 

has two levels of slow speed (level 1) and fast speed 

(level 2). Figure 1 shows the placement of small pieces 

(items) on objects using five cutting patterns. Table 2 lists 

the processing time and energy required to process 

patterns at different speed levels for each machine. Figure 

2 shows the job-pattern matrix, which is formed based on 

the placement of small pieces of each job and their 

relationship with cutting patterns. In other words, this 

matrix determines the patterns associated with each job.  

Figure 3 shows a solution from the Pareto optimal 

front for this example. In this solution, the first machine 

 
Figure 1. Cutting patterns for the numerical example 

 

 
TABLE 2. Energy consumption and processing time to process 

patterns for the numerical example 

Pattern  

5 4 3 2 1  

40 16 19 36 27 time Level 1 

(slow) 

Machine 

68 16 20 61 18 energy 

32 12 15 28 21 time Level 2 

(fast) 97 25 32 95 29 energy 

 

 

 
Figure 2. The job-pattern matrix for the numerical example 

 

 

processes pattern 1 with speed level 2, then it processes, 

respectively, patterns 2 and 4 with speed level 1. Patterns 

3 and 5 are assigned to the second machine and processed 

there at speed level 1 of the machine, respectively. In this 

solution, based on the completion times of the patterns 

and the job-pattern matrix, job 1 is completed at time 59, 

job 2 at time 73, and job 3 at time 21. Therefore, in this 

solution, the total completion time is 153 time units, and 

the energy consumption is 194 units. In Figure 4, the 

Pareto optimal front is provided for this example. The 

analysis demonstrates that the optimal speed of the 

machines depends on the objective function. If the 

objective function seeks to minimize the total completion 

time, then processing all patterns at speed level 2 yields 

the best result. However, this decision increases the 

objective function of total energy consumption. In  
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Figure 3. A solution from the Pareto optimal front for the 

numerical example 

 

 

 
Figure 4. The Pareto optimal front for the numerical 

example  

 
 
contrast, when all patterns are processed at speed level 1, 

the objective function of total energy consumption 

reaches its minimal value. Thus, decision-makers must 

consider the trade-off between the objectives and identify 

the best options for achieving the desired balance 

between the goals. 

 
 
4. SOLUTION APPROACHES 

 

In solving bi- and multi-objective problems, the primary 

goal is to identify a set of Pareto optimal solutions, 

considering trade-offs between objectives. Due to the 

NP-hard nature of the problem under investigation, a 

non-dominated sorting genetic algorithm (NSGA-II) and 

a hybrid non-dominated sorting genetic algorithm with 

particle swarm optimization (HNSGAII-PSO) are 

developed to tackle instances with medium and large 

scales and to obtain approximate Pareto fronts 

 

4. 1. NSGA-II Algorithm      The NSGA-II algorithm 

(43) is a popular evolutionary algorithm that is widely 

used in solving multi-objective optimization problems 

(44, 45). This algorithm can provide a suitable set of 

Pareto solutions for solving multi-objective problems by 

using the elitism mechanism and taking the crowding 

distance of the solutions into account. 

In the proposed NSGA-II algorithm, each 

chromosome represents a solution from the problem-

solving space. In this algorithm, by decoding each 

chromosome, the cutting patterns assigned to each 

machine, the sequence of patterns on each machine, and 

the speed level of the machine for processing each pattern 

are determined, and using this information, the objective 

functions of total completion time and total energy 

consumption can be calculated for each chromosome. 

After calculating the value of the objective functions and 

determining the fitness for all chromosomes in the 

population, the sorting of chromosomes is done. This 

process begins with performing paired comparisons and 

calculating the number of times each solution is 

dominated in order to form Pareto fronts and determine 

the rank of each solution. Then the members placed in 

each Pareto front are sorted based on the crowding 

distance metric. Next, offspring are produced by 

selecting parents and using crossover and mutation 

operators. The offspring obtained from the mutation and 

crossover operators are added to the population, creating 

a larger population called Rt. After calculating the 

objective functions for the generated offspring, rank and 

crowding distance are determined for each member of the 

𝑅𝑡 population, and based on them, the 𝑅𝑡 population is 

sorted. The sorting is done as follows: first, the members 

are sorted by rank and in ascending order so that the 

solutions with lower ranks are placed at the beginning of 

the list. Then, among the members with the same rank, 

another sorting is done based on the crowding distance 

and in a descending manner, so that the solution with the 

greatest crowding distance occupies a higher position 

among the members of the same rank. Finally, the elitist 

strategy is used to form the new generation, in which 

members with a higher position are selected from the 𝑅𝑡 

population in a number equal to the size of the 

population. This process continues until the termination 

condition of the algorithm is established. The proposed 

NSGA-II algorithm stops when a certain number of 

iterations is reached, and all the solutions in the first 

Pareto front are presented as the output of the algorithm. 

 

4. 1. 1. Solution Representation           In order for the 

solution algorithm to establish a logical relationship 

between the problem space and the search space, the 

solution properties should be represented by a string of 

symbols. Each chromosome of the NSGA-II algorithm is 

represented by a two-row matrix, where the length of 

each row is n (n: number of cutting patterns). The first 

row of the matrix contains the permutation of numbers 1 

to n, so that the members of the set {1,2,3, … , 𝑛} represent 

the cutting pattern number. The second row of the matrix 

shows the speed level of the machine for processing each 

of the cutting patterns, where each gene is coded 
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randomly with values from the set {1,2,3, … , 𝑠}. The 

cutting patterns assigned to each machine and the 

sequence of patterns on each machine are determined by 

decoding each chromosome. Extracting the required 

information is as follows: the pattern placed in the first 

gene of the first row of the matrix is assigned to the first 

machine and processed at the speed determined in the 

first gene of the second row of the matrix. This process 

continues until every machine is assigned a pattern.  Then, 

the next pattern is assigned to the first machine that 

finishes processing the previously assigned pattern and is 

processed at the determined speed. This process 

continues until all patterns are assigned. For example, 

consider a problem with two machines and five cutting 

patterns. Each machine has two levels of slow speed 

(level 1) and fast speed (level 2) to process the assigned 

patterns.  It is assumed that each pattern needs 2 and 1 

units of time for processing at the machine speed levels 

of 1 and 2, respectively. Figure 5 shows a chromosome 

for the mentioned example. After decoding this solution, 

it becomes clear that pattern 3 is assigned to the first 

machine and is processed with a speed level of 2 in 1 time 

unit. Pattern 1 is assigned to the second machine and 

processed at speed level 1 in 2 time units. Since 

processing pattern 3 is finished faster by machine 1, 

pattern 2 is assigned to the first machine and is processed 

at speed level 1 in 2 time units. Next, patterns 5 and 4 are 

assigned to machines 2 and 1, and are processed at speed 

levels 1 and 2, respectively. In the proposed NSGA-II 

algorithm, members of the initial population are 

generated randomly and according to the presented 

representation for each solution. 

 
4. 1. 2. Selection           In the proposed NSGA-II 

algorithm, parent selection is done using the standard 

binary tournament selection strategy. 

 

4. 1. 3. Crossover         In the proposed NSGA-II 

algorithm, the double-point crossover operator is used. In 

view of the permutation of numbers 1 to n in the first row 

of the chromosome, the permutation of numbers may not 

be established in the first row of each of the generated 

offspring. Therefore, using the partially mapped 

crossover (PMX) approach, the required columns are 

moved, and the necessary corrections are made to 

establish the permutation of the numbers in the first row 

of the generated offspring. Figure 6 depicts the double-

point crossover. 
 

 

 

 
Figure 5. An example of solution representation in the 

NSGA-II algorithm 

 
Figure 6. The crossover operator in the NSGA-II algorithm 

 

 

4. 1. 4. Mutation         In the proposed NSGA-II 

algorithm, Gaussian mutation and swap mutation 

operators are used.  

The Gaussian mutation operator is applied to the 

second row of the candidate chromosome. The Gaussian 

mutation operates as follows: A random number between 

0 and 1 is generated for each gene from the second row 

of the candidate chromosome. If this number is less than 

the gene's mutation rate, the mutation operator with 

𝑁(0,1) distribution is applied to that gene. Thus, the 

value of that gene may change. According to the 

chromosome's representation, the value of each gene in 

the second row of the chromosome can be one of the 

numbers in the set 𝑆 = {1,2,3, … , 𝑠}. If, after applying the 

mutation operator, the value of the gene is greater than 

the largest value of the set 𝑆 or less than the smallest 

value of that set, then we consider the value of the 

mentioned gene to be equal to the largest and smallest 

members of the set 𝑆, respectively. In Figure 7, the 

Gaussian mutation operator has been applied to three 

genes from the parent chromosome, and in the generated 

offspring, only the value of one of the selected genes has 

changed. 

The swap mutation is executed as follows: Two 

columns are randomly chosen from the candidate 

chromosome, and they are then exchanged with one 

another Figure 8. Based on the results obtained from the 

numerical experiments, the Gaussian mutation and swap 

mutation operators are applied to the candidate 

chromosomes with probabilities of 0.8 and 0.2, 

respectively. 

 
4. 2. HNSGAII-PSO Algorithm           The proposed 

hybrid algorithm (HNSGAII-PSO) is a combination of 

the NSGA-II algorithm and the PSO algorithm. In the 

HNSGAII-PSO algorithm, each chromosome determines 

the speed level of the machine for processing each 

pattern, and this information can be used to calculate the 
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Figure 7. The Gaussian mutation operator in the NSGA-II 

algorithm 

 

 

 
Figure 8. The swap mutation operator in the NSGA-II 

algorithm 

 
 

objective function of the total energy consumption for 

that chromosome. In other words, each chromosome 

represents a region of the problem-solving space, so that 

all solutions in this region have the same total energy 

consumption. To evaluate the quality of each 

chromosome, the best solution from the region covered 

by that chromosome is considered. In the investigated 

problem, the best solution in the region covered by each 

chromosome is the one that minimizes the total 

completion time. Using the PSO algorithm, a global 

search is done to find the best solution in this region. 

Therefore, in each iteration of the hybrid algorithm, the 

PSO algorithm is executed once for each chromosome in 

the population. Each particle of the PSO algorithm 

specifies the assignment of patterns to machines as well 

as the sequence of patterns on each machine, and using 

this information and taking into account the speed level 

of the machine to process each pattern, the total 

completion time can be calculated for each particle of the 

PSO algorithm. Based on the output of the PSO 

algorithm, the assignment of patterns to machines, the 

sequence of patterns on each machine, and the objective 

function of the total completion time for each 

chromosome of the HNSGAII-PSO algorithm are 

determined. The main structure and the process of 

obtaining the approximate Pareto front in the HNSGAII-

PSO algorithm are similar to the NSGA-II algorithm. 

 
4. 2. 1. PSO Algorithm            The PSO algorithm is a 

population-based algorithm (46) and is widely used in 

solving scheduling problems (47, 48). Within this 

algorithm, each solution is conceptualized as a particle, 

each possessing its own position and velocity. The 

position of a particle facilitates the identification of a 

feasible solution to the problem under investigation. The 

fitness value of each particle determines the quality of the 

corresponding solution. During each iteration of the 

algorithm, each particle endeavors to locate a new 

position based on its previous experiences and the 

position of the particle exhibiting the most favorable 

fitness value, thereby striving to enhance its own fitness 

value (49). In the HNSGAII-PSO algorithm proposed in 

this paper, for each chromosome, the PSO algorithm is 

executed once. To update the speed and position of each 

particle in the PSO algorithm, relations (25) and (26) are 

used, respectively. 

𝑣𝑗
𝑡+1 = 𝜔𝑣𝑗

𝑡 + 𝑟1 × 𝑐1 × (𝑝𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑗
𝑡) + 𝑟2 ×

𝑐2 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑗
𝑡)  

)25 ( 

𝑥𝑗
𝑡+1 = 𝑥𝑗

𝑡 + 𝑣𝑗
𝑡+1  )26 ( 

where: 

𝑣𝑗  Velocity of particle 𝑗. 

𝑥𝑗  Position of particle 𝑗. 

𝑝𝑏𝑒𝑠𝑡𝑗 The best position ever visited by particle 𝑗. 

𝑔𝑏𝑒𝑠𝑡 The best position ever visited by swarm. 

𝜔 
Inertia coefficient that controls the velocity of the 

particle. 

𝑐1 
The learning coefficient considers the current 

particle's attraction to its previous best position. 

𝑐2 
The learning coefficient considers the current 

particle's attraction to the previous best position 

of the swarm 

𝑟1, 𝑟2 
Random numbers are generated from the uniform 

interval [0,1]. 

 
4. 2. 2. Solution Representation             In the proposed 

HNSGAII-PSO algorithm, each chromosome contains a 

vector of length n, where n is the number of cutting 

patterns. The counter of each chromosome gene indicates 

the cutting pattern number, and the genes of each 

chromosome are randomly coded with values from the 

set {1, 2, 3, ..., s} that determine the speed level of the 

machine for processing the relevant cutting patterns, 

which can be used to calculate the objective function of 

the total energy consumption for each chromosome. In 

other words, each chromosome represents a region of the 

problem-solving space where all solutions in this region 

have the same total energy consumption. To evaluate the 

quality of each chromosome, the best solution from the 

region covered by that chromosome is considered. In the 

investigated problem, the best solution in the region 

covered by each chromosome is the one that minimizes 

the total completion time. The best solution in this region 

is determined using the PSO algorithm. Therefore, in 

each iteration of the hybrid algorithm, the PSO algorithm 

is executed once for each chromosome in the population. 
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Each particle in the PSO algorithm is represented as a 

matrix with one row and n columns, where n is the 

number of cutting patterns. A random real number 

between 0 and 1 is placed in each column of this matrix. 

For each particle, in order to determine the cutting 

patterns assigned to each machine and the sequence of 

patterns on each machine, first, through an appropriate 

mechanism, the real numbers must be converted into 

integers that represent the cutting patterns. To do this, we 

used the sorting-based method (50). Therefore, we sort 

the real numbers of the initial matrix in ascending order 

to form a new matrix. Then, in the new matrix, any real 

number is replaced by the counter of the corresponding 

column in the initial matrix. Accordingly, the new matrix 

contains a permutation of integers from 1 to n, and each 

number represents a cutting pattern. Now, by decoding 

the created matrix, the patterns assigned to each machine 

and the sequence of patterns on each machine can be 

determined. Using this information and taking into 

account the properties of the relevant chromosome (the 

speed level of the machines), the function of the total 

completion time for each particle of the PSO algorithm 

can be calculated. The output of the PSO algorithm 

determines the assignment of patterns to machines, the 

sequence of patterns on each machine, and the objective 

function of the total completion time for each 

chromosome of the HNSGAII-PSO algorithm.  

Each particle of the PSO algorithm is decoded as 

follows: the pattern placed in the first column of the 

matrix is assigned to the first machine and processed at 

the corresponding speed. The pattern placed in the 

second column is assigned to the second machine and 

processed at the corresponding speed, and this process 

continues until each machine is assigned a pattern. Then, 

the next pattern is assigned to the first machine that 

finishes processing the previously assigned pattern, and 

this process continues until all patterns are assigned.  

For example, consider a problem with two machines 

and five cutting patterns. Each machine has two levels of 

slow speed (level 1) and fast speed (level 2) to process 

the patterns assigned to it, so that the faster the machine 

processes, the more energy it consumes. It is assumed 

that each pattern needs 2 units and 1 unit of time to be 

processed at machine speed levels 1 and 2, respectively. 

Figure 9 is a chromosome for the mentioned example, 

which shows a region of the solution space. For all 

solutions in this region, cutting patterns numbers 1, 2, 3, 

4, and 5 are processed at machine speed levels 2, 1, 1, 2, 

and 1, respectively. Figure 10 is a particle of the PSO 

algorithm and its decoding, which shows a solution of the 

region covered by Figure 9's chromosome. After 

decoding this particle, it becomes clear that pattern 3 is 

assigned to the first machine and is processed with a 

speed level 1 in 2 time units; pattern 1 is assigned to the 

second machine and processed at a speed level 2 in 1 time 

unit. Since the processing of pattern 1 is completed faster 

by machine 2, pattern 2 is assigned to the second machine 

and is processed at speed level 1 in 2 time units. Next, 

patterns 5 and 4 are assigned to machines 1 and 2, and 

they are processed at speed levels 1 and 2, respectively. 

In the proposed HNSGAII-PSO algorithm, each 

chromosome from the initial population is randomly 

generated according to the representation provided for 

each solution. The PSO algorithm is executed once for 

every member of the initial population. The initial 

population members of the PSO algorithm are also 

randomly generated. 

 

4. 2. 3. Selection           Parent selection in the proposed 

HNSGAII-PSO algorithm is done using the standard 

binary tournament selection strategy. 

 

4. 2. 4. Crossover        The double-point crossover 

operator is employed in the proposed HNSGAII-PSO 

algorithm. Figure 11 shows the double-point crossover. 
 

 

 
Figure 9. An example of solution representation in the 

HNSGAII-PSO algorithm 
 

 

 
Figure 10. A solution of the region covered by the 

chromosome in Figure 9 and its decoding 
 

 

 
Figure 11. The crossover operator in the HNSGAII-PSO 

algorithm 
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4. 2. 5. Mutation              In the proposed hybrid 

algorithm, the Gaussian mutation operator is used. In this 

algorithm, according to the representation defined for the 

chromosome, all chromosomes in the population are 

candidates for the generation of offspring through the 

mutation operator. Next, for each gene on the candidate 

chromosome, a random number between 0 and 1 is 

generated. If this number is less than the mutation rate of 

the gene, the mutation operator with the standard normal 

distribution 𝑁(0,1) is applied to that gene. Accordingly, 

the value of that gene may change in the generated 

offspring. Figure 12 shows how to produce offspring 

from the parent using the Gaussian mutation operator. In 

this figure, the mutation operator has been applied to 

three genes from the parent chromosome, and in the 

offspring generated, only the value of one of the selected 

genes has changed. 

 

 

5. COMPUTATIONAL EXPERIMENT 
 

In this section, in order to evaluate the performance of the 

mathematical models and solution methods presented, 

numerical experiments are performed using randomly 

generated test instances. The process of generating the 

necessary data for the instances is explained in detail. 

Given the bi-objective nature of the problem, 

performance measures used to evaluate the suggested 

solution methods are introduced. Moreover, the 

parameters of the proposed solution algorithms are tuned 

using the Taguchi method. Finally, the performance of 

the proposed mathematical models and solution methods 

is evaluated by solving small and large-scale instances. 

In this paper, to optimally solve small-scale instance 

problems using the AUGMECON method, GAMS 28.2.0 

software is used, and the HNSGAII-PSO and NSGA-II 

algorithms are coded in the Visual C# environment. All 

experiments were performed on a personal computer 

with 4 GB of RAM and an Intel Core i5-2410M 2.30 GHz 

CPU. 

 

5. 1. Data Generation           The size of instance 

problems is defined as [𝐼, 𝐽, 𝑀, 𝛿], where 𝐼 represents the 

number of jobs, 𝐽 denotes the number of cutting patterns, 

𝑀 shows the number of machines, and 𝛿 represents the 

density of the job-pattern matrix. In this paper, random 

test instances are generated as follows (18): To determine 

the required workload of each cutting pattern  )𝑤𝑗(, a 

 

 

 
Figure 12. The mutation operator in the HNSGAII-PSO 

algorithm 

number is generated randomly from a uniform 

distribution in the interval [5, 50].  The energy 

consumption rate of the machine for processing each 

cutting pattern per unit of time (𝜋𝑗) is randomly selected 

from a uniform distribution in the interval [4, 18].  

Therefore, the energy consumption rate of the machine at 

the speed level 𝑠 to process pattern 𝑗 per unit of time is 

determined from Equation 27. In this paper, 𝛼 = 3 and 

for machine processing speed levels, 𝑆 = 4 and 

𝑣𝑠 𝜖 {0.75 , 1 , 1.25 , 1.5} are considered. The time and 

energy required to process each cutting pattern at varying 

levels of machine speed are calculated using relations 28 

and 29, respectively. 

𝜋𝑗𝑠 = 𝜋𝑗𝑣𝑠
𝛼    ,    𝛼 > 1 (27 ) 

𝑝𝑗𝑠 =
𝑤𝑗

𝑣𝑠
 (28 ) 

𝑒𝑗𝑠 = 𝜋𝑗𝑠𝑝𝑗𝑠 (29 ) 

To randomly generate the job-pattern matrix, first, the 

density δ of the matrix must be determined. Equation 30 

calculates the value of δ for the job-pattern matrix. In this 

equation, |𝑁𝑖| is the number of cutting patterns that 

include small pieces (items) of job 𝑖. 𝑖 and 𝑗 also represent 

the number of jobs and the number of cutting patterns, 

respectively. In determining the minimum value of δ for 

test instances, a noteworthy point to consider is that each 

cutting pattern contributes to completing at least one job, 

and the pieces related to each job are placed in at least 

one cutting pattern. Therefore, the minimum possible 

value for δ is equal to max (
1

𝑖
,

1

𝑗
), where 𝑖 is the number 

of jobs and 𝑗 is the number of cutting patterns, and this 

relation should be considered to determine the value of δ 

in small-scale instances. In medium- and large-scale 

instances, we consider three values of 20%, 30%, and 

40% for δ (33). After determining the value of δ, we 

generate the job-pattern matrix at random so that each 

cutting pattern contributes to the completion of at least 

one job and each job requires at least one cutting pattern 

to complete itself. 

𝛿 =
∑ |𝑁𝑖|𝑖

𝑖×𝑗
  (30 ) 

 
5. 2. Performance Measures              The Pareto 

solution set is the output of solving multi-objective 

problems, whose quality and diversity are evaluated. In 

this paper, to evaluate the results obtained from the 

solution algorithms, four performance measures are used 

as follows: 

Number of Pareto solutions (𝑁𝑃𝑆): This metric 

specifies the number of non-dominated solutions 

obtained from the solution algorithm. Based on this 

metric, the greater the number of these solutions, the 

more efficient the algorithm (21, 51). 
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Diversity of distribution (𝐷1): This performance 

measure shows that the existing solutions in the Pareto 

front are uniformly placed next to each other. This metric 

is calculated using Equation 31. In this equation, |𝑁| 
expresses the number of non-dominated solutions, 𝑑𝑖 is 

the Euclidean distance between consecutive solutions, 

and 𝑑̅ is the average of 𝑑𝑖. For a solution algorithm, the 

lower the value of the 𝐷1 metric, the more efficient that 

algorithm is (21, 51). 

𝐷1 = ∑
|𝑑𝑖−𝑑̅|

|𝑁|−1

|𝑁|−1
𝑖=1   (31 ) 

Spacing (𝐷2): This measure is an extension of the 

previous metric and is obtained from Equation 32. In this 

equation, |𝑁| shows the number of non-dominated 

solutions. The values of 𝑑𝑖 and 𝑑̅ are obtained via 

Equations 33 and 34, respectively. For a solution 

algorithm, the lower the value of the 𝐷2 metric, the better 

the performance of that algorithm (22, 52). 

𝐷2 = (
1

|𝑁|
∑ (𝑑𝑖 − 𝑑̅)

2|𝑁|
𝑖=1 )

1/2
   (32 ) 

𝑑𝑖 = min
𝑘𝜖𝑁,𝑘≠𝑖

∑ |𝑓𝑚
𝑖 − 𝑓𝑚

𝑘|𝑀
𝑚=1   (33 ) 

𝑑̅ = ∑
𝑑𝑖

|𝑁|−1

|𝑁|−1
𝑖=1   (34 ) 

Mean ideal distance (𝑀𝐼𝐷): This performance 

measure calculates the average Euclidean distance of the 

ideal solution from the Pareto front obtained by the 

solution algorithm. In this paper, the best possible value 

for each of the objective functions obtained by different 

algorithms is considered the ideal solution. Equation 35 

is used to calculate 𝑀𝐼𝐷. In this equation, |𝑁| is the 

number of non-dominated solutions, and 𝐶𝑖 represents the 

Euclidean distance of each member of the Pareto front 

from the ideal point, which is calculated through 

Equation 36. An algorithm with a lower 𝑀𝐼𝐷 metric has 

better performance (51). 

𝑀𝐼𝐷 =
1

|𝑁|
∑ 𝐶𝑖

|𝑁|
𝑖=1     (35 ) 

𝐶𝑖 = √(𝑓1𝑖 − 𝑓1
∗)2 + ⋯ + (𝑓𝑚𝑖 − 𝑓𝑚

∗ )2  (36 ) 

 

5. 3. Parameter Tuning    Metaheuristic algorithms 

possess inherent parameters, and assigning appropriate 

values to these parameters can substantially enhance the 

quality of the obtained results. This paper employs the 

Taguchi method to optimize the parameters of the 

developed algorithms. The Taguchi method utilizes 

orthogonal arrays, which are standardized arrays that 

enable the execution of a limited number of experiments 

while retaining comprehensive information on all factors 

influencing the performance of the algorithms (53). The 

HNSGAII-PSO factors are: number of population (𝑁), 

number of generations (𝐺), crossover rate (𝑃𝑐), mutation 

rate of the gene (𝑃𝑚𝑔), number of population for the PSO 

algorithm (𝑁𝑃𝑆𝑂), number of generations for the PSO 

algorithm (𝐺𝑃𝑆𝑂), inertia coefficient (𝜔), and learning 

coefficients (𝑐1 , 𝑐2) and The NSGA-II factors are: 

number of population (𝑁), number of generations (𝐺), 

crossover rate (𝑃𝑐), mutation rate (𝑃𝑚) and mutation rate 

of the gene (𝑃𝑚𝑔). Tables 3 and 4 show the considered 

levels for the factors of the HNSGAII-PSO and NSGA-

II algorithms for small-scale problems and medium- and 

large-scale problems, respectively. 

 

 
TABLE 3. Algorithm parameters and their levels for small-

scale problems 

Algorithm Parameters Symbol Level 

HNSGAII-

PSO 

𝑁  A 100 – 150 – 200 

𝐺  B 50 – 80 – 100 

𝑃𝑐  C 0.6 – 0.7 – 0.8 

𝑃𝑚𝑔  D 0.2 – 0.3 – 0.4 

𝑁𝑃𝑆𝑂  E 2 – 3 – 4 

𝐺𝑃𝑆𝑂  F 1 – 2 – 3 

𝜔  G 0.5 – 0.75 – 1 

𝑐1  H 1 – 1.5 – 2 

𝑐2  J 1 – 1.5 – 2 

NSGA-II 

𝑁  A 100 – 150 – 200 

𝐺  B 50 – 80 – 100 

𝑃𝑐  C 0.5 – 0.6 – 0.7 

𝑃𝑚  D 0.5 – 0.6 – 0.7 

𝑃𝑚𝑔  E 0.5 – 0.6 – 0.7 

 

 

TABLE 4. Algorithm parameters and their levels for medium- 

and large-scale problems 

Algorithm Parameters Symbol Level 

HNSGAII-

PSO 

𝑁  A 300 – 350 – 400 

𝐺  B 100 – 150 – 200 

𝑃𝑐  C 0.6 – 0.7 – 0.8 

𝑃𝑚𝑔  D 0.2 – 0.3 – 0.4 

𝑁𝑃𝑆𝑂  E 2 – 3 – 4 

𝐺𝑃𝑆𝑂  F 1 – 2 – 3 

𝜔  G 0.5 – 0.75 – 1 

𝑐1  H 1 – 1.5 – 2 

𝑐2  J 1 – 1.5 – 2 

NSGA-II 

𝑁  A 400 – 600 – 800 

𝐺  B 300 – 400 – 500 

𝑃𝑐  C 0.5 – 0.6 – 0.7 

𝑃𝑚  D 0.5 – 0.6 – 0.7 

𝑃𝑚𝑔  E 0.5 – 0.6 – 0.7 
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Considering the number of parameters and 

determined levels, the right orthogonal array for both 

algorithms is 𝐿27, which includes 27 experiments. Then, 

for each algorithm, all experiments are conducted on an 

instance problem considering various combinations of 

parameter levels, and the obtained results are recorded for 

performance measures. It's important to note  that each 

experiment was repeated five times, and the average of 

the results was considered. Since the Taguchi method 

only accepts one value as a response for each experiment, 

the results obtained for the performance measures are 

unscaled using the relative percentage deviation (RPD) 

method. then for each experiment, the weighted average 

of the relevant unscaled performance measures is 

calculated as a combined function (CF) using equation 37 

and considered as the result of that experiment (51). 

𝐶𝐹 =
𝑁𝑃𝑆 + 𝐷1 + 𝐷2 + 2𝑀𝐼𝐷

5
 (37 ) 

Figures 13, 14, 15, and 16 show the results obtained 

from the Taguchi method for small-scale problems and 

medium- and large-scale problems, respectively. Based 

on these results, the parameter values of each of the 

NSGA-II and HNSGAII-PSO algorithms are presented in 

Tables 5 and 6, respectively. 

 

5. 4. Evaluation of Solution Algorithms for Small-
Scale Instances             In this sub-section, the 

performance of the AUGMECON method, the NSGA-II 

algorithm, and the HNSGAII-PSO algorithm are 

compared for solving small-scale instances. The results 

of solving 30 instances using the three methods 

mentioned are shown in Table 7. In this table, column 1 

shows the instance number, and column 2 shows the 

instance size. The results of solving the instances with the 

AUGMECON method are presented for the position-

based model and the sequence-based model in columns 3 

and 4, respectively. The AUGMECON method for both 

presented models has the ability to obtain the optimal 

Pareto front for 26 instances; however, for 4 instances, 

this method is not able to solve the sequence-based model  

 

 

 
Figure 13. Main effects plot for S/N ratios for the NSGA-II 

algorithms: small-scale problems 

 
Figure 14. Main effects plot for S/N ratios for the 

HNSGAII-PSO algorithms: small-scale problems 

 

 

 
Figure 15. Main effects plot for S/N ratios for the NSGA-II 

algorithms: medium- and large-scale problems 

 

 

 
Figure 16. Main effects plot for S/N ratios for the 

HNSGAII-PSO algorithms: medium- and large-scale 

problems 

 

 
TABLE 5. Parameter tuning results for the NSGA-II algorithm 

Parameters 
 

𝑷𝒎𝒈 𝑷𝒎 𝑷𝒄 𝑮 𝑵 

0.5 0.5 0.6 100 200 Small-scale 

0.6 0.5 0.7 500 800 Medium and large-scale 
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TABLE 6. Parameter tuning results for the HNSGAII-PSO algorithm 

Parameters  

𝒄𝟐 𝒄𝟏 𝝎 𝑮𝑷𝑺𝑶 𝑵𝑷𝑺𝑶 𝑷𝒎𝒈 𝑷𝒄  𝑮 𝑵  

2 2 0.5 1 2 0.3 0.7 100 150 Small-scale 

2 2 0.5 1 2 0.3 0.7 200 400 Medium and large-scale 

 

 
TABLE 7. Results of solving small-scale instances using the AUGMECON method, HNSGAII-PSO algorithm, and NSGA-II 

algorithm 

No. [𝑰, 𝑱, 𝑴, 𝜹] 

AUGMECON HNSGAII-PSO NSGA-II 

𝑵𝑷𝑺 𝑴𝑰𝑫 

𝒕(𝒔) 

𝑵𝑷𝑺 𝑫𝟏 𝑫𝟐 𝑴𝑰𝑫 𝒕(𝒔) 𝑵𝑷𝑺 𝑫𝟏 𝑫𝟐 𝑴𝑰𝑫 𝒕(𝒔) position-

based 

model 

sequence-

based 

model 

1 2-4-2-50% 21 572.48 4.08 6.68 21 43.88 17.59 572.48 0.73 21 43.88 17.59 572.48 0.73 

2 2-4-2-75% 24 947.25 5.54 6.78 24 65.61 60.42 947.25 0.87 24 65.61 60.42 947.25 0.87 

3 2-5-2-50% 36 1581.3 62.36 183.26 36 69.01 48.09 1581.3 0.93 36 69.01 48.09 1581.3 0.93 

4 2-5-2-60% 45 1635 101.35 290.27 45 53.94 52.92 1635 1.23 45 53.94 52.92 1635 1.23 

5 3-4-2-40% 21 822.58 20.22 23.77 21 47.88 61.18 822.58 1.59 21 47.88 61.18 822.58 1.59 

6 3-4-2-60% 25 786.76 18.65 21.55 25 38.19 44.54 786.76 1.6 25 38.19 44.54 786.76 1.6 

7 3-4-3-50% 30 970.58 24.29 18.38 30 43.41 51.27 970.58 1.68 30 43.41 51.27 970.58 1.68 

8 3-4-3-75% 23 959.61 13.58 11.54 23 47.31 58.02 959.61 1.69 23 47.31 58.02 959.61 1.69 

9 3-5-2-40% 38 722.14 252.99 437.14 38 25.16 22.23 722.14 1.72 38 25.16 22.23 722.14 1.72 

10 3-5-2-60% 38 614.85 93.64 179.86 38 35.73 41.67 614.85 1.76 38 35.73 41.67 614.85 1.76 

11 3-5-3-40% 35 688.7 190.09 286.29 35 35.29 23.92 688.7 1.76 35 35.29 23.92 688.7 1.76 

12 3-5-3-60% 40 732.17 146.49 211.24 40 26.01 19.71 732.17 1.78 40 26.01 19.71 732.17 1.78 

13 4-4-2-25% 30 540.82 26.53 24.68 30 41.38 59.46 540.82 1.61 30 41.38 59.46 540.82 1.61 

14 4-4-2-50% 39 756.27 37.95 39.74 39 22.89 24.71 756.27 1.65 39 22.89 24.71 756.27 1.65 

15 4-4-2-75% 31 665.67 33.60 32.19 31 31.70 35.71 665.71 1.67 31 31.70 35.71 665.71 1.67 

16 4-4-3-30% 34 915.67 25.56 28.75 34 26.58 30.79 915.67 1.73 34 26.58 30.79 915.67 1.73 

17 4-4-3-50% 29 947.81 55.81 61.64 29 38.59 22.35 947.81 1.64 29 38.59 22.35 947.81 1.64 

18 4-5-2-30% 48 868.82 118.48 124.83 48 37.85 31.46 868.82 1.78 48 37.85 31.46 868.82 1.78 

19 4-5-2-40% 67 1011.1 468.33 789.60 64 18.97 16.04 1046 1.76 64 18.97 16.04 1046 1.76 

20 4-5-3-30% 53 719.08 1743.38 1812.21 53 17.08 10.82 719.08 1.77 53 17.08 10.82 719.08 1.77 

21 4-5-3-40% 66 1024.8 1927.79 1967.18 66 20.17 19.01 1024.8 1.78 66 20.17 19.01 1024.8 1.78 

22 4-6-2-25% 55 614.16 5293.29 11035.73 55 12.04 14.58 614.16 1.79 55 12.04 14.58 614.16 1.79 

23 4-6-2-50% 58 734.96 2083.45 29303.34 63 13.54 13.98 766.23 1.79 63 13.54 13.98 766.23 1.79 

24 4-6-2-75% 65 698.25 2359.10 33179.49 65 12.17 14.71 699.64 1.81 65 12.17 14.71 699.64 1.81 

25 4-6-3-30% 31 891.77 8876.68 11499.63 30 46.11 56.1 893.38 1.77 30 46.11 56.1 893.38 1.77 

26 4-6-3-40% 53 763.95 13521.75 28961.49 57 35.82 29.54 792.65 1.78 57 35.82 29.54 792.65 1.78 

27 4-6-3-50% 44 911.54 19492.31 - 42 43.13 45.92 923.75 1.8 42 43.13 45.92 923.75 1.8 

28 5-7-2-20% 67 1174.23 12548.52 - 73 39.46 42.96 1227.62 1.78 73 39.46 42.96 1227.62 1.78 

29 5-7-2-30% 61 938.47 21649.39 - 59 41.44 39.12 932.54 1.79 59 41.44 39.12 932.54 1.79 

30 5-7-2-40% 71 1480.2 34394.65 - 64 33.01 27.84 1518.6 1.82 64 33.01 27.84 1518.6 1.82 

The running time of the algorithm that obtained the optimal Pareto front is shown with a bold value 
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and find the optimal Pareto front in 36000 seconds. Based 

on the presented results, the position-based model has 

better performance in terms of optimal solution time 

using the AUGMECON method compared to the 

sequence-based model. To validate the approximate 

Pareto solutions obtained by the NSGA-II and 

HNSGAII-PSO algorithms, a comparison with the 

AUGMECON method was conducted. The proposed 

NSGA-II and HNSGAII-PSO algorithms were employed 

to solve small-scale instances. The results of solving 

small-scale instances using the HNSGAII-PSO and 

NSGA-II algorithms are presented in columns 5 and 6 of 

Table 7, respectively. An examination of Table 7 

revealed that the NSGA-II and HNSGAII-PSO 

algorithms successfully identified the optimal Pareto 

front in 19 instances, demonstrating superior 

computational efficiency compared to the AUGMECON 

method. In the remaining instances, the solutions 

obtained by both algorithms exhibited close proximity to 

the optimal Pareto solutions identified by the 

AUGMECON method. Consequently, based on these 

findings, it is evident that the NSGA-II and HNSGAII-

PSO algorithms constitute are valid and effective 

approaches for solving instances in a reasonable time.  

To comprehensively evaluate Pareto dominance and 

compare the solutions obtained by the AUGMECON 

method and the proposed algorithms, the 𝑀𝐼𝐷 metric was 

calculated for all three methods, and the results are 

presented in Figure 17. The analysis of small-scale 

instances revealed that the solutions generated by the 

proposed algorithms are comparable to the optimal 

Pareto fronts when compared to the AUGMECON 

method. Notably, the NSGA-II and HNSGAII-PSO 

algorithms provide acceptable results in significantly less 

time than the AUGMECON method. Figure 18 

demonstrates the CPU time for solving small-scale 

instances by all three methods. As observed, with 

increasing instance sizes, the CPU time for the 

AUGMECON method escalates dramatically. Therefore, 

based on the comprehensive comparison of Pareto 

solutions, it can be concluded that NSGA-II and 

HNSGAII-PSO are viable and efficient algorithms for 

solving small-scale instances within a reasonable 

computational time frame. 

 

5. 5. Evaluation of Solution Algorithms for 
Medium- and Large -Scale Instances          Based on 

the results presented in Table 7, by increasing the scale 

of the problem, the computation time increases. For 

example, in instance #30 with size [5,7,2,40%], the 

AUGMECON method needs 34395 seconds to obtain the 

optimal Pareto front. Therefore, HNSGAII-PSO and 

NSGA-II algorithms are used to solve medium- and 

large-scale instances, and their obtained results are 

compared. To ensure a fair comparison, we have set the 

 
Figure 17. 𝑀𝐼𝐷 metric obtained through the NSGA-II, 

HNSGAII-PSO and AUGMECON methods for small-scale 

instances 

 

 

 
Figure 18. CPU time for solving small-scale instances by 

the NSGA-II, HNSGAII-PSO and AUGMECON methods  

 

 

running times of both algorithms to be equal. This means 

that the time considered when comparing two algorithms 

is equal to the execution time of the algorithm that 

finishes faster in each instance. Each of the two 

algorithms is executed five times for each instance, and 

the average values derived for the performance measures 

are recorded. The outcomes of applying the NSGA-II and 

HNSGAII-PSO algorithms to solve 30 medium- and 

large-scale instances are presented in Table 8.  Figure 19 

shows the Pareto fronts generated by both algorithms for 

problem instance #55. Based on the obtained results, the 

HNSGAII-PSO algorithm performs better in the NPS, 𝐷1, 

and 𝐷2 criteria, which means that this algorithm can 

generate a greater number of non-dominated solutions 

with more diversity. The evaluation of the MID criterion 

demonstrates that the HNSGAII-PSO algorithm 

performs better, indicating that it can produce non-

dominated solutions with better convergence. 

In order to further analyze the performance of the 

HNSGAII-PSO and NSGA-II algorithms in solving 

instance problems, paired samples t-test is performed for 

every performance measure. Statistical results for 

different measures are stated in Table 9. The mean and  
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TABLE 8. Results of solving medium- and large-scale instances using the HNSGAII-PSO algorithm and the NSGA-II algorithm 

No. [𝑰, 𝑱, 𝑴, 𝜹] 
Time 

(s) 

𝑵𝑷𝑺 𝑫𝟐 𝑫𝟏 𝑴𝑰𝑫 

HNSGAII-

PSO 
NSGA-II 

HNSGAII-

PSO 
NSGA-II 

HNSGAII-

PSO 
NSGA-II 

HNSGAII-

PSO 
NSGA-II 

31 15-30-5-20% 25 59.60 47.03 59.60 47.03 59.60 47.03 4878.05 4801.21 

32 30-30-5-30% 33 48.81 32.22 48.81 32.22 48.81 32.22 5065.85 5046.76 

33 50-30-5-40% 42 22.38 42.54 22.38 42.54 22.38 42.54 7909.23 7894.54 

34 30-50-7-20% 47 84.16 63.73 84.16 63.73 84.16 63.73 8521.25 8492.57 

35 50-50-7-30% 56 28.01 52.37 28.01 52.37 28.01 52.37 9757.75 9737.86 

36 80-50-7-40% 78 31.19 58.38 31.19 58.38 31.19 58.38 11026.79 11284.65 

37 50-80-10-20% 81 38.53 77.22 38.53 77.22 38.53 77.22 12357.81 13701.54 

38 80-80-10-30% 111 33.78 63.41 33.78 63.41 33.78 63.41 12549.56 12783.00 

39 100-80-10-40% 128 40.47 73.42 40.47 73.42 40.47 73.42 13850.82 15555.38 

40 80-100-12-20% 131 39.75 95.05 39.75 95.05 39.75 95.05 15473.07 16454.84 

41 100-100-12-30% 152 41.16 71.94 41.16 71.94 41.16 71.94 13842.15 14764.67 

42 150-100-12-40% 204 39.80 90.48 39.80 90.48 39.80 90.48 15940.74 16934.13 

43 100-150-15-20% 223 54.25 103.11 54.25 103.11 54.25 103.11 17261.59 19042.25 

44 150-150-15-30% 278 53.49 118.75 53.49 118.75 53.49 118.75 19587.96 21591.61 

45 200-150-15-40% 336 58.67 111.19 58.67 111.19 58.67 111.19 20524.40 21737.06 

46 150-200-18-20% 347 63.72 123.72 63.72 123.72 63.72 123.72 19943.05 23042.00 

47 200-200-18-30% 419 66.89 153.43 66.89 153.43 66.89 153.43 23681.41 28178.78 

48 250-200-18-40% 494 65.76 158.35 65.76 158.35 65.76 158.35 24610.11 28376.25 

49 200-250-20-20% 504 86.13 145.93 86.13 145.93 86.13 145.93 24744.62 28052.78 

50 250-250-20-30% 599 79.92 166.71 79.92 166.71 79.92 166.71 24539.97 29819.36 

51 300-250-20-40% 698 78.02 159.17 78.02 159.17 78.02 159.17 25810.26 30246.06 

52 250-300-25-20% 718 70.41 148.80 70.41 148.80 70.41 148.80 21604.30 28446.83 

53 300-300-25-30% 825 95.05 177.20 95.05 177.20 95.05 177.20 26398.03 32207.54 

54 400-300-25-40% 1050 107.09 212.11 107.09 212.11 107.09 212.11 29752.38 35398.91 

55 300-400-30-20% 1100 98.86 195.93 98.86 195.93 98.86 195.93 27888.72 31671.08 

56 400-400-30-30% 1290 124.71 220.91 124.71 220.91 124.71 220.91 32467.22 37604.07 

57 500-400-30-40% 1690 119.76 232.55 119.76 232.55 119.76 232.55 33281.22 41192.72 

58 400-500-35-20% 1760 136.67 198.92 136.67 198.92 136.67 198.92 33257.67 40642.41 

59 450-500-35-30% 1984 138.73 245.32 138.73 245.32 138.73 245.32 35466.96 41484.99 

60 500-500-35-40% 2145 139.89 321.04 139.89 321.04 139.89 321.04 38320.90 47772.89 

Average value 350.53 302.67 90.59 156.25 71.52 132.03 20343.80 23465.29 

The algorithm with better performance in each measure is shown with a bold value 

 

 

SD columns show the mean value and standard deviation 

of the performance measures, respectively. Based on the 

results presented in Table 9, the p-value for all measures 

is smaller than 0.05. Considering the common 

significance level of 0.05, the results of the paired 

samples t-test showed that for all metrics, there is a 

significant difference between the performance of the 

HNSGAII-PSO algorithm and that of the NSGA-II 

algorithm. 

To meticulously evaluate the performance of the 

algorithms, comprehensive statistical analyses were 

conducted for each performance measure. The results 

obtained for the performance metrics in Table 8 were 

transformed using the relative percentage deviation  
 



 

 

TABLE 9. Paired sample t-test results of the HNSGAII-PSO and NSGA-II algorithms 

Significance p-value 
NSGA-II HNSGAII-PSO 

Metric 
SD Mean SD Mean 

Yes 0.0021 32.46 302.67 41.24 350.53 𝑵𝑷𝑺  

Yes 0.0003 89.16 156.25 46.94 90.59 𝑫𝟏  

Yes 0.0002 71.47 132.03 35.02 71.52 𝑫𝟐  

Yes 0.0008 11957.24 23465.29 9360.77 20343.8 𝑴𝑰𝑫  

 

 

(RPD) method to facilitate an unbiased comparison. 

Interval plots with a 95% confidence level were 

constructed for each performance measure to assess the 

algorithm's accuracy and robustness (53). A smaller 

interval indicates superior accuracy, while lower interval 

values compared to other algorithms indicate greater 

robustness. These findings are illustrated in Figures 20 to 

23. 

An analysis of the NPS metric (Figure 20) revealed 

that the HNSGAII-PSO algorithm exhibited superior 

robustness compared to the NSGA-II algorithm, despite 

 

 

 
Figure 19. Pareto fronts obtained by various algorithms for 

problem instance #55 

 

 

 
Figure 20. Interval plot based on a 95% confidence level for 

the comparison of the NSGA-II and HNSGAII-PSO 

algorithms using the NPS metric 

 
Figure 21. Interval plot based on a 95% confidence level for 

the comparison of the NSGA-II and HNSGAII-PSO 

algorithms using the 𝐷1 metric 

 

 

 
Figure 22. Interval plot based on a 95% confidence level for 

the comparison of the NSGA-II and HNSGAII-PSO 

algorithms using the 𝐷2 metric 
 

 

their equivalent accuracy. Regarding the 𝐷1 indicator 

(Figure 21), the HNSGAII-PSO algorithm demonstrated 

exceptional performance, achieving both the highest 

level of robustness and accuracy. For both the 𝐷2 and 

MID metrics, Figures 22 and 23, respectively, illustrate 

the HNSGAII-PSO algorithm's superior accuracy and 

robustness compared to the NSGA-II algorithm. 
 

5. 6. Sensitivity Analysis           In this subsection, the 

effect of varying the parameters 𝑝𝑗𝑠, 𝑒𝑗𝑠, and 𝑚 on the 
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Figure 23. Interval plot based on a 95% confidence level for 

the comparison of the NSGA-II and HNSGAII-PSO 

algorithms using the MID metric 

 

 

objective functions is analyzed. Problem instance #7 is 

considered for the sensitivity analysis. Figures 24, 25, 

and 26 depict the Pareto fronts obtained by solving novel 

problems based on varying the parameters 𝑝𝑗𝑠, 𝑒𝑗𝑠, and 

𝑚, respectively. Figure 24 shows that by increasing the 

𝑝𝑗𝑠 parameter, the processing time of each pattern 

increased, and when the job-pattern matrix is considered, 

the objective function of the total completion time also 

increased. This could potentially lead to customer 

dissatisfaction. However, the utilization of advanced 

machines and trained personnel can lower the 𝑝𝑗𝑠 

parameter. To avoid an increase in the 𝑝𝑗𝑠 parameter, 

decision-makers must allocate sufficient funds for the 

purchase and installation of new machines and provide 

regular training programs for employees to improve their 

skills. Figure 25 illustrates how varying the 𝑒𝑗𝑠  parameter 

influences the total energy consumption objective 

function. The Pareto front shifts towards higher values of 

this objective function as the 𝑒𝑗𝑠 parameter increases. 

Utilizing high-tech machinery and performing timely 

maintenance and repairs can be effective in preventing 

the increase in the 𝑒𝑗𝑠 parameter and its associated 

expenses. Therefore, decision-makers should conduct the 

necessary comparisons between various alternatives to 

implement the optimal strategy for maximizing overall 

profit. Figure 26 demonstrates that decreasing the 𝑚 

parameter increases both the total completion time and 

total energy consumption. In fact, as the number of 

machines is reduced, more patterns are assigned to the 

remaining machines, resulting in an increase in the time 

required to complete all jobs. To tackle this issue and 

reduce customer dissatisfaction, it is necessary to select 

the machine's fast levels for pattern processing in order 

to reduce their completion time, resulting in an increase 

in energy consumption. This analysis enables decision-

makers to strike a balance between the required budget 

for purchasing and deploying new machines and the costs 

resulting from an increase in total completion time and 

total energy consumption. 

 
Figure 24. Sensitivity of the Pareto frontier to processing 

time 

 

 

 
Figure 25. Sensitivity of the Pareto frontier to energy 

consumption 

 

 

 
Figure 26. Sensitivity of the Pareto frontier to the number of 

machines 

 
 
6. CONCLUSION AND FUTURE RESEARCH 
 

In the realm of manufacturing, the cutting stock problem, 

frequently encountered in industries such as furniture and 

apparel, exemplifies the application of common 

operation scheduling. Conversely, effective management 

and energy consumption reduction have emerged as 
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pressing concerns within the industry. Addressing these 

issues is paramount, considering the manufacturing 

sector's substantial energy consumption. In this paper, the 

common operation scheduling in an environment of 

identical parallel machines was studied, considering the 

energy consumption. In the investigated problem, each 

job includes several pieces, and all the pieces of different 

jobs are placed on cutting patterns. Each cutting pattern 

can contribute to the completion of one or more jobs. 

Each job is completed when all pieces of that job have 

been produced by processing related patterns. Each 

machine in this problem possesses varying speed levels. 

Consequently, when the machine operates at a higher 

speed, the processing time is reduced while the 

consumption of electrical energy increases.  

In the investigated problem, to simultaneously 

minimize the total completion time and the total electrical 

energy consumption, two position-based and sequence-

based mixed integer linear programming models were 

presented, and to solve small-scale instances, the 

AUGMECON method was used to obtain the Pareto 

optimal front. To solve medium- and large-scale 

instances, the HNSGAII-PSO and NSGA-II algorithms 

were developed to achieve good approximate Pareto 

fronts. In the NSGA-II algorithm, each chromosome 

represents a solution from the problem-solving space, 

and the quality of each chromosome can be evaluated by 

decoding it. In the HNSGAII-PSO algorithm, each 

chromosome represents a region of the problem-solving 

space where all solutions in this region have the same 

total energy consumption. To assess the quality of each 

chromosome, the top solution within the chromosome's 

covered region is taken into consideration. This entails 

running the PSO algorithm once for every chromosome 

to determine the best solution in each region. The 

performance of the presented algorithms was evaluated 

by solving test instances of different sizes. The results of 

numerical experiments show that both presented 

algorithms perform well in solving small-scale instances 

and can obtain the optimal Pareto front in much less time 

than the AUGMECON method. Based on the results of 

solving medium- and large-scale instances, the 

HNSGAII-PSO algorithm has better performance 

compared to the NSGA-II algorithm and can obtain more 

diverse non-dominant solutions with better convergence. 

At last, the problem's sensitivity to the parameters of 

processing time, energy consumption, and the number of 

machines was analyzed, and the impact of varying each 

of these parameters on the two objective functions was 

demonstrated. The results indicate that decision-makers 

should compare the budgets, costs, and revenues 

associated with different changes to make well-informed 

decisions that maximize overall profit. 

Considering sequence-dependent setup times for 

processing cutting patterns, studying the problem in an 

environment of unrelated parallel machines, and using 

the TOU tariffs or the tiered price to calculate the cost of 

power consumption are all attractive fields for future 

research. 
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Persian Abstract 

 چکیده 
آب   ییرات را به همراه دارد که به تغ  یاگلخانه یانتشار گازها یدو تشدتجدیدناپذیر انرژی از جمله کاهش منابع  یادیز یچیدهپ یهادر جهان، چالش یمصرف انرژ امانیرشد ب

  .شودوارد می  یدارپا  هاییوهاتخاذ ش  برای  یکننده مهم انرژمصرف  به عنوان  یدبخش تولفشار زیادی به    محیطی،یستز  یدشد  هایینگران   ین. در مواجهه با اکندیکمک م  ییو هوا

از اهمیت بالایی برخوردار است.  ها  چالش  ینپرداختن به ا  یبرا  یحوزه محور  یکبه عنوان  بندی عملیات تولید  بنابراین همزمان در نظر گرفتن مدیریت مصرف انرژی و زمان 

برای اولین بار در این مقاله،  است.  یدتول  هاییطدر مح  یجچالش را  یکمانند مبلمان و پوشاک است،    یعیدر صنا  موجودیبرش    مسألهکه نمونه آن    مشترک  یات عمل  یبندزمان

های تکمیل و مجموع انرژی مصرفی مورد نظر گرفتن عملیات مشترک به منظور کمینه نمودن همزمان مجموع زمان های موازی یکسان با در  بندی در محیط ماشین زمان   مسأله

گردد و برای حل مسائل با ابعاد کوچک از روش ریزی خطی عدد صحیح آمیخته دو هدفه ارائه میگیرد. بدین منظور برای مسأله مورد بررسی، دو مدل برنامهمطالعه قرار می

شود. با توجه به پیچیدگی محاسباتی مسأله، الگوریتم ژنتیک  ( به منظور دستیابی به مجموعه نقاط پارتو بهینه استفاده می AUGMECONیافته )محدودیت اپسیلون تکامل 

برای حل مسائل با ابعاد متوسط و  ( HNSGAII-PSOسازی ازدحام ذرات )سازی نامغلوب ترکیب شده با بهینه( و الگوریتم ژنتیک مرتب NSGA-IIسازی نامغلوب )مرتب 

های محاسباتی بر روی مسائل نمونه، مورد های پیشنهادی با انجام آزمایششوند. کارایی و عملکرد الگوریتممناسب، توسعه داده می تقریبی پارتو های جبهه به دستیابی بزرگ و 

 عملکرد بهتری دارد.  NSGA-IIدر مقایسه با الگوریتم  HNSGAII-PSOدهند که در حل مسائل نمونه، الگوریتم  گیرد. نتایج به دست آمده نشان می ارزیابی قرار می 
 

 

 
 


