
IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

Please cite this article as: Ataei H, Ahmadizar F, Arkat J. Energy-Conscious Common Operation Scheduling in an Identical Parallel Machine
Environment. International Journal of Engineering, Transactions A: Basics. 2024;37(07):1443-65.

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Energy-Conscious Common Operation Scheduling in an Identical Parallel Machine

Environment

H. Ataei, F. Ahmadizar*, J. Arkat

Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran

P A P E R I N F O

Paper history:
Received 14 October 2023
Received .30 November 2023
Accepted 12 December 2023

Keywords:
Bi-objective Mixed Integer Linear
Programming
Identical Parallel Machine Scheduling
Common Operation
Total Energy Consumption
Total Completion Time

A B S T R A C T

The relentless growth of global energy consumption poses a multitude of complex challenges, including

the depletion of finite energy resources and the exacerbation of greenhouse gas emissions, which
contribute to climate change. In the face of these pressing environmental concerns, the manufacturing

sector, a significant energy consumer, is under immense pressure to adopt sustainable practices. The

critical intersection of energy consumption management and production operation scheduling emerges
as a pivotal domain for addressing these challenges. The scheduling of common operations, exemplified

by the cutting stock problem in industries like furniture and apparel, represents a prevalent challenge in

production environments. For the first time, this paper pioneers an investigation into an identical parallel
machine scheduling problem, taking into account common operations to minimize total energy

consumption and total completion time concurrently. For this purpose, two bi-objective mixed integer

linear programming models are presented, and an augmented ε – constraint method is used to obtain the
Pareto optimal front for small-scale instances. Considering the NP-hardness of this problem, a non-

dominated sorting genetic algorithm (NSGA-II) and a hybrid non-dominated sorting genetic algorithm

with particle swarm optimization (HNSGAII-PSO) are developed to solve medium- and large-scale
instances to achieve good approximate Pareto fronts. The performance of the proposed algorithms is

assessed by conducting computational experiments on test problems. The results demonstrate that the

proposed HNSGAII-PSO performs better than the suggested NSGA-II in solving the test problems.

doi: 10.5829/ije.2024.37.07a.20

Graphical Abstract1

*Corresponding Author Institutional Email: f.ahmadizar@uok.ac.ir (F. Ahmadizar)

mailto:f.ahmadizar@uok.ac.ir

1444 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

1. INTRODUCTION

Energy plays a critical role in human society, and as

nonrenewable energy resources continue to deplete, the

need for effective and efficient use of energy becomes

increasingly vital. The management of energy

consumption across diverse processes and sectors has

garnered significant attention among researchers owing

to its demonstrated ability to mitigate energy

expenditures, alleviate environmental repercussions, and

enhance energy security (1-4). The production and

consumption of energy are major sources of greenhouse

gas emissions. The manufacturing sector, which accounts

for roughly half of the world's total energy consumption,

is a major contributor to greenhouse gas emissions (5-7).

It is essential for manufacturing industries to prioritize

improving energy efficiency and minimizing greenhouse

gas emissions. To achieve this, production managers can

choose from a variety of energy-saving strategies.

Implementing energy-efficient machines is one potential

strategy, although this approach may incur greater

upfront costs, which can strain a company's finances. To

reduce the impact of this issue, production managers may

need to implement scheduling strategies that strike a

balance between energy conservation and cost reduction

(8). Scheduling problems have been classified into well-

known categories based on the machine environment.

The most common types of scheduling problems are

single machine, parallel machine, flow shop, and job

shop. Among these, parallel machine scheduling is

particularly significant in scheduling problems because it

is a generalization of single machine scheduling and a

specific mode of flexible flow shop scheduling (9). Over

the past few years, scheduling problems that involve

simultaneously obtaining objectives for scheduling and

energy have been the subject of extensive research. The

related literature has introduced and accepted various

electricity consumption strategies, such as power-down

and speed-scaling. Furthermore, different policies for

determining electricity consumption costs, including

fixed, time-of-use (TOU), and tiered pricing, have also

been formulated and employed (10-13). Parallel machine

scheduling problems that consider energy consumption

account for a significant portion of the studies mentioned.

Li et al. (14) investigated the unrelated parallel

machine scheduling problem to minimize energy costs

and tardiness. In this problem, energy consumption has

been considered for various machine modes, including

setup, idleness, and processing. For this problem, a

mathematical model has been developed so that two

objectives are regarded as one single objective. To solve

the problem, ten heuristic methods based on the priority

rules, combination rules, and energy consumption have

been proposed. Che et al. (15) investigated an energy-

efficient unrelated parallel machine scheduling problem

to minimize total electricity consumption costs. In this

problem, the cost of electricity consumption is calculated

using the TOU tariffs, and the makespan is limited. These

researchers proposed a two-stage algorithm to solve the

problem. Wang et al. (16) studied the parallel machine

scheduling problem with a bounded power demand peak.

In this problem, the jobs can be processed at different

speeds and therefore have various processing times and

power demands. The goal of this problem is to minimize

the makespan, and to solve it, the researchers proposed a

genetic algorithm based on a two-stage heuristic method.

Zeng et al. (17) conducted a comprehensive

investigation of a bi-objective optimization problem

pertaining to uniform parallel machine scheduling. The

aim of their study was to minimize both the number of

machines employed and the total electricity cost within

the framework of TOU tariffs. To accomplish this, the

researchers devised an iterative search framework,

facilitating the attainment of the Pareto front. Wu & Che

(18) investigated an energy-efficient bi-objective

unrelated parallel machine scheduling problem with the

goal of minimizing both total energy consumption and

makespan. They suggested a memetic differential

evolution (MDE) algorithm to solve the problem, and

they developed a local search approach to improve the

proposed algorithm. Cota et al. (19) conducted an

investigation into the unrelated parallel machine

scheduling problem, incorporating sequence-dependent

setup times to minimize both total electrical energy

consumption and makespan. Furthermore, to find

solutions close to the Pareto optimal front, they

developed and tested a novel heuristic algorithm called

Smart Pool. Safarzadeh & Niaki (20) investigated bi-

objective green scheduling in uniform parallel machine

environments. In this problem, various green cost rates

for every machine were considered to model the impact

of production resources on sustainability, such as energy

consumption and carbon emissions. The researchers

modeled the problem with the objective of minimizing

the total green costs and makespan, and they used the ɛ-

constraint method to identify Pareto optimal solutions.

Wang et al. (21) investigated the identical parallel

machine scheduling problem with the goal of minimizing

both the makespan and total energy consumption. In this

problem, the cost of electricity consumption is calculated

using the TOU tariffs. The researchers used the

augmented ɛ-constraint method to solve the problem in

small-scale instances, and they developed a constructive

heuristic (CH) method with a local search strategy based

on the problem's characteristics to solve the problem in

larger-scale instances. Anghinolfi et al. (22) developed

an ad hoc heuristic method to solve the problem proposed

by Wang et al. (21). This method is divided into two

parts. The first section of the method is an improved and

modified version of the constructive heuristic (CH)

algorithm proposed by Wang et al. (21). The second

section introduces a new local search method for

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1445

enhancing the efficacy of Pareto solutions. They

conducted computational tests to assess the suggested

method's efficiency and effectiveness. Zhang et al. (23)

delved into a two-stage parallel machine scheduling

problem, aiming to minimize total electricity costs under

TOU tariffs. Their study considered a two-stage parallel

machine system comprising identical parallel speed-

scaling machines at stage 1 and unrelated parallel

machines at stage 2. The researchers modeled the

investigated problem as mixed-integer linear

programming and developed a Tabu Search-Greedy

Insertion Hybrid (TS-GIH) algorithm to solve it.

Keshavarz et al. (24) studied the unrelated parallel

machine scheduling problem with sequence-dependent

setup times to minimize the energy consumption costs

and makespan. They used the ɛ-constraint method to

solve the problem in small instances, and they developed

the multiple objective simulated annealing and multiple

objective particle swarm optimization algorithms to solve

the problem in medium and large instances. Zhou & Gu

(25) examined the unrelated parallel machine scheduling

problem by taking into account multiple resource

constraints to minimize total energy consumption and

total completion time. They developed a multi-objective

artificial immune algorithm to solve the problem. Módos

et al. (26) examined the problem of parallel dedicated

machines while keeping energy consumption constraints

in mind. In this problem, the peak energy consumption at

specific time intervals should not exceed a specified

limit. The researchers studied four different variants of

the problem and designed a heuristic algorithm for the

general problem. Rego et al. (27) proposed a novel bi-

objective unrelated parallel machine scheduling problem

that considers TOU tariffs and sequence-dependent set-

up times. To tackle the problem, the researchers

suggested a bi-objective mixed-integer linear

programming formulation to minimize the total energy

consumption and makespan. To solve small and large

instances of the problem, they used the weighted sum

method and the non-dominated sorting genetic algorithm

(NSGA-II), respectively. Asadpour et al. (28) studied the

identical parallel machine scheduling problem with the

job-splitting property to minimize the total number of

tardy jobs and total energy consumption. In this problem,

the jobs can be further subdivided. An augmented ε-

constraint method was used to solve small-scale

problems, and a simulated annealing (SA) algorithm was

designed to solve medium- and large-scale problems.
Heydar et al. (28) proposed an approximate dynamic

programming (ADP) approach to address an energy-

efficient unrelated parallel machine scheduling problem

characterized by random job arrivals. The objective of

their work is to minimize a weighted combination of

makespan and total energy costs. The energy costs

encompass the energy consumption incurred during

machine switching, job processing, and idle periods. At

each stage of the ADP, a binary program was formulated

to optimize the scheduling problem. The energy

efficiency strategy considered in their study is TOU

electricity tariffs. Gaggero et al. (29) investigated the

problem of bi-objective scheduling on parallel identical

machines with TOU costs (BPMSTP). They introduced a

new mathematical formulation for the BPMSTP, which

allowed them to develop a more efficient exact algorithm

for finding the optimal Pareto front. Additionally, they

proposed an alternative heuristic approach called the

Enhanced Heuristic Scheduler (EHS), which proved to

outperform existing heuristics in experiments. Not only

did EHS demonstrate superior performance, but it also

enhanced the computational efficiency of the exact

approach. Sanati et al. (28) conducted a comprehensive

investigation into an unrelated parallel machine

scheduling problem considering sequence-dependent

setup times under TOU electricity tariffs. Their study

meticulously examined setup times in two distinct

modes: disjointed from and jointed to processing time.

For each of these problem variations, two mixed-integer

linear programming models were meticulously

formulated. The presented models for the problem with

setup time disjointed from processing time demonstrated

the capability of solving instances involving up to 16

machines and 45 jobs. In contrast, this capability was

extended to 20 machines and 40 jobs for the processing

time jointed to the setup time problem. Furthermore, to

address large-size instances effectively, a fix and relax

heuristic algorithm was proposed. This algorithm

exhibited the ability to solve instances of up to 20

machines and 100 jobs for each of the two considered

problems.

In studies on parallel machine scheduling, after a job

is assigned to a machine, that machine processes the job,

and the job is ready to be delivered. In the real world,

however, there are problems in which each job consists

of several sub-jobs, and the job is ready to be delivered

when all of its sub-units have been completed after

processing one or more activities. Furthermore,

processing an activity may have an impact on the

completion of multiple jobs. These problems are

introduced as "common operation scheduling" (COS)

problems. Common operation scheduling problems are

used to find the optimal arrangement of operations

required by a set of jobs under the assumption that when

an activity is completed, it is completed for all jobs that

require it (30). These types of problems have different

applications, including movie shooting (31), progressive

network recovery (32), and pattern sequencing in cutting

stock problems (33).

The cutting stock problem includes cutting a set of

available pieces in stock (objects) to produce a specific

set of smaller pieces (items) that optimizes an objective

function such as minimizing total waste, maximizing

profit, or minimizing production costs, in order to meet

1446 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

customer demand for different items. The cutting stock

problem occurs in numerous industrial processes where

the objects can be sheets of wood, sheets of metal, steel

bars, paper or aluminum rolls, printed circuit boards,

sheets of glass, etc. In these industries, using appropriate

cutting programs is frequently associated with reducing

production costs and increasing productivity. A cutting

program is a solution to the cutting stock problem, which

is proposed by a set of cutting patterns and the frequency

of their use. A cutting pattern specifies a subset of items

to be obtained from cutting an object. If the items in the

cutting problem are two-dimensional or multi-

dimensional, then the cutting patterns also determine the

arrangement of the items on each of the objects (34). For

example, in a furniture factory, sheets of wood must be

cut by one or more machines according to predetermined

cutting patterns to produce smaller pieces. Each customer

order (job) consists of several small pieces that may be

placed in one or more different patterns. Therefore, an

order is ready to be delivered to the customer when all of

the patterns required by that order have been processed

by cutting machines.

Several papers in the related literature have attempted

to categorize cutting stock problems, which can be used

as references to study and gain more information about

these categories (35-37). Different criteria can be used to

categorize cutting stock problems. The most common

criterion is cutting dimensions, used to describe cutting

patterns according to the type of problem. Based on this

criterion, cutting stock problems are divided into one-

dimensional, two-dimensional, three-dimensional, or

multi-dimensional problems. According to the literature

review, most cutting stock problems are focused on one-

and two-dimensional cutting, which can be used in

problems such as cutting paper, cables, pipes, sheet

wood, etc. (37). In most related studies, the problem not

only involves designing cutting patterns and selecting a

number of them to produce items smaller than objects

(customer orders), but also determining the sequence of

patterns to achieve objectives related to completion

times, due dates, production costs, etc. Arbib & Marinelli

(38) studied the one-dimensional cutting stock problem

by considering due dates to minimize the weighted

tardiness of the jobs and raw material costs. In this

problem, each job has a due date and consists of several

pieces of the same size. Researchers developed and tested

implicit enumeration, upper bounds, and heuristic

methods to solve the problem. Cui et al. (39) studied the

one-dimensional cutting stock problem, considering the

setup costs. In their study, they developed an integer

linear programming model to minimize the sum of setup

and material costs over a given pattern set. To solve the

problem, they introduced a heuristic algorithm based on

sequential grouping to generate patterns. Wuttke &

Heese (40) investigated the two-dimensional cutting

stock problem with sequence-dependent setup times and

permissible tolerances in the textile industry. For the

problem under study, they provided a mixed-integer

program, and to solve it, they used a sequential heuristic

with a feedback loop based on Gilmore and Gomory's

approach.

While mentioning that the optimal cutting patterns for

the production of items smaller than objects are designed

by commercial software considering the minimum

cutting waste, some papers have considered the pre-

designed patterns as the input of the problem and have set

the sequence of patterns to achieve the objectives

regarding completion time and due date (30, 33). Arbib

et al. (30) studied the pattern sequencing problem, which

is introduced as a common operation scheduling

problem, with the goal of minimizing the weighted

number of tardy jobs in the single machine environment.

They reformulated the problem as a stable set problem on

a special graph and analyzed the graph structure. In this

problem, the processing times of the patterns on the

machine are considered the same and equal to one unit.

Arbib et al. (33) investigated the problem of common

operation scheduling in single machine and parallel

machine environments. In this study, in a single machine

environment, the processing times of the patterns on the

machine are variable, and in a parallel machine

environment, the processing times of the patterns on each

of the machines are considered the same and equal to one

unit. The researchers formulated the problem as a set-

covering problem and solved it using the branch-and-cut

algorithm.

Table 1 provides a concise summary of the literature

review conducted on energy-efficient parallel machine

scheduling. The reviewed articles have been categorized

based on the energy consumption strategy employed. To

facilitate a comparison of the problem addressed in this

article with those investigated in the literature, four

criteria have been employed: problem properties,

objective function, solution algorithm, and energy

consumption strategy. These criteria and their

corresponding details are also presented in Table 1. In the

realm of energy-efficient parallel machine scheduling

problems, an underlying assumption is that the

processing of each operation by a machine exclusively

affects the completion of a single job. However, this

assumption may not always hold true for real-world

problems. In certain scenarios, several jobs to be

completed may require the common operation to be

performed on a shared resource simultaneously,

introducing a new dimension of complexity to the

scheduling problem that has not been discussed in the

literature.

This study focuses on common operation scheduling

in an environment of identical parallel machines while

considering energy consumption. To this end, two

mixed-integer linear programming models, a position-

based model and a sequence-based model, have been

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1447

TABLE 1. Summary of the Literature Review on Energy-Efficient Parallel Machine Scheduling

Author Other properties of the problem Objective/ Solution method

Strategy of

energy

consumption

[14]
unrelated parallel machine, energy consumption has

been considered for various machine modes
tardiness and energy consumption cost/ heuristic algorithms

fixed

[20] uniform parallel machine total green costs and makespan/ the ɛ-constraint method

[25]
unrelated parallel machine, multiple resource

constraint

total energy consumption and total completion time/ multi-

objective artificial immune algorithm

[28] identical parallel machine, job-splitting property
total number of tardy jobs and total energy consumption/

augmented ε-constraint, simulated annealing algorithm

[16] bounded power demand peak makespan/ genetic algorithm

speed-scaling
[18] unrelated parallel machine

total energy consumption and makespan/ memetic

differential evolution

[19]
unrelated parallel machine, sequence-dependent

setup times

total energy consumption and makespan/ heuristic

algorithm

[15] unrelated parallel machine, makespan is limited energy consumption cost/ heuristic algorithm

TOU

[17] uniform parallel machine
number of machines employed and the total electricity

cost/ heuristic algorithm

[21] identical parallel machine
makespan and total energy consumption/ augmented ɛ-

constraint method, constructive heuristic, NSGA-II

[23] two-stage parallel machine
total energy consumption/ Tabu Search-Greedy Insertion

Hybrid algorithm

[24]
unrelated parallel machine, sequence-dependent

setup times

energy consumption costs and makespan/ the ɛ-constraint

method, multiple objective simulated annealing algorithm
and multiple objective particle swarm optimization

algorithms

[26]

parallel dedicated machines, peak energy
consumption at specific time intervals should not

exceed a specified limit
makespan/ heuristic algorithm

[27]
unrelated parallel machine, sequence-dependent set-

up times

total energy consumption and makespan/ weighted sum

method, NSGA-II

[29] unrelated parallel machine, random job arrivals
weighted combination of makespan and total energy costs/

approximate dynamic programming

[30] identical parallel machine
total energy consumption and makespan/ Enhanced

Heuristic Scheduler

[31]
unrelated parallel machine, sequence-dependent

setup times, bounded makespan
total electricity cost/fix and relax heuristic algorithm

Current

paper

identical parallel machine, common operation

scheduling

total energy consumption and total completion time/

augmented ɛ-constraint method, HNSGAII-PSO, NSGA-II
Speed-scaling

proposed for the problem under study in order to

simultaneously minimize the total energy consumption

and the total completion time. To solve small-scale

instances, the augmented ɛ-constraint method

(AUGMECON) is used to obtain the Pareto optimal

front. Since the problem is NP-hard, a non-dominated

sorting genetic algorithm (NSGA-II) and a hybrid non-

dominated sorting genetic algorithm with particle swarm

optimization (HNSGAII-PSO) have been developed to

solve medium- and large-scale instances. In the proposed

NSGA-II algorithm, each chromosome represents a

solution from the problem-solving space, and the quality

of each chromosome can be evaluated by calculating the

objective functions of total completion time and total

energy consumption. In the proposed HNSGAII-PSO

algorithm, each chromosome represents a region of the

problem-solving space where all solutions in this region

have the same total energy consumption. To evaluate the

quality of each chromosome, the best solution for the

region covered by that chromosome is considered. In the

investigated problem, the best solution in the region

covered by each chromosome is the one that minimizes

the total completion time. Therefore, to determine the

best solution in each region, the PSO algorithm is

1448 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

executed once for each chromosome. The total

completion time for each chromosome of the HNSGAII-

PSO algorithm is determined based on the output of the

PSO algorithm. According to the mentioned explain, the

contributions of the paper can be summarized as follows:

▪ Energy consumption is considered in the

common operation scheduling problem.

▪ Two bi-objective mixed integer linear

programming models, namely the position-based

and sequence-based models, are proposed to

investigate the trade-off between total completion

time and total energy consumption.

▪ The NSGA-II and HNSGAII-PSO algorithms are

developed to solve large-scale instances.

▪ The performance of the methods is evaluated

using computational experiments.

The remaining sections of this paper are as follows:

After the problem is described in section 2, mathematical

models are proposed. In section 3, solution methods will

be presented. Section 4 discusses the results of the

computations. In section 5, the conclusion and future

research are mentioned.

2. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELING

The common operation scheduling problem is one of the

scheduling problems with numerous applications in the

actual world. One of the applications of common

operation scheduling in manufacturing environments is

the cutting stock problem, which is posed in industries

such as the furniture industry (cutting wooden panels)

and the apparel industry (cutting fabric). This paper

investigates common operation scheduling in an identical

parallel machine environment, considering energy

consumption. In the problem under study, each job

includes several small pieces (items), and all the pieces

of different jobs are placed on a number of cutting

patterns to produce the required small pieces according

to these patterns and by cutting larger pieces (objects).

Therefore, each job is completed when all the small

pieces related to it have been produced by cutting the

required patterns. The relationship between jobs and

cutting patterns is shown by the job-pattern matrix. In

fact, this matrix indicates which patterns must be

processed to complete each job. The optimal cutting

patterns are predetermined using relevant software,

taking the dimensions of small pieces into account, and

will be available at time 0. Each pattern contains one or

more pieces and contributes to the completion of one or

more jobs. Energy consumption is investigated by

considering the speed-scaling strategy. In accordance

with this strategy, each machine possesses varying speed

levels. Consequently, when the machine operates at a

higher speed, the processing time is reduced while the

consumption of electrical energy increases. In this

problem, the assignment of cutting patterns to machines,

the sequence of patterns on each machine, and the

appropriate speed of the machine to process each of the

assigned patterns are determined in order to

simultaneously minimize the total completion time and

the total energy consumption. The underlying

assumptions are listed below:

▪ Cutting patterns have already been designed and

determined and will be available at time zero.

▪ Larger pieces (objects) will be available at time 0 to

produce smaller parts (items), and their number is

equal to the number of cutting patterns.

▪ Each machine processes a maximum of one pattern

at a time.

▪ Each pattern can be processed by only one machine

at a time.

▪ The processing time of each pattern at the varying

speed levels of each machine is specified and

definite.

▪ The amount of energy consumed by each machine at

various speed levels for processing each pattern is

specified and definite.

▪ There is no precedence relationship between

different patterns.

▪ There is no preemption in the processing of patterns.

In the following, the notations and parameters are

presented.

Sets and Indices

𝐼 Set of jobs {𝑖𝜖𝐼}.

𝐽 Set of cutting patterns {𝑗, 𝑘𝜖𝐽}.

𝑉 = 𝐽 ∪ {0}
Set of cutting patterns that includes the fictitious

pattern 0 {𝑗, 𝑘𝜖𝑉}.

𝑀 Set of machines {𝑚𝜖𝑀}.

𝑄 Set of positions on each machine {𝑞𝜖𝑄}.

𝑆 Set of speed levels of each machine {𝑠𝜖𝑆}.

𝑁𝑖
Subset of cutting patterns set that must be processed

to complete job 𝑖 (⋃ 𝑁𝑖 = 𝐽𝑖).

Parameters

𝑤𝑗 The required workload of pattern 𝑗.

𝑣𝑠
Machine processing speed at speed level 𝑠 (the workload

processed per unit of time by the machine at speed level 𝑠).

𝑝𝑗𝑠
The time required to process pattern 𝑗 at speed level 𝑠 of the

machine (𝑝𝑗𝑠 =
𝑤𝑗

𝑣𝑠
).

𝜋𝑗
Machine energy consumption rate for processing pattern 𝑗

per unit of time.

𝜋𝑗𝑠
Machine energy consumption rate at speed level 𝑠 for

processing pattern 𝑗 per unit of time (𝜋𝑗𝑠 = 𝜋𝑗𝑣𝑠
𝛼 , 𝛼 > 1).

𝑒𝑗𝑠
The energy required to process pattern 𝑗 at speed level 𝑠 of

the machine (𝑒𝑗𝑠 = 𝜋𝑗𝑠𝑝𝑗𝑠).

𝐵 A large number.

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1449

The sequence-based mathematical model is

presented here.

Decision varibales

𝑥𝑚𝑘𝑗𝑠
Equal to 1 if pattern 𝑗 is processed immediately after

pattern 𝑘 on machine 𝑚 with speed level 𝑠,and 0

otherwise.

𝑟𝑗 Completion time of pattern 𝑗.

𝑐𝑖 Completion time of job 𝑖.

Sequence-based model

min 𝑍1 = ∑ 𝑐𝑖𝑖𝜖𝐼 (1)

𝑚𝑖𝑛 𝑍2 =
∑ ∑ ∑ ∑ 𝑒𝑗𝑠𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆𝑗𝜖𝐽𝑘𝜖𝑉⋮𝑗≠𝑘𝑚𝜖𝑀

 (2)

∑ ∑ ∑ 𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆𝑘𝜖𝑉⋮𝑗≠𝑘 =𝑚𝜖𝑀

1
∀ 𝑗𝜖𝐽 (3)

∑ ∑ ∑ 𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆𝑗𝜖𝐽⋮𝑗≠𝑘 ≤ 1𝑚𝜖𝑀 ∀ 𝑘𝜖𝐽 (4)

∑ ∑ 𝑥𝑚0𝑗𝑠𝑠𝜖𝑆 ≤ 1 𝑗𝜖𝐽 ∀ 𝑚𝜖𝑀 (5)

∑ ∑ 𝑥𝑚𝑘𝑗𝑠𝑠𝜖𝑆 −𝑗𝜖𝑉⋮𝑘≠𝑗

 ∑ ∑ 𝑥𝑚ℎ𝑘𝑠𝑠𝜖𝑆 = 0ℎ𝜖𝑉⋮ℎ≠𝑗
∀ 𝑘𝜖𝐽 , 𝑚𝜖𝑀 (6)

𝑟𝑗 − 𝑟𝑘 + 𝐵(1 − 𝑥𝑚𝑘𝑗𝑠) ≥ 𝑝𝑗𝑠
∀ 𝑘𝜖𝑉 ⋮ 𝑗 ≠

𝑘, 𝑗𝜖𝐽 , 𝑚𝜖𝑀 , 𝑠𝜖𝑆
(7)

𝑐0 = 0 (8)

𝑐𝑖 = 𝑚𝑎𝑥
𝑗𝜖𝑁𝑖

𝑟𝑗 ∀ 𝑖𝜖𝐼 (9)

𝑥𝑚𝑘𝑗𝑠 = {0 , 1} ∀ 𝑗, 𝑘 𝜖𝑉 , 𝑚𝜖𝑀 , 𝑠𝜖𝑆 (10)

𝑐𝑖 , 𝑟𝑗 ≥ 0 ∀ 𝑗𝜖𝑉 , 𝑖𝜖𝐼 (11)

The objective functions 1 and 2 represent the

minimization of total completion time and total energy

consumption for the sequence-based model, respectively.

Constraint 3 guarantees that each pattern is assigned to

only one machine at a specified speed level and that only

one other pattern is processed before it. Constraint 4

indicates that after each pattern, a maximum of one other

pattern can be processed. Constraint 5 ensures that in

each machine, after fictitious pattern 0, a maximum of

one other pattern can be processed. Constraint 6 ensures

the right order for allocating patterns in each machine: if

pattern 𝑘 is processed before pattern 𝑗, then another

pattern must be processed before pattern 𝑘. Constraint 7

computes the completion time of each pattern. If 𝑥𝑚𝑘𝑗𝑠 =

1, then the completion time of pattern 𝑗 is obtained from

the sum of the completion time of pattern 𝑘 and the

processing time of pattern 𝑗 with the speed level 𝑠 of the

machine, and if 𝑥𝑚𝑘𝑗𝑠 = 0, then the large number 𝐵

ensures the relation. Equation 8 shows that the

completion time of the fictitious pattern 0 is zero. Each

job's completion time is calculated by constraint 9. The

completion time of job 𝑖 is equal to the maximum

completion time of patterns that include the pieces of job

𝑖. Constraints 10 and 11 show the range of decision

variables.

Considering Equation 9, the proposed model is

mixed integer nonlinear programming. The proposed

sequence-based model is converted into a mixed integer

linear programming model by substituting Equation 12

for Equation 9.

𝑐𝑖 ≥ 𝑟𝑗 ∀ 𝑖𝜖𝐼 , 𝑗𝜖𝑁𝑖 (12)

The position-based mathematical model is presented

here.

Decision varibales

𝑥𝑗𝑚𝑞𝑠
Equal to 1 if pattern 𝑗 is processed in position 𝑞 of

machine 𝑚 with speed level 𝑠,and 0 otherwise.

ℎ𝑞𝑚 Start time of position 𝑞 of machine 𝑚.

𝑓𝑞𝑚 Finish time of position 𝑞 of machine 𝑚.

𝑟𝑗𝑚 Completion time of pattern 𝑗 on machine 𝑚.

𝑐𝑖 Completion time of job 𝑖.

Position-based model

𝑚𝑖𝑛 𝑍1 = ∑ 𝑐𝑖𝑖𝜖𝐼 (13)

𝑚𝑖𝑛 𝑍2 =
∑ ∑ ∑ ∑ 𝑒𝑗𝑠𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆𝑞𝜖𝑄𝑚𝜖𝑀𝑗𝜖𝐽

 (14)

∑ ∑ ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆𝑞𝜖𝑄 =𝑚𝜖𝑀

1
∀ 𝑗𝜖𝐽 (15)

∑ ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆 ≤ 1 𝑗𝜖𝐽 ∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄 (16)

𝑓𝑞𝑚 = ℎ𝑞𝑚 +

 ∑ ∑ 𝑝𝑗𝑠𝑥𝑗𝑚𝑞𝑠 𝑠𝜖𝑆𝑗𝜖𝐽
∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄 (17)

𝑓𝑞𝑚 ≤ ℎ(𝑞+1)𝑚 ∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄 (18)

∑ ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆 ≤𝑗𝜖𝐽

∑ ∑ 𝑥𝑗𝑚(𝑞−1)𝑠 𝑠𝜖𝑆𝑗𝜖𝐽
∀ 𝑚𝜖𝑀 , 𝑞𝜖𝑄 ⋮
𝑞 > 1𝑀 , 𝑠𝜖𝑆

(19)

𝑓𝑞𝑚 ≤ 𝑟𝑗𝑚 + 𝐵(1 − ∑ 𝑥𝑗𝑚𝑞𝑠𝑠𝜖𝑆)
∀ 𝑗𝜖𝐽 , 𝑚𝜖𝑀 ,

𝑞𝜖𝑄
(20)

𝑐𝑖 = 𝑚𝑎𝑥
𝑗𝜖𝑁𝑖 , 𝑚𝜖𝑀

𝑟𝑗𝑚 ∀ 𝑖𝜖𝐼 (21)

𝑥𝑗𝑚𝑞𝑠 = {0 , 1}
∀ 𝑗𝜖𝐽 , 𝑚𝜖𝑀 ,

𝑞𝜖𝑄, 𝑠𝜖𝑆
(22)

𝑐𝑖 , 𝑟𝑗𝑚, 𝑓𝑞𝑚 , ℎ𝑞𝑚 ≥ 0
∀ 𝑗𝜖𝐽 , 𝑚𝜖𝑀 ,

𝑞𝜖𝑄, 𝑖𝜖𝐼
(23)

The position-based model's objectives are to

minimize total completion time and total energy

consumption, which are demonstrated by Equations 13

and 14, respectively. Equation 15 guarantees that each

pattern is processed only at one position on one machine

and at a specified speed level. Constraint 16 indicates that

at each position of each machine, a maximum of one

1450 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

pattern is processed at a specified speed level.

Constraints 17 and 18 compute the start time and end

time of each position of each machine. Constraint 19

ensures that the positions of each machine are assigned

to patterns in numerical order from first to last. Each

pattern's completion time is calculated by constraint 20.

The completion time of each job is calculated using

Equation 21. The completion time of job 𝑖 is equal to the

maximum completion time of patterns that include the

pieces of job 𝑖. Constraints 22 and 23 show the range of

decision variables.

Considering Equation 21, the proposed model is

mixed-integer nonlinear programming. In order to

linearize the mathematical model, Equation 24 is used

instead of Equation 21. Due to the changes made, the

proposed position-based model is a mixed integer linear

programming model.

𝑐𝑖 ≥ 𝑟𝑗𝑚 ∀ 𝑖𝜖𝐼 , 𝑗𝜖𝑁𝑖 , 𝑚𝜖𝑀 (24)

Based on the triple notation provided by Wuttke and

Heese (41), the problem studied in this paper is denoted

as 𝑃𝑚|𝑐𝑜𝑠|𝑇𝐸𝐶, ∑ 𝐶𝑖, where 𝑃𝑚 indicates identical

parallel machines, 𝑐𝑜𝑠 indicates common operation, and

𝑇𝐸𝐶 and ∑ 𝐶𝑖 represent the total energy consumption and

the total completion time, respectively. In this problem,

if the machines have only one level in terms of processing

speed and the objective function of the total energy

consumption is not considered, and if each pattern is only

effective in completing one job and the completion of

each job only requires the processing of one pattern, then

the problem becomes an identical parallel machine

problem in order to minimize the total completion time

and is shown as 𝑃𝑚|| ∑ 𝐶𝑖. According to the previous

studies, the problem 𝑃𝑚|| ∑ 𝐶𝑖 is the NP-hard (42).

Therefore, it can be concluded that the problem proposed

in this article is at least NP-hard.

3. NUMERICAL EXAMPLE

To further illustrate the problem described, consider a

small numerical example involving three jobs and two

identical machines. In this example, job 1 includes pieces

{1,2,3,4}, job 2 includes pieces {5,6,7,8,9,10,11}, and

job 3 includes pieces {12,13,14,15}, and each machine

has two levels of slow speed (level 1) and fast speed

(level 2). Figure 1 shows the placement of small pieces

(items) on objects using five cutting patterns. Table 2 lists

the processing time and energy required to process

patterns at different speed levels for each machine. Figure

2 shows the job-pattern matrix, which is formed based on

the placement of small pieces of each job and their

relationship with cutting patterns. In other words, this

matrix determines the patterns associated with each job.

Figure 3 shows a solution from the Pareto optimal

front for this example. In this solution, the first machine

Figure 1. Cutting patterns for the numerical example

TABLE 2. Energy consumption and processing time to process

patterns for the numerical example

Pattern

5 4 3 2 1

40 16 19 36 27 time Level 1

(slow)

Machine

68 16 20 61 18 energy

32 12 15 28 21 time Level 2

(fast) 97 25 32 95 29 energy

Figure 2. The job-pattern matrix for the numerical example

processes pattern 1 with speed level 2, then it processes,

respectively, patterns 2 and 4 with speed level 1. Patterns

3 and 5 are assigned to the second machine and processed

there at speed level 1 of the machine, respectively. In this

solution, based on the completion times of the patterns

and the job-pattern matrix, job 1 is completed at time 59,

job 2 at time 73, and job 3 at time 21. Therefore, in this

solution, the total completion time is 153 time units, and

the energy consumption is 194 units. In Figure 4, the

Pareto optimal front is provided for this example. The

analysis demonstrates that the optimal speed of the

machines depends on the objective function. If the

objective function seeks to minimize the total completion

time, then processing all patterns at speed level 2 yields

the best result. However, this decision increases the

objective function of total energy consumption. In

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1451

Figure 3. A solution from the Pareto optimal front for the

numerical example

Figure 4. The Pareto optimal front for the numerical

example

contrast, when all patterns are processed at speed level 1,

the objective function of total energy consumption

reaches its minimal value. Thus, decision-makers must

consider the trade-off between the objectives and identify

the best options for achieving the desired balance

between the goals.

4. SOLUTION APPROACHES

In solving bi- and multi-objective problems, the primary

goal is to identify a set of Pareto optimal solutions,

considering trade-offs between objectives. Due to the

NP-hard nature of the problem under investigation, a

non-dominated sorting genetic algorithm (NSGA-II) and

a hybrid non-dominated sorting genetic algorithm with

particle swarm optimization (HNSGAII-PSO) are

developed to tackle instances with medium and large

scales and to obtain approximate Pareto fronts

4. 1. NSGA-II Algorithm The NSGA-II algorithm

(43) is a popular evolutionary algorithm that is widely

used in solving multi-objective optimization problems

(44, 45). This algorithm can provide a suitable set of

Pareto solutions for solving multi-objective problems by

using the elitism mechanism and taking the crowding

distance of the solutions into account.

In the proposed NSGA-II algorithm, each

chromosome represents a solution from the problem-

solving space. In this algorithm, by decoding each

chromosome, the cutting patterns assigned to each

machine, the sequence of patterns on each machine, and

the speed level of the machine for processing each pattern

are determined, and using this information, the objective

functions of total completion time and total energy

consumption can be calculated for each chromosome.

After calculating the value of the objective functions and

determining the fitness for all chromosomes in the

population, the sorting of chromosomes is done. This

process begins with performing paired comparisons and

calculating the number of times each solution is

dominated in order to form Pareto fronts and determine

the rank of each solution. Then the members placed in

each Pareto front are sorted based on the crowding

distance metric. Next, offspring are produced by

selecting parents and using crossover and mutation

operators. The offspring obtained from the mutation and

crossover operators are added to the population, creating

a larger population called Rt. After calculating the

objective functions for the generated offspring, rank and

crowding distance are determined for each member of the

𝑅𝑡 population, and based on them, the 𝑅𝑡 population is

sorted. The sorting is done as follows: first, the members

are sorted by rank and in ascending order so that the

solutions with lower ranks are placed at the beginning of

the list. Then, among the members with the same rank,

another sorting is done based on the crowding distance

and in a descending manner, so that the solution with the

greatest crowding distance occupies a higher position

among the members of the same rank. Finally, the elitist

strategy is used to form the new generation, in which

members with a higher position are selected from the 𝑅𝑡

population in a number equal to the size of the

population. This process continues until the termination

condition of the algorithm is established. The proposed

NSGA-II algorithm stops when a certain number of

iterations is reached, and all the solutions in the first

Pareto front are presented as the output of the algorithm.

4. 1. 1. Solution Representation In order for the

solution algorithm to establish a logical relationship

between the problem space and the search space, the

solution properties should be represented by a string of

symbols. Each chromosome of the NSGA-II algorithm is

represented by a two-row matrix, where the length of

each row is n (n: number of cutting patterns). The first

row of the matrix contains the permutation of numbers 1

to n, so that the members of the set {1,2,3, … , 𝑛} represent

the cutting pattern number. The second row of the matrix

shows the speed level of the machine for processing each

of the cutting patterns, where each gene is coded

150

170

190

210

230

250

270

290

120 140 160 180

T
o

ta
l

e
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

Total completion time

1452 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

randomly with values from the set {1,2,3, … , 𝑠}. The

cutting patterns assigned to each machine and the

sequence of patterns on each machine are determined by

decoding each chromosome. Extracting the required

information is as follows: the pattern placed in the first

gene of the first row of the matrix is assigned to the first

machine and processed at the speed determined in the

first gene of the second row of the matrix. This process

continues until every machine is assigned a pattern. Then,

the next pattern is assigned to the first machine that

finishes processing the previously assigned pattern and is

processed at the determined speed. This process

continues until all patterns are assigned. For example,

consider a problem with two machines and five cutting

patterns. Each machine has two levels of slow speed

(level 1) and fast speed (level 2) to process the assigned

patterns. It is assumed that each pattern needs 2 and 1

units of time for processing at the machine speed levels

of 1 and 2, respectively. Figure 5 shows a chromosome

for the mentioned example. After decoding this solution,

it becomes clear that pattern 3 is assigned to the first

machine and is processed with a speed level of 2 in 1 time

unit. Pattern 1 is assigned to the second machine and

processed at speed level 1 in 2 time units. Since

processing pattern 3 is finished faster by machine 1,

pattern 2 is assigned to the first machine and is processed

at speed level 1 in 2 time units. Next, patterns 5 and 4 are

assigned to machines 2 and 1, and are processed at speed

levels 1 and 2, respectively. In the proposed NSGA-II

algorithm, members of the initial population are

generated randomly and according to the presented

representation for each solution.

4. 1. 2. Selection In the proposed NSGA-II

algorithm, parent selection is done using the standard

binary tournament selection strategy.

4. 1. 3. Crossover In the proposed NSGA-II

algorithm, the double-point crossover operator is used. In

view of the permutation of numbers 1 to n in the first row

of the chromosome, the permutation of numbers may not

be established in the first row of each of the generated

offspring. Therefore, using the partially mapped

crossover (PMX) approach, the required columns are

moved, and the necessary corrections are made to

establish the permutation of the numbers in the first row

of the generated offspring. Figure 6 depicts the double-

point crossover.

Figure 5. An example of solution representation in the

NSGA-II algorithm

Figure 6. The crossover operator in the NSGA-II algorithm

4. 1. 4. Mutation In the proposed NSGA-II

algorithm, Gaussian mutation and swap mutation

operators are used.

The Gaussian mutation operator is applied to the

second row of the candidate chromosome. The Gaussian

mutation operates as follows: A random number between

0 and 1 is generated for each gene from the second row

of the candidate chromosome. If this number is less than

the gene's mutation rate, the mutation operator with

𝑁(0,1) distribution is applied to that gene. Thus, the

value of that gene may change. According to the

chromosome's representation, the value of each gene in

the second row of the chromosome can be one of the

numbers in the set 𝑆 = {1,2,3, … , 𝑠}. If, after applying the

mutation operator, the value of the gene is greater than

the largest value of the set 𝑆 or less than the smallest

value of that set, then we consider the value of the

mentioned gene to be equal to the largest and smallest

members of the set 𝑆, respectively. In Figure 7, the

Gaussian mutation operator has been applied to three

genes from the parent chromosome, and in the generated

offspring, only the value of one of the selected genes has

changed.

The swap mutation is executed as follows: Two

columns are randomly chosen from the candidate

chromosome, and they are then exchanged with one

another Figure 8. Based on the results obtained from the

numerical experiments, the Gaussian mutation and swap

mutation operators are applied to the candidate

chromosomes with probabilities of 0.8 and 0.2,

respectively.

4. 2. HNSGAII-PSO Algorithm The proposed

hybrid algorithm (HNSGAII-PSO) is a combination of

the NSGA-II algorithm and the PSO algorithm. In the

HNSGAII-PSO algorithm, each chromosome determines

the speed level of the machine for processing each

pattern, and this information can be used to calculate the

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1453

Figure 7. The Gaussian mutation operator in the NSGA-II

algorithm

Figure 8. The swap mutation operator in the NSGA-II

algorithm

objective function of the total energy consumption for

that chromosome. In other words, each chromosome

represents a region of the problem-solving space, so that

all solutions in this region have the same total energy

consumption. To evaluate the quality of each

chromosome, the best solution from the region covered

by that chromosome is considered. In the investigated

problem, the best solution in the region covered by each

chromosome is the one that minimizes the total

completion time. Using the PSO algorithm, a global

search is done to find the best solution in this region.

Therefore, in each iteration of the hybrid algorithm, the

PSO algorithm is executed once for each chromosome in

the population. Each particle of the PSO algorithm

specifies the assignment of patterns to machines as well

as the sequence of patterns on each machine, and using

this information and taking into account the speed level

of the machine to process each pattern, the total

completion time can be calculated for each particle of the

PSO algorithm. Based on the output of the PSO

algorithm, the assignment of patterns to machines, the

sequence of patterns on each machine, and the objective

function of the total completion time for each

chromosome of the HNSGAII-PSO algorithm are

determined. The main structure and the process of

obtaining the approximate Pareto front in the HNSGAII-

PSO algorithm are similar to the NSGA-II algorithm.

4. 2. 1. PSO Algorithm The PSO algorithm is a

population-based algorithm (46) and is widely used in

solving scheduling problems (47, 48). Within this

algorithm, each solution is conceptualized as a particle,

each possessing its own position and velocity. The

position of a particle facilitates the identification of a

feasible solution to the problem under investigation. The

fitness value of each particle determines the quality of the

corresponding solution. During each iteration of the

algorithm, each particle endeavors to locate a new

position based on its previous experiences and the

position of the particle exhibiting the most favorable

fitness value, thereby striving to enhance its own fitness

value (49). In the HNSGAII-PSO algorithm proposed in

this paper, for each chromosome, the PSO algorithm is

executed once. To update the speed and position of each

particle in the PSO algorithm, relations (25) and (26) are

used, respectively.

𝑣𝑗
𝑡+1 = 𝜔𝑣𝑗

𝑡 + 𝑟1 × 𝑐1 × (𝑝𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑗
𝑡) + 𝑟2 ×

𝑐2 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑗
𝑡)

)25 (

𝑥𝑗
𝑡+1 = 𝑥𝑗

𝑡 + 𝑣𝑗
𝑡+1)26 (

where:

𝑣𝑗 Velocity of particle 𝑗.

𝑥𝑗 Position of particle 𝑗.

𝑝𝑏𝑒𝑠𝑡𝑗 The best position ever visited by particle 𝑗.

𝑔𝑏𝑒𝑠𝑡 The best position ever visited by swarm.

𝜔
Inertia coefficient that controls the velocity of the

particle.

𝑐1
The learning coefficient considers the current

particle's attraction to its previous best position.

𝑐2
The learning coefficient considers the current

particle's attraction to the previous best position

of the swarm

𝑟1, 𝑟2
Random numbers are generated from the uniform

interval [0,1].

4. 2. 2. Solution Representation In the proposed

HNSGAII-PSO algorithm, each chromosome contains a

vector of length n, where n is the number of cutting

patterns. The counter of each chromosome gene indicates

the cutting pattern number, and the genes of each

chromosome are randomly coded with values from the

set {1, 2, 3, ..., s} that determine the speed level of the

machine for processing the relevant cutting patterns,

which can be used to calculate the objective function of

the total energy consumption for each chromosome. In

other words, each chromosome represents a region of the

problem-solving space where all solutions in this region

have the same total energy consumption. To evaluate the

quality of each chromosome, the best solution from the

region covered by that chromosome is considered. In the

investigated problem, the best solution in the region

covered by each chromosome is the one that minimizes

the total completion time. The best solution in this region

is determined using the PSO algorithm. Therefore, in

each iteration of the hybrid algorithm, the PSO algorithm

is executed once for each chromosome in the population.

1454 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

Each particle in the PSO algorithm is represented as a

matrix with one row and n columns, where n is the

number of cutting patterns. A random real number

between 0 and 1 is placed in each column of this matrix.

For each particle, in order to determine the cutting

patterns assigned to each machine and the sequence of

patterns on each machine, first, through an appropriate

mechanism, the real numbers must be converted into

integers that represent the cutting patterns. To do this, we

used the sorting-based method (50). Therefore, we sort

the real numbers of the initial matrix in ascending order

to form a new matrix. Then, in the new matrix, any real

number is replaced by the counter of the corresponding

column in the initial matrix. Accordingly, the new matrix

contains a permutation of integers from 1 to n, and each

number represents a cutting pattern. Now, by decoding

the created matrix, the patterns assigned to each machine

and the sequence of patterns on each machine can be

determined. Using this information and taking into

account the properties of the relevant chromosome (the

speed level of the machines), the function of the total

completion time for each particle of the PSO algorithm

can be calculated. The output of the PSO algorithm

determines the assignment of patterns to machines, the

sequence of patterns on each machine, and the objective

function of the total completion time for each

chromosome of the HNSGAII-PSO algorithm.

Each particle of the PSO algorithm is decoded as

follows: the pattern placed in the first column of the

matrix is assigned to the first machine and processed at

the corresponding speed. The pattern placed in the

second column is assigned to the second machine and

processed at the corresponding speed, and this process

continues until each machine is assigned a pattern. Then,

the next pattern is assigned to the first machine that

finishes processing the previously assigned pattern, and

this process continues until all patterns are assigned.

For example, consider a problem with two machines

and five cutting patterns. Each machine has two levels of

slow speed (level 1) and fast speed (level 2) to process

the patterns assigned to it, so that the faster the machine

processes, the more energy it consumes. It is assumed

that each pattern needs 2 units and 1 unit of time to be

processed at machine speed levels 1 and 2, respectively.

Figure 9 is a chromosome for the mentioned example,

which shows a region of the solution space. For all

solutions in this region, cutting patterns numbers 1, 2, 3,

4, and 5 are processed at machine speed levels 2, 1, 1, 2,

and 1, respectively. Figure 10 is a particle of the PSO

algorithm and its decoding, which shows a solution of the

region covered by Figure 9's chromosome. After

decoding this particle, it becomes clear that pattern 3 is

assigned to the first machine and is processed with a

speed level 1 in 2 time units; pattern 1 is assigned to the

second machine and processed at a speed level 2 in 1 time

unit. Since the processing of pattern 1 is completed faster

by machine 2, pattern 2 is assigned to the second machine

and is processed at speed level 1 in 2 time units. Next,

patterns 5 and 4 are assigned to machines 1 and 2, and

they are processed at speed levels 1 and 2, respectively.

In the proposed HNSGAII-PSO algorithm, each

chromosome from the initial population is randomly

generated according to the representation provided for

each solution. The PSO algorithm is executed once for

every member of the initial population. The initial

population members of the PSO algorithm are also

randomly generated.

4. 2. 3. Selection Parent selection in the proposed

HNSGAII-PSO algorithm is done using the standard

binary tournament selection strategy.

4. 2. 4. Crossover The double-point crossover

operator is employed in the proposed HNSGAII-PSO

algorithm. Figure 11 shows the double-point crossover.

Figure 9. An example of solution representation in the

HNSGAII-PSO algorithm

Figure 10. A solution of the region covered by the

chromosome in Figure 9 and its decoding

Figure 11. The crossover operator in the HNSGAII-PSO

algorithm

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1455

4. 2. 5. Mutation In the proposed hybrid

algorithm, the Gaussian mutation operator is used. In this

algorithm, according to the representation defined for the

chromosome, all chromosomes in the population are

candidates for the generation of offspring through the

mutation operator. Next, for each gene on the candidate

chromosome, a random number between 0 and 1 is

generated. If this number is less than the mutation rate of

the gene, the mutation operator with the standard normal

distribution 𝑁(0,1) is applied to that gene. Accordingly,

the value of that gene may change in the generated

offspring. Figure 12 shows how to produce offspring

from the parent using the Gaussian mutation operator. In

this figure, the mutation operator has been applied to

three genes from the parent chromosome, and in the

offspring generated, only the value of one of the selected

genes has changed.

5. COMPUTATIONAL EXPERIMENT

In this section, in order to evaluate the performance of the

mathematical models and solution methods presented,

numerical experiments are performed using randomly

generated test instances. The process of generating the

necessary data for the instances is explained in detail.

Given the bi-objective nature of the problem,

performance measures used to evaluate the suggested

solution methods are introduced. Moreover, the

parameters of the proposed solution algorithms are tuned

using the Taguchi method. Finally, the performance of

the proposed mathematical models and solution methods

is evaluated by solving small and large-scale instances.

In this paper, to optimally solve small-scale instance

problems using the AUGMECON method, GAMS 28.2.0

software is used, and the HNSGAII-PSO and NSGA-II

algorithms are coded in the Visual C# environment. All

experiments were performed on a personal computer

with 4 GB of RAM and an Intel Core i5-2410M 2.30 GHz

CPU.

5. 1. Data Generation The size of instance

problems is defined as [𝐼, 𝐽, 𝑀, 𝛿], where 𝐼 represents the

number of jobs, 𝐽 denotes the number of cutting patterns,

𝑀 shows the number of machines, and 𝛿 represents the

density of the job-pattern matrix. In this paper, random

test instances are generated as follows (18): To determine

the required workload of each cutting pattern)𝑤𝑗(, a

Figure 12. The mutation operator in the HNSGAII-PSO

algorithm

number is generated randomly from a uniform

distribution in the interval [5, 50]. The energy

consumption rate of the machine for processing each

cutting pattern per unit of time (𝜋𝑗) is randomly selected

from a uniform distribution in the interval [4, 18].

Therefore, the energy consumption rate of the machine at

the speed level 𝑠 to process pattern 𝑗 per unit of time is

determined from Equation 27. In this paper, 𝛼 = 3 and

for machine processing speed levels, 𝑆 = 4 and

𝑣𝑠 𝜖 {0.75 , 1 , 1.25 , 1.5} are considered. The time and

energy required to process each cutting pattern at varying

levels of machine speed are calculated using relations 28

and 29, respectively.

𝜋𝑗𝑠 = 𝜋𝑗𝑣𝑠
𝛼 , 𝛼 > 1 (27)

𝑝𝑗𝑠 =
𝑤𝑗

𝑣𝑠
 (28)

𝑒𝑗𝑠 = 𝜋𝑗𝑠𝑝𝑗𝑠 (29)

To randomly generate the job-pattern matrix, first, the

density δ of the matrix must be determined. Equation 30

calculates the value of δ for the job-pattern matrix. In this

equation, |𝑁𝑖| is the number of cutting patterns that

include small pieces (items) of job 𝑖. 𝑖 and 𝑗 also represent

the number of jobs and the number of cutting patterns,

respectively. In determining the minimum value of δ for

test instances, a noteworthy point to consider is that each

cutting pattern contributes to completing at least one job,

and the pieces related to each job are placed in at least

one cutting pattern. Therefore, the minimum possible

value for δ is equal to max (
1

𝑖
,

1

𝑗
), where 𝑖 is the number

of jobs and 𝑗 is the number of cutting patterns, and this

relation should be considered to determine the value of δ

in small-scale instances. In medium- and large-scale

instances, we consider three values of 20%, 30%, and

40% for δ (33). After determining the value of δ, we

generate the job-pattern matrix at random so that each

cutting pattern contributes to the completion of at least

one job and each job requires at least one cutting pattern

to complete itself.

𝛿 =
∑ |𝑁𝑖|𝑖

𝑖×𝑗
 (30)

5. 2. Performance Measures The Pareto

solution set is the output of solving multi-objective

problems, whose quality and diversity are evaluated. In

this paper, to evaluate the results obtained from the

solution algorithms, four performance measures are used

as follows:

Number of Pareto solutions (𝑁𝑃𝑆): This metric

specifies the number of non-dominated solutions

obtained from the solution algorithm. Based on this

metric, the greater the number of these solutions, the

more efficient the algorithm (21, 51).

1456 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

Diversity of distribution (𝐷1): This performance

measure shows that the existing solutions in the Pareto

front are uniformly placed next to each other. This metric

is calculated using Equation 31. In this equation, |𝑁|
expresses the number of non-dominated solutions, 𝑑𝑖 is

the Euclidean distance between consecutive solutions,

and 𝑑̅ is the average of 𝑑𝑖. For a solution algorithm, the

lower the value of the 𝐷1 metric, the more efficient that

algorithm is (21, 51).

𝐷1 = ∑
|𝑑𝑖−𝑑̅|

|𝑁|−1

|𝑁|−1
𝑖=1 (31)

Spacing (𝐷2): This measure is an extension of the

previous metric and is obtained from Equation 32. In this

equation, |𝑁| shows the number of non-dominated

solutions. The values of 𝑑𝑖 and 𝑑̅ are obtained via

Equations 33 and 34, respectively. For a solution

algorithm, the lower the value of the 𝐷2 metric, the better

the performance of that algorithm (22, 52).

𝐷2 = (
1

|𝑁|
∑ (𝑑𝑖 − 𝑑̅)

2|𝑁|
𝑖=1)

1/2
 (32)

𝑑𝑖 = min
𝑘𝜖𝑁,𝑘≠𝑖

∑ |𝑓𝑚
𝑖 − 𝑓𝑚

𝑘|𝑀
𝑚=1 (33)

𝑑̅ = ∑
𝑑𝑖

|𝑁|−1

|𝑁|−1
𝑖=1 (34)

Mean ideal distance (𝑀𝐼𝐷): This performance

measure calculates the average Euclidean distance of the

ideal solution from the Pareto front obtained by the

solution algorithm. In this paper, the best possible value

for each of the objective functions obtained by different

algorithms is considered the ideal solution. Equation 35

is used to calculate 𝑀𝐼𝐷. In this equation, |𝑁| is the

number of non-dominated solutions, and 𝐶𝑖 represents the

Euclidean distance of each member of the Pareto front

from the ideal point, which is calculated through

Equation 36. An algorithm with a lower 𝑀𝐼𝐷 metric has

better performance (51).

𝑀𝐼𝐷 =
1

|𝑁|
∑ 𝐶𝑖

|𝑁|
𝑖=1 (35)

𝐶𝑖 = √(𝑓1𝑖 − 𝑓1
∗)2 + ⋯ + (𝑓𝑚𝑖 − 𝑓𝑚

∗)2 (36)

5. 3. Parameter Tuning Metaheuristic algorithms

possess inherent parameters, and assigning appropriate

values to these parameters can substantially enhance the

quality of the obtained results. This paper employs the

Taguchi method to optimize the parameters of the

developed algorithms. The Taguchi method utilizes

orthogonal arrays, which are standardized arrays that

enable the execution of a limited number of experiments

while retaining comprehensive information on all factors

influencing the performance of the algorithms (53). The

HNSGAII-PSO factors are: number of population (𝑁),

number of generations (𝐺), crossover rate (𝑃𝑐), mutation

rate of the gene (𝑃𝑚𝑔), number of population for the PSO

algorithm (𝑁𝑃𝑆𝑂), number of generations for the PSO

algorithm (𝐺𝑃𝑆𝑂), inertia coefficient (𝜔), and learning

coefficients (𝑐1 , 𝑐2) and The NSGA-II factors are:

number of population (𝑁), number of generations (𝐺),

crossover rate (𝑃𝑐), mutation rate (𝑃𝑚) and mutation rate

of the gene (𝑃𝑚𝑔). Tables 3 and 4 show the considered

levels for the factors of the HNSGAII-PSO and NSGA-

II algorithms for small-scale problems and medium- and

large-scale problems, respectively.

TABLE 3. Algorithm parameters and their levels for small-

scale problems

Algorithm Parameters Symbol Level

HNSGAII-

PSO

𝑁 A 100 – 150 – 200

𝐺 B 50 – 80 – 100

𝑃𝑐 C 0.6 – 0.7 – 0.8

𝑃𝑚𝑔 D 0.2 – 0.3 – 0.4

𝑁𝑃𝑆𝑂 E 2 – 3 – 4

𝐺𝑃𝑆𝑂 F 1 – 2 – 3

𝜔 G 0.5 – 0.75 – 1

𝑐1 H 1 – 1.5 – 2

𝑐2 J 1 – 1.5 – 2

NSGA-II

𝑁 A 100 – 150 – 200

𝐺 B 50 – 80 – 100

𝑃𝑐 C 0.5 – 0.6 – 0.7

𝑃𝑚 D 0.5 – 0.6 – 0.7

𝑃𝑚𝑔 E 0.5 – 0.6 – 0.7

TABLE 4. Algorithm parameters and their levels for medium-

and large-scale problems

Algorithm Parameters Symbol Level

HNSGAII-

PSO

𝑁 A 300 – 350 – 400

𝐺 B 100 – 150 – 200

𝑃𝑐 C 0.6 – 0.7 – 0.8

𝑃𝑚𝑔 D 0.2 – 0.3 – 0.4

𝑁𝑃𝑆𝑂 E 2 – 3 – 4

𝐺𝑃𝑆𝑂 F 1 – 2 – 3

𝜔 G 0.5 – 0.75 – 1

𝑐1 H 1 – 1.5 – 2

𝑐2 J 1 – 1.5 – 2

NSGA-II

𝑁 A 400 – 600 – 800

𝐺 B 300 – 400 – 500

𝑃𝑐 C 0.5 – 0.6 – 0.7

𝑃𝑚 D 0.5 – 0.6 – 0.7

𝑃𝑚𝑔 E 0.5 – 0.6 – 0.7

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1457

Considering the number of parameters and

determined levels, the right orthogonal array for both

algorithms is 𝐿27, which includes 27 experiments. Then,

for each algorithm, all experiments are conducted on an

instance problem considering various combinations of

parameter levels, and the obtained results are recorded for

performance measures. It's important to note that each

experiment was repeated five times, and the average of

the results was considered. Since the Taguchi method

only accepts one value as a response for each experiment,

the results obtained for the performance measures are

unscaled using the relative percentage deviation (RPD)

method. then for each experiment, the weighted average

of the relevant unscaled performance measures is

calculated as a combined function (CF) using equation 37

and considered as the result of that experiment (51).

𝐶𝐹 =
𝑁𝑃𝑆 + 𝐷1 + 𝐷2 + 2𝑀𝐼𝐷

5
 (37)

Figures 13, 14, 15, and 16 show the results obtained

from the Taguchi method for small-scale problems and

medium- and large-scale problems, respectively. Based

on these results, the parameter values of each of the

NSGA-II and HNSGAII-PSO algorithms are presented in

Tables 5 and 6, respectively.

5. 4. Evaluation of Solution Algorithms for Small-
Scale Instances In this sub-section, the

performance of the AUGMECON method, the NSGA-II

algorithm, and the HNSGAII-PSO algorithm are

compared for solving small-scale instances. The results

of solving 30 instances using the three methods

mentioned are shown in Table 7. In this table, column 1

shows the instance number, and column 2 shows the

instance size. The results of solving the instances with the

AUGMECON method are presented for the position-

based model and the sequence-based model in columns 3

and 4, respectively. The AUGMECON method for both

presented models has the ability to obtain the optimal

Pareto front for 26 instances; however, for 4 instances,

this method is not able to solve the sequence-based model

Figure 13. Main effects plot for S/N ratios for the NSGA-II

algorithms: small-scale problems

Figure 14. Main effects plot for S/N ratios for the

HNSGAII-PSO algorithms: small-scale problems

Figure 15. Main effects plot for S/N ratios for the NSGA-II

algorithms: medium- and large-scale problems

Figure 16. Main effects plot for S/N ratios for the

HNSGAII-PSO algorithms: medium- and large-scale

problems

TABLE 5. Parameter tuning results for the NSGA-II algorithm

Parameters

𝑷𝒎𝒈 𝑷𝒎 𝑷𝒄 𝑮 𝑵

0.5 0.5 0.6 100 200 Small-scale

0.6 0.5 0.7 500 800 Medium and large-scale

1458 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

TABLE 6. Parameter tuning results for the HNSGAII-PSO algorithm

Parameters

𝒄𝟐 𝒄𝟏 𝝎 𝑮𝑷𝑺𝑶 𝑵𝑷𝑺𝑶 𝑷𝒎𝒈 𝑷𝒄 𝑮 𝑵

2 2 0.5 1 2 0.3 0.7 100 150 Small-scale

2 2 0.5 1 2 0.3 0.7 200 400 Medium and large-scale

TABLE 7. Results of solving small-scale instances using the AUGMECON method, HNSGAII-PSO algorithm, and NSGA-II

algorithm

No. [𝑰, 𝑱, 𝑴, 𝜹]

AUGMECON HNSGAII-PSO NSGA-II

𝑵𝑷𝑺 𝑴𝑰𝑫

𝒕(𝒔)

𝑵𝑷𝑺 𝑫𝟏 𝑫𝟐 𝑴𝑰𝑫 𝒕(𝒔) 𝑵𝑷𝑺 𝑫𝟏 𝑫𝟐 𝑴𝑰𝑫 𝒕(𝒔) position-

based

model

sequence-

based

model

1 2-4-2-50% 21 572.48 4.08 6.68 21 43.88 17.59 572.48 0.73 21 43.88 17.59 572.48 0.73

2 2-4-2-75% 24 947.25 5.54 6.78 24 65.61 60.42 947.25 0.87 24 65.61 60.42 947.25 0.87

3 2-5-2-50% 36 1581.3 62.36 183.26 36 69.01 48.09 1581.3 0.93 36 69.01 48.09 1581.3 0.93

4 2-5-2-60% 45 1635 101.35 290.27 45 53.94 52.92 1635 1.23 45 53.94 52.92 1635 1.23

5 3-4-2-40% 21 822.58 20.22 23.77 21 47.88 61.18 822.58 1.59 21 47.88 61.18 822.58 1.59

6 3-4-2-60% 25 786.76 18.65 21.55 25 38.19 44.54 786.76 1.6 25 38.19 44.54 786.76 1.6

7 3-4-3-50% 30 970.58 24.29 18.38 30 43.41 51.27 970.58 1.68 30 43.41 51.27 970.58 1.68

8 3-4-3-75% 23 959.61 13.58 11.54 23 47.31 58.02 959.61 1.69 23 47.31 58.02 959.61 1.69

9 3-5-2-40% 38 722.14 252.99 437.14 38 25.16 22.23 722.14 1.72 38 25.16 22.23 722.14 1.72

10 3-5-2-60% 38 614.85 93.64 179.86 38 35.73 41.67 614.85 1.76 38 35.73 41.67 614.85 1.76

11 3-5-3-40% 35 688.7 190.09 286.29 35 35.29 23.92 688.7 1.76 35 35.29 23.92 688.7 1.76

12 3-5-3-60% 40 732.17 146.49 211.24 40 26.01 19.71 732.17 1.78 40 26.01 19.71 732.17 1.78

13 4-4-2-25% 30 540.82 26.53 24.68 30 41.38 59.46 540.82 1.61 30 41.38 59.46 540.82 1.61

14 4-4-2-50% 39 756.27 37.95 39.74 39 22.89 24.71 756.27 1.65 39 22.89 24.71 756.27 1.65

15 4-4-2-75% 31 665.67 33.60 32.19 31 31.70 35.71 665.71 1.67 31 31.70 35.71 665.71 1.67

16 4-4-3-30% 34 915.67 25.56 28.75 34 26.58 30.79 915.67 1.73 34 26.58 30.79 915.67 1.73

17 4-4-3-50% 29 947.81 55.81 61.64 29 38.59 22.35 947.81 1.64 29 38.59 22.35 947.81 1.64

18 4-5-2-30% 48 868.82 118.48 124.83 48 37.85 31.46 868.82 1.78 48 37.85 31.46 868.82 1.78

19 4-5-2-40% 67 1011.1 468.33 789.60 64 18.97 16.04 1046 1.76 64 18.97 16.04 1046 1.76

20 4-5-3-30% 53 719.08 1743.38 1812.21 53 17.08 10.82 719.08 1.77 53 17.08 10.82 719.08 1.77

21 4-5-3-40% 66 1024.8 1927.79 1967.18 66 20.17 19.01 1024.8 1.78 66 20.17 19.01 1024.8 1.78

22 4-6-2-25% 55 614.16 5293.29 11035.73 55 12.04 14.58 614.16 1.79 55 12.04 14.58 614.16 1.79

23 4-6-2-50% 58 734.96 2083.45 29303.34 63 13.54 13.98 766.23 1.79 63 13.54 13.98 766.23 1.79

24 4-6-2-75% 65 698.25 2359.10 33179.49 65 12.17 14.71 699.64 1.81 65 12.17 14.71 699.64 1.81

25 4-6-3-30% 31 891.77 8876.68 11499.63 30 46.11 56.1 893.38 1.77 30 46.11 56.1 893.38 1.77

26 4-6-3-40% 53 763.95 13521.75 28961.49 57 35.82 29.54 792.65 1.78 57 35.82 29.54 792.65 1.78

27 4-6-3-50% 44 911.54 19492.31 - 42 43.13 45.92 923.75 1.8 42 43.13 45.92 923.75 1.8

28 5-7-2-20% 67 1174.23 12548.52 - 73 39.46 42.96 1227.62 1.78 73 39.46 42.96 1227.62 1.78

29 5-7-2-30% 61 938.47 21649.39 - 59 41.44 39.12 932.54 1.79 59 41.44 39.12 932.54 1.79

30 5-7-2-40% 71 1480.2 34394.65 - 64 33.01 27.84 1518.6 1.82 64 33.01 27.84 1518.6 1.82

The running time of the algorithm that obtained the optimal Pareto front is shown with a bold value

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1459

and find the optimal Pareto front in 36000 seconds. Based

on the presented results, the position-based model has

better performance in terms of optimal solution time

using the AUGMECON method compared to the

sequence-based model. To validate the approximate

Pareto solutions obtained by the NSGA-II and

HNSGAII-PSO algorithms, a comparison with the

AUGMECON method was conducted. The proposed

NSGA-II and HNSGAII-PSO algorithms were employed

to solve small-scale instances. The results of solving

small-scale instances using the HNSGAII-PSO and

NSGA-II algorithms are presented in columns 5 and 6 of

Table 7, respectively. An examination of Table 7

revealed that the NSGA-II and HNSGAII-PSO

algorithms successfully identified the optimal Pareto

front in 19 instances, demonstrating superior

computational efficiency compared to the AUGMECON

method. In the remaining instances, the solutions

obtained by both algorithms exhibited close proximity to

the optimal Pareto solutions identified by the

AUGMECON method. Consequently, based on these

findings, it is evident that the NSGA-II and HNSGAII-

PSO algorithms constitute are valid and effective

approaches for solving instances in a reasonable time.

To comprehensively evaluate Pareto dominance and

compare the solutions obtained by the AUGMECON

method and the proposed algorithms, the 𝑀𝐼𝐷 metric was

calculated for all three methods, and the results are

presented in Figure 17. The analysis of small-scale

instances revealed that the solutions generated by the

proposed algorithms are comparable to the optimal

Pareto fronts when compared to the AUGMECON

method. Notably, the NSGA-II and HNSGAII-PSO

algorithms provide acceptable results in significantly less

time than the AUGMECON method. Figure 18

demonstrates the CPU time for solving small-scale

instances by all three methods. As observed, with

increasing instance sizes, the CPU time for the

AUGMECON method escalates dramatically. Therefore,

based on the comprehensive comparison of Pareto

solutions, it can be concluded that NSGA-II and

HNSGAII-PSO are viable and efficient algorithms for

solving small-scale instances within a reasonable

computational time frame.

5. 5. Evaluation of Solution Algorithms for
Medium- and Large -Scale Instances Based on

the results presented in Table 7, by increasing the scale

of the problem, the computation time increases. For

example, in instance #30 with size [5,7,2,40%], the

AUGMECON method needs 34395 seconds to obtain the

optimal Pareto front. Therefore, HNSGAII-PSO and

NSGA-II algorithms are used to solve medium- and

large-scale instances, and their obtained results are

compared. To ensure a fair comparison, we have set the

Figure 17. 𝑀𝐼𝐷 metric obtained through the NSGA-II,

HNSGAII-PSO and AUGMECON methods for small-scale

instances

Figure 18. CPU time for solving small-scale instances by

the NSGA-II, HNSGAII-PSO and AUGMECON methods

running times of both algorithms to be equal. This means

that the time considered when comparing two algorithms

is equal to the execution time of the algorithm that

finishes faster in each instance. Each of the two

algorithms is executed five times for each instance, and

the average values derived for the performance measures

are recorded. The outcomes of applying the NSGA-II and

HNSGAII-PSO algorithms to solve 30 medium- and

large-scale instances are presented in Table 8. Figure 19

shows the Pareto fronts generated by both algorithms for

problem instance #55. Based on the obtained results, the

HNSGAII-PSO algorithm performs better in the NPS, 𝐷1,

and 𝐷2 criteria, which means that this algorithm can

generate a greater number of non-dominated solutions

with more diversity. The evaluation of the MID criterion

demonstrates that the HNSGAII-PSO algorithm

performs better, indicating that it can produce non-

dominated solutions with better convergence.

In order to further analyze the performance of the

HNSGAII-PSO and NSGA-II algorithms in solving

instance problems, paired samples t-test is performed for

every performance measure. Statistical results for

different measures are stated in Table 9. The mean and

0

500

1000

1500

2000

0 5 10 15 20 25 30

𝑀
𝐼𝐷

m
e
tr

ic

Instance number

NSGA-II HNSGAII-PSO AUGMECON

0

10000

20000

30000

40000

0 10 20 30 40

C
P

U
 t

im
e

Instance number

NSGA-II HNSGAII-PSO AUGMECON

1460 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

TABLE 8. Results of solving medium- and large-scale instances using the HNSGAII-PSO algorithm and the NSGA-II algorithm

No. [𝑰, 𝑱, 𝑴, 𝜹]
Time

(s)

𝑵𝑷𝑺 𝑫𝟐 𝑫𝟏 𝑴𝑰𝑫

HNSGAII-

PSO
NSGA-II

HNSGAII-

PSO
NSGA-II

HNSGAII-

PSO
NSGA-II

HNSGAII-

PSO
NSGA-II

31 15-30-5-20% 25 59.60 47.03 59.60 47.03 59.60 47.03 4878.05 4801.21

32 30-30-5-30% 33 48.81 32.22 48.81 32.22 48.81 32.22 5065.85 5046.76

33 50-30-5-40% 42 22.38 42.54 22.38 42.54 22.38 42.54 7909.23 7894.54

34 30-50-7-20% 47 84.16 63.73 84.16 63.73 84.16 63.73 8521.25 8492.57

35 50-50-7-30% 56 28.01 52.37 28.01 52.37 28.01 52.37 9757.75 9737.86

36 80-50-7-40% 78 31.19 58.38 31.19 58.38 31.19 58.38 11026.79 11284.65

37 50-80-10-20% 81 38.53 77.22 38.53 77.22 38.53 77.22 12357.81 13701.54

38 80-80-10-30% 111 33.78 63.41 33.78 63.41 33.78 63.41 12549.56 12783.00

39 100-80-10-40% 128 40.47 73.42 40.47 73.42 40.47 73.42 13850.82 15555.38

40 80-100-12-20% 131 39.75 95.05 39.75 95.05 39.75 95.05 15473.07 16454.84

41 100-100-12-30% 152 41.16 71.94 41.16 71.94 41.16 71.94 13842.15 14764.67

42 150-100-12-40% 204 39.80 90.48 39.80 90.48 39.80 90.48 15940.74 16934.13

43 100-150-15-20% 223 54.25 103.11 54.25 103.11 54.25 103.11 17261.59 19042.25

44 150-150-15-30% 278 53.49 118.75 53.49 118.75 53.49 118.75 19587.96 21591.61

45 200-150-15-40% 336 58.67 111.19 58.67 111.19 58.67 111.19 20524.40 21737.06

46 150-200-18-20% 347 63.72 123.72 63.72 123.72 63.72 123.72 19943.05 23042.00

47 200-200-18-30% 419 66.89 153.43 66.89 153.43 66.89 153.43 23681.41 28178.78

48 250-200-18-40% 494 65.76 158.35 65.76 158.35 65.76 158.35 24610.11 28376.25

49 200-250-20-20% 504 86.13 145.93 86.13 145.93 86.13 145.93 24744.62 28052.78

50 250-250-20-30% 599 79.92 166.71 79.92 166.71 79.92 166.71 24539.97 29819.36

51 300-250-20-40% 698 78.02 159.17 78.02 159.17 78.02 159.17 25810.26 30246.06

52 250-300-25-20% 718 70.41 148.80 70.41 148.80 70.41 148.80 21604.30 28446.83

53 300-300-25-30% 825 95.05 177.20 95.05 177.20 95.05 177.20 26398.03 32207.54

54 400-300-25-40% 1050 107.09 212.11 107.09 212.11 107.09 212.11 29752.38 35398.91

55 300-400-30-20% 1100 98.86 195.93 98.86 195.93 98.86 195.93 27888.72 31671.08

56 400-400-30-30% 1290 124.71 220.91 124.71 220.91 124.71 220.91 32467.22 37604.07

57 500-400-30-40% 1690 119.76 232.55 119.76 232.55 119.76 232.55 33281.22 41192.72

58 400-500-35-20% 1760 136.67 198.92 136.67 198.92 136.67 198.92 33257.67 40642.41

59 450-500-35-30% 1984 138.73 245.32 138.73 245.32 138.73 245.32 35466.96 41484.99

60 500-500-35-40% 2145 139.89 321.04 139.89 321.04 139.89 321.04 38320.90 47772.89

Average value 350.53 302.67 90.59 156.25 71.52 132.03 20343.80 23465.29

The algorithm with better performance in each measure is shown with a bold value

SD columns show the mean value and standard deviation

of the performance measures, respectively. Based on the

results presented in Table 9, the p-value for all measures

is smaller than 0.05. Considering the common

significance level of 0.05, the results of the paired

samples t-test showed that for all metrics, there is a

significant difference between the performance of the

HNSGAII-PSO algorithm and that of the NSGA-II

algorithm.

To meticulously evaluate the performance of the

algorithms, comprehensive statistical analyses were

conducted for each performance measure. The results

obtained for the performance metrics in Table 8 were

transformed using the relative percentage deviation

TABLE 9. Paired sample t-test results of the HNSGAII-PSO and NSGA-II algorithms

Significance p-value
NSGA-II HNSGAII-PSO

Metric
SD Mean SD Mean

Yes 0.0021 32.46 302.67 41.24 350.53 𝑵𝑷𝑺

Yes 0.0003 89.16 156.25 46.94 90.59 𝑫𝟏

Yes 0.0002 71.47 132.03 35.02 71.52 𝑫𝟐

Yes 0.0008 11957.24 23465.29 9360.77 20343.8 𝑴𝑰𝑫

(RPD) method to facilitate an unbiased comparison.

Interval plots with a 95% confidence level were

constructed for each performance measure to assess the

algorithm's accuracy and robustness (53). A smaller

interval indicates superior accuracy, while lower interval

values compared to other algorithms indicate greater

robustness. These findings are illustrated in Figures 20 to

23.

An analysis of the NPS metric (Figure 20) revealed

that the HNSGAII-PSO algorithm exhibited superior

robustness compared to the NSGA-II algorithm, despite

Figure 19. Pareto fronts obtained by various algorithms for

problem instance #55

Figure 20. Interval plot based on a 95% confidence level for

the comparison of the NSGA-II and HNSGAII-PSO

algorithms using the NPS metric

Figure 21. Interval plot based on a 95% confidence level for

the comparison of the NSGA-II and HNSGAII-PSO

algorithms using the 𝐷1 metric

Figure 22. Interval plot based on a 95% confidence level for

the comparison of the NSGA-II and HNSGAII-PSO

algorithms using the 𝐷2 metric

their equivalent accuracy. Regarding the 𝐷1 indicator

(Figure 21), the HNSGAII-PSO algorithm demonstrated

exceptional performance, achieving both the highest

level of robustness and accuracy. For both the 𝐷2 and

MID metrics, Figures 22 and 23, respectively, illustrate

the HNSGAII-PSO algorithm's superior accuracy and

robustness compared to the NSGA-II algorithm.

5. 6. Sensitivity Analysis In this subsection, the

effect of varying the parameters 𝑝𝑗𝑠, 𝑒𝑗𝑠, and 𝑚 on the

95000

115000

135000

155000

175000

195000

90000 100000 110000 120000T
o

ta
l

e
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

Total completion time

HNSGAII-PSO NSGA-II

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1461

1462 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

Figure 23. Interval plot based on a 95% confidence level for

the comparison of the NSGA-II and HNSGAII-PSO

algorithms using the MID metric

objective functions is analyzed. Problem instance #7 is

considered for the sensitivity analysis. Figures 24, 25,

and 26 depict the Pareto fronts obtained by solving novel

problems based on varying the parameters 𝑝𝑗𝑠, 𝑒𝑗𝑠, and

𝑚, respectively. Figure 24 shows that by increasing the

𝑝𝑗𝑠 parameter, the processing time of each pattern

increased, and when the job-pattern matrix is considered,

the objective function of the total completion time also

increased. This could potentially lead to customer

dissatisfaction. However, the utilization of advanced

machines and trained personnel can lower the 𝑝𝑗𝑠

parameter. To avoid an increase in the 𝑝𝑗𝑠 parameter,

decision-makers must allocate sufficient funds for the

purchase and installation of new machines and provide

regular training programs for employees to improve their

skills. Figure 25 illustrates how varying the 𝑒𝑗𝑠 parameter

influences the total energy consumption objective

function. The Pareto front shifts towards higher values of

this objective function as the 𝑒𝑗𝑠 parameter increases.

Utilizing high-tech machinery and performing timely

maintenance and repairs can be effective in preventing

the increase in the 𝑒𝑗𝑠 parameter and its associated

expenses. Therefore, decision-makers should conduct the

necessary comparisons between various alternatives to

implement the optimal strategy for maximizing overall

profit. Figure 26 demonstrates that decreasing the 𝑚

parameter increases both the total completion time and

total energy consumption. In fact, as the number of

machines is reduced, more patterns are assigned to the

remaining machines, resulting in an increase in the time

required to complete all jobs. To tackle this issue and

reduce customer dissatisfaction, it is necessary to select

the machine's fast levels for pattern processing in order

to reduce their completion time, resulting in an increase

in energy consumption. This analysis enables decision-

makers to strike a balance between the required budget

for purchasing and deploying new machines and the costs

resulting from an increase in total completion time and

total energy consumption.

Figure 24. Sensitivity of the Pareto frontier to processing

time

Figure 25. Sensitivity of the Pareto frontier to energy

consumption

Figure 26. Sensitivity of the Pareto frontier to the number of

machines

6. CONCLUSION AND FUTURE RESEARCH

In the realm of manufacturing, the cutting stock problem,

frequently encountered in industries such as furniture and

apparel, exemplifies the application of common

operation scheduling. Conversely, effective management

and energy consumption reduction have emerged as

500

1000

1500

2000

2500

3000

3500

60 110 160 210

T
o

ta
l

e
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

Total completion time

p 1.1p 0.9p 0.8p

500

1000

1500

2000

2500

3000

3500

60 110 160 210T
o

ta
l

e
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

Total completion time

p 1.1p 0.9p 0.8p

500

1000

1500

2000

2500

3000

3500

60 110 160 210

T
o

ta
l

e
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

Total completion time

p 1.1p 0.9p 0.8p

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1463

pressing concerns within the industry. Addressing these

issues is paramount, considering the manufacturing

sector's substantial energy consumption. In this paper, the

common operation scheduling in an environment of

identical parallel machines was studied, considering the

energy consumption. In the investigated problem, each

job includes several pieces, and all the pieces of different

jobs are placed on cutting patterns. Each cutting pattern

can contribute to the completion of one or more jobs.

Each job is completed when all pieces of that job have

been produced by processing related patterns. Each

machine in this problem possesses varying speed levels.

Consequently, when the machine operates at a higher

speed, the processing time is reduced while the

consumption of electrical energy increases.

In the investigated problem, to simultaneously

minimize the total completion time and the total electrical

energy consumption, two position-based and sequence-

based mixed integer linear programming models were

presented, and to solve small-scale instances, the

AUGMECON method was used to obtain the Pareto

optimal front. To solve medium- and large-scale

instances, the HNSGAII-PSO and NSGA-II algorithms

were developed to achieve good approximate Pareto

fronts. In the NSGA-II algorithm, each chromosome

represents a solution from the problem-solving space,

and the quality of each chromosome can be evaluated by

decoding it. In the HNSGAII-PSO algorithm, each

chromosome represents a region of the problem-solving

space where all solutions in this region have the same

total energy consumption. To assess the quality of each

chromosome, the top solution within the chromosome's

covered region is taken into consideration. This entails

running the PSO algorithm once for every chromosome

to determine the best solution in each region. The

performance of the presented algorithms was evaluated

by solving test instances of different sizes. The results of

numerical experiments show that both presented

algorithms perform well in solving small-scale instances

and can obtain the optimal Pareto front in much less time

than the AUGMECON method. Based on the results of

solving medium- and large-scale instances, the

HNSGAII-PSO algorithm has better performance

compared to the NSGA-II algorithm and can obtain more

diverse non-dominant solutions with better convergence.

At last, the problem's sensitivity to the parameters of

processing time, energy consumption, and the number of

machines was analyzed, and the impact of varying each

of these parameters on the two objective functions was

demonstrated. The results indicate that decision-makers

should compare the budgets, costs, and revenues

associated with different changes to make well-informed

decisions that maximize overall profit.

Considering sequence-dependent setup times for

processing cutting patterns, studying the problem in an

environment of unrelated parallel machines, and using

the TOU tariffs or the tiered price to calculate the cost of

power consumption are all attractive fields for future

research.

7. REFERENCES

1. Babaee Tirkolaee E, Goli A, Mardani A. A novel two-echelon

hierarchical location-allocation-routing optimization for green
energy-efficient logistics systems. Annals of Operations

Research. 2021. 10.1007/s10479-021-04363-y

2. Zhang X, Zhou H, Fu C, Mi M, Zhan C, Pham DT, et al.
Application and planning of an energy-oriented stochastic

disassembly line balancing problem. Environmental Science and

Pollution Research. 2023:1-15. 10.1007/s11356-023-27288-4

3. Zandvakili A, Mansouri N, Javidi M. Energy-aware task

scheduling in cloud compting based on discrete pathfinder

algorithm. International Journal of Engineering, Transactions C:

Aspects. 2021;34(9):2124-36. 10.5829/IJE.2021.34.09C.10

4. Tian G, Zhang C, Fathollahi-Fard AM, Li Z, Zhang C, Jiang Z.

An enhanced social engineering optimizer for solving an energy-
efficient disassembly line balancing problem based on bucket

brigades and cloud theory. IEEE Transactions on Industrial

Informatics. 2022. 10.1109/TII.2022.3193866

5. Fang K, Uhan N, Zhao F, Sutherland JW. A new approach to

scheduling in manufacturing for power consumption and carbon

footprint reduction. Journal of Manufacturing Systems.

2011;30(4):234-40. 10.1016/j.jmsy.2011.08.004

6. Lu C, Gao L, Li X, Pan Q, Wang Q. Energy-efficient permutation

flow shop scheduling problem using a hybrid multi-objective
backtracking search algorithm. Journal of cleaner production.

2017;144:228-38. 10.1016/j.jclepro.2017.01.011

7. Jovane F, Yoshikawa H, Alting L, Boer CR, Westkamper E,

Williams D, et al. The incoming global technological and

industrial revolution towards competitive sustainable

manufacturing. CIRP annals. 2008;57(2):641-59.

10.1016/j.cirp.2008.09.010

8. Mori M, Fujishima M, Inamasu Y, Oda Y. A study on energy

efficiency improvement for machine tools. CIRP annals.

2011;60(1):145-8. 10.1016/j.cirp.2011.03.099

9. Pinedo ML. Scheduling: Springer; 2012.

10. Ding J, Schulz S, Shen L, Buscher U, Lü Z. Energy aware
scheduling in flexible flow shops with hybrid particle swarm

optimization. Computers & Operations Research.

2021;125:105088. 10.1016/j.cor.2020.105088

11. Zhang M, Yan J, Zhang Y, Yan S. Optimization for energy-

efficient flexible flow shop scheduling under time of use

electricity tariffs. Procedia CIRP. 2019;80:251-6.

10.1016/j.procir.2019.01.062

12. Guo J, Lei D, Li M. Two-phase imperialist competitive algorithm

for energy-efficient flexible job shop scheduling. Journal of

Intelligent & Fuzzy Systems. 2021;40(6):12125-37.

10.3233/JIFS-210198

13. Fathollahi-Fard AM, Woodward L, Akhrif O. Sustainable

distributed permutation flow-shop scheduling model based on a

triple bottom line concept. Journal of Industrial Information

Integration. 2021;24:100233. 10.1016/j.jii.2021.100233

14. Li Z, Yang H, Zhang S, Liu G. Unrelated parallel machine

scheduling problem with energy and tardiness cost. The
International Journal of Advanced Manufacturing Technology.

2016;84:213-26. 10.1007/s00170-015-7657-2

15. Che A, Zhang S, Wu X. Energy-conscious unrelated parallel
machine scheduling under time-of-use electricity tariffs. Journal

1464 H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465

of cleaner production. 2017;156:688-97.

10.1016/j.jclepro.2017.04.018

16. Wang Y-C, Wang M-J, Lin S-C. Selection of cutting conditions

for power constrained parallel machine scheduling. Robotics and
Computer-Integrated Manufacturing. 2017;43:105-10.

10.1016/j.rcim.2015.10.010

17. Zeng Y, Che A, Wu X. Bi-objective scheduling on uniform
parallel machines considering electricity cost. Engineering

Optimization. 2018;50(1):19-36.

10.1080/0305215X.2017.1296437

18. Wu X, Che A. A memetic differential evolution algorithm for

energy-efficient parallel machine scheduling. Omega.

2019;82:155-65. 10.1016/j.omega.2018.01.001

19. Cota LP, Coelho VN, Guimarães FG, Souza MJ. Bi‐criteria

formulation for green scheduling with unrelated parallel machines
with sequence‐dependent setup times. International Transactions

in Operational Research. 2021;28(2):996-1017.

10.1111/itor.12566

20. Safarzadeh H, Niaki STA. Bi-objective green scheduling in

uniform parallel machine environments. Journal of cleaner

production. 2019;217:559-72. 10.1016/j.jclepro.2019.01.166

21. Wang S, Wang X, Yu J, Ma S, Liu M. Bi-objective identical

parallel machine scheduling to minimize total energy

consumption and makespan. Journal of cleaner production.

2018;193:424-40. 10.1016/j.jclepro.2018.05.056

22. Anghinolfi D, Paolucci M, Ronco R. A bi-objective heuristic

approach for green identical parallel machine scheduling.
European Journal of Operational Research. 2021;289(2):416-34.

10.1016/j.ejor.2020.07.020

23. Zhang H, Wu Y, Pan R, Xu G. Two-stage parallel speed-scaling
machine scheduling under time-of-use tariffs. Journal of

Intelligent Manufacturing. 2021;32:91-112. 10.1007/s10845-

020-01561-6

24. Keshavarz T, Karimi E, Shakhsi-Niaei M. Unrelated parallel

machines scheduling with sequence-dependent setup times to

minimize makespan and tariff charged energy consumption.
Advances in Industrial Engineering. 2021;55(1):91-113.

10.22059/jieng.2021.326682.1788

25. Zhou B-H, Gu J. Energy-awareness scheduling of unrelated
parallel machine scheduling problems with multiple resource

constraints. International Journal of Operational Research.

2021;41(2):196-217. 10.1504/IJOR.2021.115623

26. Módos I, Šucha P, Hanzálek Z. On parallel dedicated machines

scheduling under energy consumption limit. Computers &

Industrial Engineering. 2021;159:107209.

10.1016/j.cie.2021.107209

27. Rego MF, Pinto JCE, Cota LP, Souza MJ. A mathematical

formulation and an NSGA-II algorithm for minimizing the
makespan and energy cost under time-of-use electricity price in

an unrelated parallel machine scheduling. PeerJ Computer

Science. 2022;8:e844. 10.7717/peerj-cs.844

28. Asadpour M, Hodaei Z, Azami M, Kehtari E, Vesal N. A green

model for identical parallel machines scheduling problem

considering tardy jobs and job splitting property. Sustainable

Operations and Computers. 2022;3:149-55.

29. Gaggero M, Paolucci M, Ronco R. Exact and Heuristic Solution

Approaches for Energy-Efficient Identical Parallel Machine
Scheduling with Time-of-Use Costs. European Journal of

Operational Research. 2023.

30. Arbib C, Servilio M, Felici G, Servilio M. Sorting common
operations to minimize the number of tardy jobs. Networks.

2014;64(4):306-20. 10.1002/net.21576

31. Cheng T, Diamond J, Lin BM. Optimal scheduling in film
production to minimize talent hold cost. Journal of Optimization

Theory and Applications. 1993;79(3):479-92.

10.1007/BF00940554

32. Wang J, Qiao C, Yu H, editors. On progressive network recovery

after a major disruption. 2011 Proceedings IEEE INFOCOM;

2011: IEEE. 10.1109/INFCOM.2011.5934996

33. Arbib C, Felici G, Servilio M. Common operation scheduling

with general processing times: A branch-and-cut algorithm to
minimize the weighted number of tardy jobs. Omega. 2019;84:18-

30. 10.1016/j.omega.2018.04.002

34. Cherri AC, Arenales MN, Yanasse HH, Poldi KC, Vianna ACG.
The one-dimensional cutting stock problem with usable

leftovers–A survey. European Journal of Operational Research.

2014;236(2):395-402. 10.1016/j.ejor.2013.11.026

35. Hinxman A. The trim-loss and assortment problems: A survey.

European Journal of Operational Research. 1980;5(1):8-18.

10.1016/0377-2217(80)90068-5

36. Dyckhoff H. A typology of cutting and packing problems.

European journal of operational research. 1990;44(2):145-59.

10.1016/0377-2217(90)90350-K

37. Wäscher G, Haußner H, Schumann H. An improved typology of

cutting and packing problems. European journal of operational

research. 2007;183(3):1109-30. 10.1016/j.ejor.2005.12.047

38. Arbib C, Marinelli F. On cutting stock with due dates. Omega.

2014;46:11-20. 10.1016/j.omega.2014.01.004

39. Cui Y, Zhong C, Yao Y. Pattern-set generation algorithm for the

one-dimensional cutting stock problem with setup cost. European

Journal of Operational Research. 2015;243(2):540-6.

10.1016/j.ejor.2014.12.015

40. Wuttke DA, Heese HS. Two-dimensional cutting stock problem

with sequence dependent setup times. European Journal of
Operational Research. 2018;265(1):303-15.

10.1016/j.ejor.2017.07.036

41. Graham RL, Lawler EL, Lenstra JK, Kan AR. Optimization and

approximation in deterministic sequencing and scheduling: a

survey. Annals of discrete mathematics. 5: Elsevier; 1979. p. 287-

326.

42. Garey MR, Johnson DS. ``strong''np-completeness results:

Motivation, examples, and implications. Journal of the ACM

(JACM). 1978;25(3):499-508.

43. Deb K, Agrawal S, Pratap A, Meyarivan T, editors. A fast elitist

non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II. International conference on parallel

problem solving from nature; 2000: Springer.

44. Duan J, Wang J. Energy-efficient scheduling for a flexible job

shop with machine breakdowns considering machine idle time
arrangement and machine speed level selection. Computers &

Industrial Engineering. 2021;161:107677.

45. Xue L, Wang X. A multi-objective discrete differential evolution
algorithm for energy-efficient two-stage flow shop scheduling

under time-of-use electricity tariffs. Applied Soft Computing.

2023;133:109946.

46. Eberhart R, Kennedy J, editors. Particle swarm optimization.

Proceedings of the IEEE international conference on neural

networks; 1995: Citeseer.

47. Hulett M, Damodaran P, Amouie M. Scheduling non-identical

parallel batch processing machines to minimize total weighted

tardiness using particle swarm optimization. Computers &

Industrial Engineering. 2017;113:425-36.

48. Marichelvam M, Geetha M, Tosun Ö. An improved particle

swarm optimization algorithm to solve hybrid flowshop
scheduling problems with the effect of human factors–A case

study. Computers & Operations Research. 2020;114:104812.

10.1016/j.cor.2019.104812

H. Ataei et al. / IJE TRANSACTIONS A: Basics Vol. 37 No. 07, (July 2024) 1443-1465 1465

49. Damodaran P, Diyadawagamage DA, Ghrayeb O, Vélez-Gallego
MC. A particle swarm optimization algorithm for minimizing

makespan of nonidentical parallel batch processing machines.

The International Journal of Advanced Manufacturing

Technology. 2012;58(9):1131-40.

50. Lian Z. A united search particle swarm optimization algorithm for

multiobjective scheduling problem. Applied Mathematical

Modelling. 2010;34(11):3518-26. 10.1016/j.apm.2010.03.001

51. Afzalirad M, Rezaeian J. A realistic variant of bi-objective

unrelated parallel machine scheduling problem: NSGA-II and

MOACO approaches. Applied Soft Computing. 2017;50:109-23.

10.1016/j.asoc.2016.10.039

52. Zandi A, Ramezanian R, Monplaisir L. Green parallel machines

scheduling problem: A bi-objective model and a heuristic
algorithm to obtain Pareto frontier. Journal of the Operational

Research Society. 2020;71(6):967-78.

10.1080/01605682.2019.1595190

53. Taguchi G. Introduction to quality engineering, Asian

productivity organization. Dearborn, Michigan: American

Supplier Institute Inc. 1986.

COPYRIGHTS

©2024 The author(s). This is an open access article distributed under the terms of the Creative Commons

Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long

as the original authors and source are cited. No permission is required from the authors or the publishers .

Persian Abstract

 چکیده
آب ییرات را به همراه دارد که به تغ یاگلخانه یانتشار گازها یدو تشدتجدیدناپذیر انرژی از جمله کاهش منابع یادیز یچیدهپ یهادر جهان، چالش یمصرف انرژ امانیرشد ب

 .شودوارد می یدارپا هاییوهاتخاذ ش برای یکننده مهم انرژمصرف به عنوان یدبخش تولفشار زیادی به محیطی،یستز یدشد هایینگران ین. در مواجهه با اکندیکمک م ییو هوا

از اهمیت بالایی برخوردار است. ها چالش ینپرداختن به ا یبرا یحوزه محور یکبه عنوان بندی عملیات تولید بنابراین همزمان در نظر گرفتن مدیریت مصرف انرژی و زمان

برای اولین بار در این مقاله، است. یدتول هاییطدر مح یجچالش را یکمانند مبلمان و پوشاک است، یعیدر صنا موجودیبرش مسألهکه نمونه آن مشترک یات عمل یبندزمان

های تکمیل و مجموع انرژی مصرفی مورد نظر گرفتن عملیات مشترک به منظور کمینه نمودن همزمان مجموع زمان های موازی یکسان با در بندی در محیط ماشین زمان مسأله

گردد و برای حل مسائل با ابعاد کوچک از روش ریزی خطی عدد صحیح آمیخته دو هدفه ارائه میگیرد. بدین منظور برای مسأله مورد بررسی، دو مدل برنامهمطالعه قرار می

شود. با توجه به پیچیدگی محاسباتی مسأله، الگوریتم ژنتیک (به منظور دستیابی به مجموعه نقاط پارتو بهینه استفاده می AUGMECONیافته)محدودیت اپسیلون تکامل

برای حل مسائل با ابعاد متوسط و (HNSGAII-PSOسازی ازدحام ذرات)سازی نامغلوب ترکیب شده با بهینه(و الگوریتم ژنتیک مرتب NSGA-IIسازی نامغلوب)مرتب

های محاسباتی بر روی مسائل نمونه، مورد های پیشنهادی با انجام آزمایششوند. کارایی و عملکرد الگوریتممناسب، توسعه داده می تقریبی پارتو های جبهه به دستیابی بزرگ و

 عملکرد بهتری دارد. NSGA-IIدر مقایسه با الگوریتم HNSGAII-PSOدهند که در حل مسائل نمونه، الگوریتم گیرد. نتایج به دست آمده نشان می ارزیابی قرار می

