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A B S T R A C T  
 

 

Integration of electric vehicles (EVs) into the power systems has been a concern for distribution system 
operators due to their impacts on several aspects of power system operation, such as congestion 

management, power quality, voltage regulation, and peak time changing. In this paper uncertainty 

parameters such as charging time, traveled distance, and plug-in location of EVs are considered and their 
effects on the optimal daily operation of microgrids (MG) are discussed. A power system, including 

geographically-adjacent quasi-independently controlled MGs, each of which has a different operation 

objective function (OF) is modeled in this paper. A set of socioeconomic OFs i.e. minimum purchase 
power from the main grid, maximum usage of green power, and minimum Expected Energy Not 

Supplied (EENS) are considered for each MG which appear in the optimization process with different 

weights based on the MG policy. The effect of EV integration into the Multi Microgrid System (MMS) 

is also investigated in this paper and the performance effectiveness of different operation management 

policies against EV integration is discussed. 

doi: 10.5829/ije.2023.36.08b.01 
 

 

NOMENCLATURE αj Greenhouse emission rate of j-th DG (ton/kWh) 

Acronyms τi  Interruption time of i-th bus (h) 

DG Distributed generation Pi,h
D  Load on the i-th bus at time h (kWh) 

MG Microgrid SOC(h)  Battery state of charge at time h (kWh) 

MMS Multi microgrid system  𝑆𝑂𝐶𝑛𝑚
𝑘𝑚

  State of charge in nm-th battery in km-th microgrid (kWh) 

EV Electric vehicles 𝑆𝐸𝑉𝑛𝑚
𝑘𝑚  Start time of em-th EV charging in km-th microgrid (h) 

PV Photovoltaic ƞ𝑏𝑎𝑡  ESS charging/discharge efficiency (%) 

D-IPFC Distribution Interline Power Flow Controller PPV,h  PV generated power at time h (kWh) 

GA Genetic Algorithm Pbat,h  Battery charge/discharge power at time h (kWh) 

S3P Small power generation 𝑃𝑙,ℎ
𝑖   Power demand at time h in bus i (kWh) 

V2G Vehicle to grid 𝑃𝑒𝑣,ℎ
𝑖   EVs charging power at time h in bus i (kWh) 

MCS Monte-Carlo simulation Ploss Active power loss (kWh) 

SOC state of charging ROC Rate of Charge (kWh/h) 

PDF probabilistic distribution function  ROD Rate of Discharge (kWh/h) 

OF Objective function SOCmin  Minimum charge level of battery (kWh) 

ESS Energy Storage Systems SOCmax  Maximum charge level of battery (kWh) 

Variables Pmove  EV energy consumption rate (kWh/km) 

nm Number of batteries in m-th microgrid ΔL Distance traveled by the EV (km) 

em Number of electrical vehicles in m-th microgrid L Distance between different zones (MGs) (km) 

h  Time horizon (hour) Subscripts 

Ch  Cost of energy at time h ($) i Index of buses 

Ph  Purchased energy from the main grid at time h (kWh) l Index of loads 

Eh
j  Greenhouse emission of j-th DG at time h (ton/h) m Index of microgrid 

Ph
j  Generation power of j-th DG at time h (kW) j Index of power source 
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1. INTRODUCTION 
 
High penetration of distributed generation (DG) units and 

storage systems along with emerging the concept of 

microgrid (MG) [1, 2] have enhanced the reliability of 

electrical energy supply [3]. Another technology 

significantly changed the paradigm of power system 

operation is EV, which has gained considerable attention 

in the last years [4-6] because they have negligible CO2 

emission, which has a significant influence in decreasing 

greenhouse gases. However, strategies for their charging 

and discharging cycles are the primary concern of 

distribution and MGs operators [7].  

Management of energy in such systems has several 

concerns, such as optimal management of DGs [8, 9]. 

Wouters et al. [10] addressed the necessity of designing 

a local energy system via the integrity of DG and 

microgrids. A mixed-integer linear programming model 

was introduced to optimize local energy systems. Based 

on the proposed model by Wouters et al. [10], DGs, 

heating units, and storage systems can supply the 

electrical, and cooling/heating energy of a small 

residential neighborhood. A central controller was 

considered in the proposed model. The system’s annual 

cost was considered as the OF and GAMS software was 

used for solving the problem. The concept of multiagent 

systems was used for the optimal operation of microgrids 

[11]. Genetic Algorithm (GA) [12] was used as a meta-

heuristic algorithm for the optimal operation of 

microgrids. The concept of multi-microgrid has been 

introduced in this paper for clustering the available 

houses. This concept was introduced by Arefifar et al. 

[13] and it has been modified in this paper. A distribution 

interline power flow controller (D-IPFC) was introduced 

as a new device by Kargarian and Rahmani [14]. By 

presenting a model for injection power by D-IPFC, 

Kargarian and Rahmani [14] showed that it can improve 

the operational capability of the distribution system. The 

D-IPFC was used to connect several MGs to form a 

MMS. The nonlinear loads have been modeled in the 

optimal operation of the standalone microgrid [15]. 

Energy management based on contingency analysis for a 

MMS has been presented by Aghdam et al. [16]. The 

economic comparison between the microgrid 

development versus the conventional distribution system 

has been discussed by Parag and Ainspan [17].  

Moreover, the uncertain parameters make the 

decision-making process more complicated. Niknam et 

al. [18] presented a stochastic model for optimal 

management of energy in a microgrid, in which the 

operating cost and greenhouse gas emission were 

minimized. Uncertain parameters such as load, wind 

turbine, and photovoltaic power output as well as the 

tariff of purchasing electricity from the main grid were 

considered. A scenario-based method, i.e. roulette wheel 

mechanism, was used for uncertainty modeling 

considering the normal distribution function for input 

parameters. Some new devices have been introduced for 

improving the distribution system capability. Khodaei et 

al. [19] investigated the MG planning problem and its 

economic viability deployment. The optimal generation 

mix of distributed energy resources (DERs) for 

installation were determined considering uncertainties. A 

robust optimization approach was adopted for 

considering uncertainty in load forecast error, variable 

renewable generation, market prices, and microgrid 

islanding. Xiang et al. [20] developed a scenario-based 

robust energy management method accounting for the 

worst-case amount of renewable generation and load. 

The economic and robust model was formulated to 

maximize the total exchange cost while getting the 

minimum social benefits cost at the same time. The 

uncertainty of renewable generation and load demand 

was described as an uncertain set produced by interval 

prediction. Then, Taguchi's orthogonal array testing 

method was used to provide possible testing scenarios. 

The storage system has incrementally grown in the 

networks in the last several years [21, 22], due to the high 

penetration of distributed energy resources such as wind 

turbines and photovoltaics [23] and the intermittency 

nature of renewable energies [24]. ESSs have brought 

many benefits to the power system such as short-term 

power supply, improving the power quality, and ancillary 

services in microgrids. A cost-based formulation was 

presented for the optimum sizing of storage units in the 

microgrid [25, 26]. Xiao [27] proposed the hierarchical 

control of ESS, composed of both centralized and 

distributed control to enhance system reliability. Xu et al. 

[28] used ESSs to support the frequency control in 

microgrid systems, due to the intermittency of the 

renewable generation and constantly changing load 

demand. A distributed cooperative control strategy was 

proposed for coordinating the ESSs to maintain the 

supply-demand balance and minimize the total power 

loss associated with charging/discharging inefficiency. A 

review of hybrid energy storage system usage in 

standalone microgrids has been proposed by Jing et al. 

[29]. In fact, different control strategies have been 

compared by Jing et al. [29]. 

The electric vehicles can perform as a storage system 

in the distribution networks and at the same time act as a 

distributed load for the distribution operator [30]. The EV 

was defined as a small power generation (S3P) for 

improving the security and reliability of the power 

system [31]. Vehicle-to-grid (V2G) technology can 

significantly affect power grids, but there should be a 

smart program for electrical parking lots. Zhang et al. 

[32] redefined the unit commitment problem by 

considering demand response and EVs. These 

technologies can reform the demand curve of the grid and 

can be used as a reserve source as well. Lin et al. [33] 

presented the distribution system planning by 
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considering charging stations of EVs. The costs 

regarding the investment, operation, and maintenance 

were considered as OFs. Rana et al. [34] introduced a 

modified droop control for frequency support of 

microgrids based on EVs. Derakhshandeh et al. [35] used 

EVs for the coordination of generation scheduling in an 

industrial microgrid manner. 

In this paper, a new model for the optimal daily 

operation of geographically-adjacent MGs, including PV 

integration is presented. In the proposed model, the 

uncertain parameters related to EVs are considered for 

the hour-ahead scheduling process. The uncertainties of 

the daily traveled distance of EVs inside a MG and 

among MGs are considered in the modeling. There are 

different uncertain parameters such as charging time, 

traveled distance, and number of EVs in the network, 

which are considered in this paper with Monte-Carlo 

simulation (MCS) [1]. MMS consists of several quasi-

independent MGs, each of which has different OFs, i.e. 

minimum energy cost, minimum greenhouse gas 

emission, and maximum reliability. 

The contributions of this paper are as follows: 

• Behavior of MMS with different OFs is analyzed 

and its optimal operation with the presence of daily 

travelled distance of EVs as an uncertain parameter 

is investigated. 

• A new model for the daily optimal operation of 

geographically-adjacent MGs, including PV 

integration is proposed. 

• A comparison is made to assess the effect of 

weighting factors on the optimal operation of MMS. 

The rest of the paper is organized as follows. System 

modeling is introduced in section 2, in which the 

mathematical models of all elements of the microgrid are 

presented. In section 3, the objective function, 

constraints, decision variable, and pseudo code of the 

optimal operation optimization of the MMS system are 

proposed. This optimization is the main function of the 

central controller in each microgrid in connected mode. 

In section 4, the proposed method is implemented on a 

MMS system and the results are discussed. Finally, 

section 5 concludes the paper. 

 

 

2. MULTI-MICROGRID POWER SYSTEM MODELING  
 
2. 1. System Description and Modeling        In this 

section, a MMS, which is composed of some adjacent 

MGs is modeled, each of which includes several EVs 

whose charging time intervals are controlled by a central 

controller. As shown in Figure 1, the EVs’ batteries can 

be charged by connecting to the local distribution system. 

As mentioned earlier, the starting time of charging the 

EVs is managed by the microgrid central controller while 

the EV’s owners set the allowed timespan for this 

purpose. 

 
Figure 1. MMS layout 

 
 

 

As shown in Figure 1, each MG has at least a PV 

source and a battery to store the excess energy of 

photovoltaic sources in the case that surplus energy 

generation exists. The daily charging and discharging 

plan of the batteries is controlled by the microgrid 

operator. 

The MMS can have two types of controllers [13]. In 

one type a central controller is considered for all 

microgrids, as studied in this paper while in the other 

type, each microgrid has a dedicated controller. The 

former version has lower implementation costs. 

The distribution lines are parameterized based on pi-

section modeling. As the length of the lines in the 

distribution systems and microgrids is short, this model 

is reasonably accurate. The shunt admittance should be 

considered because there are underground cables in the 

distribution network; therefore, a simplified short-line 

model without shunt admittance modeling will lead to 

inaccurate results.  

Power output by the PV system is considered in the 

power system analysis as a deterministic variable as the 

main objective of this paper is about the effect of 

uncertainty of EVs on MMS operation. 

EVs are modeled based on their charging rate, which 

is assumed to be a constant value. This charging is added 

to the load profiles of each home in load flow studies. 

∑ 𝑃𝑖,ℎ
𝐷

𝑖 = 𝑃𝑙,ℎ
𝑖 + 𝑃𝑒𝑣,ℎ

𝑖   (1) 

The cost of energy is assumed to be based on the 

market price, which is variable over the day. The time 

horizon for each time interval for price change is 

considered one hour. 

h h

h

Energy Cost C P=  
(2) 

The upstream network is modeled as an all-the-time 

available infinite bus. Although it can be considered that 

the upstream network has limited availability, but this 

assumption does not affect the presented method. 

 

MMS 

Main System 

Services Profit 

MG  1 

MG  2 MG  n 
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2. 2. Uncertainty Modeling– Monte Carlo 
Simulation         The following steps are presented for 

scheduling the proposed multi-microgrid structure.  

Step 1: Collect the customers' load data and PV power 

generation. Real data sets are used in this step. The 

customer loads and photovoltaic generations are based on 

the real data of residential loads in Tehran.  

Step 2: Random number generation. As it is concerned 

before, MCS is used to model the uncertainty. So, 

random numbers are generated for every single EV in 

each MG, the distance moved in each day, and the 

charging hour of each EV. Normal probability 

distribution function (PDF) is used for the number of EVs 

and uniform PDF is used for the distance covered and 

charging hour. Each random number set is concerned 

with a scenario. 

Step 3: Solving the optimization problem. The 

optimization problem of each microgrid based on its own 

OFs and different scenarios is solved. The number of 

optimization problems is equal to the number of 

microgrids. Each MG has its own OF. Different 

objectives and constraints are presented in the next 

section. The decision variables in these problems are the 

daily charging and discharging plan of batteries and the 

charging time of EVs. 

Step 4: Data Analysis. The results of optimization 

problems are analyzed and the exchanging power 

between the microgrids and main grids is stored. 
 

 

3. MMS OPTIMAL OPERATION 
 

In this section, the OFs and constraints of the MMS 

optimal operation problem are explained. Three OFs are 

considered, i.e. the cost of energy, gas emission, and 

reliability. It is assumed that the MGs are connected to 

the main grid from which the required energy is supplied. 
 

3. 1. Objective Functions           MGs are running with 

different OFs, i.e. minimization of cost of energy, 

minimization of green gas emission, and minimization of 

expected not-supplied energy. The weighted sum of the 

mentioned OFs results in the proposed OF in this paper. 

The weight factors can be tuned based on the global and 

upstream rules and/or objectives of the microgrid 

operators, which can be changed from time to time, based 

on the nature of the grid and special events of the year. 

The OFs are stated in Equations (3), (4), and (6). 

1) Cost of the Energy 

1 h h

h

OF C P=
 

(3) 

In this paper, the time horizon for each time interval 

for price charging is considered one hour. Ph is 

considered negative if the generated power in the 

microgrid is more than the demand in each hour and 

positive when there is a power surplus in MG. It is 

assumed that the excess energy of the microgrid can 

deliver to the main grid. In other words, the connection 

between the main grid and microgrids is bi-direction. 

2) Greenhouse Gas Emission 

2

j

h

j h

OF E=  (4) 

j

hE
can be considered as a coefficient of Phj based on 

Equation (5). The available source of energy in the 

microgrids is PV systems which are emission-free. 

However, the excess energy which is purchased from the 

main grid causes greenhouse gas emissions. This 

explains why the greenhouse gas emission rate shows a 

straight relation with the delivered energy from the 

upstream grid to the MG.   

j j

h j hE P=  (5) 

3) Expected Energy not Supplied 

3

D

i i

i

OF EENS P= =
 

(6) 

Values of τi, denoting the average yearly interruption 

time for each bus are calculated based on historical data, 

i.e. yearly unavailable periods. 

The decision variables in this problem are the set of 

SOC of batteries in each microgrid and the time of EV 

charging. Based on the SOC the amount of 

charging/discharging of the battery is calculated as 

follows: 

( )( ) ( ) ( 1)bat batP h SOC h SOC h= − −  (7) 

where Pbat is the amount of charging (positive value) 

and/or discharging (negative value) of the battery and 

SOC(h) is the SOC of the battery in hour, h. 

 
3. 2. Constraints         The constraints are as follows: 

1) Power Balance 

The generation and demand values of active power 

should be equal at all times to prevent frequency 

deviation in the system. 

, , , ,h PV h l h ev h bat h loss

L

P P P P P P+ = + + +  
(8) 

2) Battery SOC limitation 

The SOC of the battery has limitations to guarantee that 

it works in safe operating conditions.   

min max( )SOC SOC h SOC 
 (9) 

The upper and lower limits are designed based on the 

battery structure, type, and usage. In some cases, 

SOCmin can be zero, but in other ones always there 

should be some minimum charge.  

3) Intraday energy transfer 

The SOC of the battery on the first and the last time 

interval of a day are considered equal. This assumption 
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makes the proposed algorithm comparable with the 

others without dependency on the initial condition of the 

battery. 

( 1) ( 24)SOC h SOC h= = =  (10) 

4) EVs charging Power 

The available charge of EVs is calculated by knowing the 

SOC at the last time interval and traveled distance by the 

EV, the latter is reflected in Pmove. 

( ) ( 1) moveSOC h SOC h P L= − −   (11) 

Based on the distance which is covered by an EV, the 

discharging amount of the EV is calculated. The 

discharging rate of the EVs is considered constant and by 

multiplying the distance in the discharging rate, the 

amount of reduction in SOC is calculated.  

5) EV Charging Time 

In this paper, it is considered that the charging time of 

EVs is 2 hours continuously because the discontinuous 

charging of batteries will reduce their lifetime.  

6) Battery charge/discharge rate limitation 

In this paper, the charge and discharge rates have been 

limited as follows: 

( ) ( 1) ( ) ( 1)

( ) ( 1) ( 1) ( )

SOC h SOC h ROC if SOC h SOC h

SOC h SOC h ROD if SOC h SOC h

− −   −


− −  − 

 
(12) 

 
3. 3. Decision Variables         The decision variables in 

this problem are the SOC of batteries in each hour and 

the time of EV charging. While the EV owners set the 

desired interval for charging, the starting time is 

optimally decided by the central control. In other words, 

the following set of decision variables is determined 

optimally by the central controller of MMS. 

1 1

1

1 1

1

1 1

1 1

[ ,..., ,..., ,..., ,

,..., ,..., ,..., ]

m m

m

m m

m

k kk k

n n

k kk k

e e

U SOC SOC SOC SOC

SEV SEV SEV SEV

=
 

(13) 

 
3. 4. Optimization Procedure      As one of the best 

optimization algorithms in discrete variables, GA is 

adopted for MMS optimal operation in this paper. As 

mentioned in step 3 of section 2.B, MCS is used in this 

paper. 
Two sets of input data are provided for the GA. The 

first set includes deterministic data such as the load 

profiles of customers and generated power by PV 

systems, while the second set consists of probabilistic 

data such as the number of EVs in each MG, the daily 

traveled distance by EVs, and the charging hour of each 

EV. The output of the GA is the power system control 

parameters, i.e. decision variables defined in Equation 

(12). SOC variables address the optimal charge/discharge 

of the battery and SEV shows the optimal starting time of 

EV charging.  

The parameters of optimization are selected based on 

the knowledge of the authors and the GA toolbox of 

MATLAB is employed for this purpose. The selected GA 

parameters are presented in Table 1. 

The following pseudo-code summarizes the procedure 

that is implemented on MMS optimal operation problem. 

Loop (for all the scenarios) 

 Collect Real Data for Loads 

 Collect Real Data for PV Generation 

Generate Random Data for the Number of EVs 

in each MG 

 Generate Random Data for Distance Moved by 

each EV 

 Generate Random Data for the charging hour 

of each EV 

 [SOC, SEV]← GA Optimization 

 Save the Output of GA 

The flowchart of the optimization process is shown in 

Figure 2. 

 
 
4. SIMULATION RESULTS AND DISCUSSION 
 
4. 1. System Description and Assumptions       As 

shown in Figure 3 a system consisting of three microgrids 

connected to the main grid is considered in this paper. 

These microgrids are geographically close to each other. 

The distance between the two parts of MMS is shown by 

L in Figure 3. 

It is assumed that the scheduling horizon is one day 

(24 hours). The time step is 1 hour, and it is assumed that 

the load and distributed generation are constant in each 

step. 

It is assumed that the EVs travel some round trips and 

the charging place of the EV is on its parking. It is 

assumed that the SOC values of the batteries are equal in 

the first and last hour of the scheduling horizon. It is 

assumed that each microgrid has one ESS with a capacity 

of 600 kWh. The ESS can discharge to 15% of its 

capacity. The charging/discharging rate of the ESS is 

considered 100 kWh/hour. ESS usage has two main 

reasons: 

1. The maximum generation of PV and maximum 

consumptions of loads are different and also take place in  
 

 

TABLE 1. GA parameters 
Parameter Value 

Number of Iteration 200 

Population Type Double vector 

Selection Operators Stochastic uniform 

Mutation Operators Gaussian  

Percent of Mutation 20% 
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Central Controller

(Operation Optimization)

Generated Power of PV

Load Profile

Grid Energy Cost

Deterministic Parameters

Number of EV in each MG

Daily Traveled Distance by each EV

Charging Hour of each EV

Probabilistic Parameters

Charging/Discharging 

Status of the ESS

 
Figure 2. Optimization process flowchart 

 

 

 
Figure 3. A 3-MG system 

 

 

different time intervals. The ESS can solve this problem 

by charging in maximum PV generation time and 

discharge in the load maximum consumption times. 

2. The main grid electricity price varies during the day. 

The ESS can be charged during low-price hours and can 

be discharged during peak-price hours.  

The ESS has two operating modes with different 

objectives, i.e. energy management in the connected 

mode and frequency/voltage control in the islanded mode 

of the microgrid. In this paper, it is assumed that the 

energy management function of the ESS is investigated. 

It is considered that there are some photovoltaic, EVs and 

loads in each microgrid, which are presented in Table 2. 

Load profiles of each MG are presented in Figure 4, 

which are based on real data which are collected from 

some residential loads in the city of Tehran, Iran. It is 

assumed that there are 4, 3, and 5 load centers in 

microgrids 1, 2, and 3, respectively. So, there are 4, 3, 

and 5 load profile curves in each part of Figure 4. 

The PVs generation profiles are presented in Figure 

5. These values are collected based on real data for the 

city of Tehran, Iran. 

TABLE 2. Number of PV Sources and Loads in Each 

Microgrid 

Microgrid Installed PV capacity 

(kW) 
Maximum Loads 

(kWh) 

1 1400 1705 

2 540 577 

3 900 915 
 

 

 

 

 

 
Figure 4. Load Profile of Microgrid 
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Figure 5. PV power generation 

 

 

The average yearly interruption time is considered 

equal for all customers of each microgrid. The average 

yearly interruption time of microgrids 1, 2 and 3 are 

considered 21, 12 and 9 hours per year, respectively. 

These values are collected from literature [36]. 

 
4. 2. Monte Carlo Simulation          The uncertain 

parameters are modeled with MCS in this paper with 

1000 scenarios generated based on the random 

generation of uncertain parameters based on which the 

optimization problems are solved. The uncertain 

parameters are as follows: 
• The number of EVs in each microgrid. The PDF of 

this parameter is considered a normal distribution 

function, with a mean value of 50 and a standard 

deviation of 20 [37]. 

• The distance travelled by EVs. The uniform 

distribution is considered for this parameter. It is 

considered that the EVs can travel between the 

microgrids and between their microgrid and the main 

grid. It is considered that travel is a round trip. The 

number of EVs which travel from each microgrid 

through other microgrids and the main grid is 

generated based on the random number generation 

process. 

• Time of charging commencement of EVs. The 

uniform distribution addresses the statistical 

distribution of this parameter.  

The dispersion of the number of EVs in each MG is 

shown in Figure 6.  

 

 

 

 

 
Figure 6. Dispersion of EV Numbers 
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The charging of EV batteries is reduced based on the 

traveled distance. The energy reduction of EV batteries 

based on each trip between the grids is presented in Table 

3. 

The weighting coefficients of OFs for microgrids are 

different. So, the cost of energy, emission, and reliability 

of microgrids are different. The selected weighting 

coefficients are presented in Table 4. 

The results in this section are categorized into two 

parts: scenario 1, which shows the base case results of 

MMS, and scenario 2, which discusses the optimal 

results. 

 

4. 3. Scenario 1: Base Case          For a better 

presentation of the effect of the quality of the 

optimization problem, at first, the MG is planned without 

the optimization problem. The results of this case are 

presented in Table 5. 

 

 
TABLE 3. Energy Deployment of EV Batteries for Travel 

among MGs (kWh) 

Grid Microgrid1 Microgrid2 Microgrid3 Main Grid 

MG 1 - 5 4 3 

MG 2 5 - 7 5 

MG 3 4 7 - 7 

Main Grid 3 5 7 - 

 

 
TABLE 4. Weighting Coefficients for different OF in MGs 

MG 

number 
OF1: Cost of 

Energy 
OF2: Emission 

Cost 
OF3: 

EENS 

MG 1 0.7 0.2 0.1 

MG 2 0.1 0.7 0.2 

MG 3 0.2 0.1 0.7 
 

 
TABLE 5. Average and Standard Deviation of Energy Cost for 

Each MG Before Optimization 

Objective 

Function 

MG 

number 

Average 

($) 
Standard 

Deviation ($) 
Max 

($) 
Min 

($) 

Cost of 

Energy 

MG 1 6538.1 627.29 8927.3 4653.3 

MG 2 4609.4 699.94 6877.8 2710.3 

MG 3 5458.1 767.31 7760.9 3472.7 

Emission 

MG 1 524.23 11.62 558.78 493.55 

MG 2 350.39 8.40 375.33 331.50 

MG 3 467 9.09 487.94 440.90 

EENS 

MG 1 2425.2 13.6 2461.4 2392.6 

MG 2 1106.3 10.3 1134.8 1074.6 

MG 3 60.4 2.1 66.8 54.1 

4. 4. Scenario 2: Optimal Operation of MMS         The 

weighting coefficients of OFs for microgrids are 

different. So, the cost of energy, emission and reliability 

of microgrids are different. The higher coefficient for the 

cost of energy causes a lower cost and a higher 

coefficient for the EENS leads to a higher cost of energy 

and hence higher reliability. The summary of the result is 

presented in Table 6 and the comparison is presented in 

Table 7. 
As shown in Table 7, the optimization process 

reduces the cost of energy by 2.4%, 3.4%, and 2.8% in 

microgrids 1, 2, and 3, respectively. This reduction in 

cost causes a $474 daily reduction and a $173010 annual 

saving in energy cost. 

 
 
TABLE 6. Average and Standard Deviation of Energy Cost for 

Each MG 

OF 

MG 

numbe

r 
Averag

e ($) 
Standard 

Deviatio

n ($) 
Max 

($) 
Min 

($) 

Cost of 

Energy 

MG 1 6380.8 627.30 
8777.

5 

4496.

3 

MG 2 4451.3 700.59 
6719.

9 
2553 

MG 3 5300.2 767.76 
7603.

2 

3308.

9 

Emission 

MG 1 522.7 10.2 556.7 499.4 

MG 2 330.3 8.9 352.6 308.1 

MG 3 451.7 9.03 478 431.3 

EENS 

MG 1 2411.2 14.1 
2445.

2 

2376.

1 

MG 2 1084.3 8.5 
1108.

1 

1060.

2 

MG 3 56.2 2.3 61.8 51.1 

 

 
TABLE 7. Comparison between scenarios 1 (Base Case) and 2 

(Optimal Operation) 

OF 
MG 

Number 
Average 

(optimized) 
Average 

(non-

optimized) 
Percent of 

Improvement 

Cost of 

Energy 

MG 1 6380.8 6538.1 2.4% 

MG 2 4451.3 4609.4 3.4% 

MG 3 5300.2 5458.1 2.8% 

Emission 

MG 1 522.7 524.23 0.29% 

MG 2 330.3 350.39 5.73% 

MG 3 451.7 467 3.28% 

EENS 

MG 1 2411.2 2425.2 0.58% 

MG 2 1084.3 1106.3 1.99% 

MG 3 56.2 60.4 6.95% 
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In other words, the optimization process reduces the 

emission by 0.29%, 5.73%, and 3.28% in microgrids 1, 2 

and 3, respectively and the reduction in EENS is 0.58%, 

1.99%, and 6.95% in microgrids 1, 2 and 3, respectively.  

As shown in Table 7, the effect of weighting 

coefficients, listed in Table 4, on the percentage of 

reduction of each part of OF is interesting. As an 

example, the reductions in the cost of energy, emission 

and EENS for the MG1 after applying the optimization 

process are 2.4%, 0.29%, and 0.58%, respectively. The 

interesting point is the relation between the reduction 

percent and the weighting coefficients of these three 

parts, which are 0.7, 0.2, and 0.1, respectively. As it is 

shown in Table 7, the higher value of the coefficient 

resulted in more reduction in OF optimization. This 

procedure is repeated for both microgrids 2 and 3. 

To show the effects of weighting factors on the 

results, the weighting factors of MG 1 are changed and 

the microgrid OFs are obtained. Three scenarios are 

analyzed as follows: 

1. The base case, in which 0.7, 0.2, and 0.1 are 

weighting factors for objective functions of 1, 2, and 3, 

respectively. 

2. Scenario 1, in which 0.1, 0.7, and 0.2 are 

weighting factors for objective functions of 1, 2, and 3, 

respectively. 

3. Scenario 2, in which 0.2, 0.1, and 0.7 are 

weighting factors for objective functions of 1, 2, and 3, 

respectively. 

The results listed in Table 8 show the weighting 

factors’ effects on the objective functions. The first 

column shows the number of scenarios and the second 

one shows the objective functions considered under that 

scenario. Being listed in the third column, the weighting 

factors are shown and the fourth and fifth columns show 

the average OF value considering all the random numbers 

generated by MCS, after and before the optimization 

process, respectively. The average value is selected as a 

descriptive index to show the performance of the 

optimization process. The last column shows the 

improvement percentage in the objective function value 

due to the optimization process.  

As an example, the convergence process of one of the 

1000 scenarios is shown in Figure 7.   

Figures 8 and 9 depict the effect of changing the 

weighting factors on the value of the OFs., in which the 

changes of OF 1 and 2 versus the weighting factors 

variations are drawn. It is assumed that the weighting 

factor of OF 1 is fixed to 1.0 and that of the other OFs is 

changed from 0.1 to 4.0. The changes of OF 1 and 2 are 

shown in Figures 8 and 9, respectively. Each curve in 

these figures shows a fixed amount of objective function.  
 

 

TABLE 8. Average and Standard Deviation of Energy Cost for MG1 

Scenario OF Number W Average (optimized) Average (non-optimized) Percent of Improvement 

Base Case 

OF1 0.7 6380.8 6538.1 2.40% 

OF2 0.2 522.7 524.23 0.29% 

OF3 0.1 2411.2 2425.2 0.58% 

Scenario 1 

OF1 0.1 6501.5 6538.1 0.56% 

OF2 0.7 516.52 524.23 1.47% 

OF3 0.2 2399.8 2425.2 1.05% 

Scenario 2 

OF1 0.2 6421.5 6538.1 1.78% 

OF2 0.1 523.41 524.23 0.16% 

OF3 0.7 2374.9 2425.2 2.07% 

 

 

 
Figure 7. The convergence process of optimization 

algorithm 

 
Figure 8. Changes of OF1 based on changing weighting 

factors 
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Figure 9. Changes of OF2 based on changing weighting 

factors 
 

 

5. CONCLUSION 
 

In this paper, an MMS, including three MGs with 

different operation objectives, was modeled and its 

operation was investigated. Three OFs considered for the 

microgrids are the cost of energy, greenhouse gas 

emission, and expected not-supplied energy. The number 

of EVs in each microgrid was considered by 

appropriately-shaped normal PDF and uniform density 

functions were adopted to consider the EVs traveled 

distance and their charging time. MCS was used to 

generate scenarios of uncertain parameters and the effect 

of uncertainty of EV numbers on the energy cost, EENS 

and gas emission cost was discussed. It was shown that 

the objective functions were decreased according to their 

weights, set by the MG operator. The optimal operation 

of MMS was also determined by adopting GA to the 

multi-objective MMS operation problem. Comparing 

two cases, i.e. base case and optimal operation showed 

that the optimization process led to a decrease in the cost 

of energy in MMS, enhancing the reliability index of the 

MG and greenhouse gas emission reduction. 
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Persian Abstract 

 چکیده 
زمان   ریی ولتاژ و تغ  میتوان، تنظ  تیفیازدحام، ک تیریقدرت، مانند مد ستمیجنبه از عملکرد س نیآنها بر چند رات یتأث لیقدرت به دل یها ستمیدر س یکی الکتر هینقل لیادغام وسا

ها در نظر گرفته شده   EVشده و محل اتصال    یزمان شارژ، مسافت ط  ند مان  تیعدم قطع  یمقاله پارامترها  ن یبوده است. در ا  عیتوز  ستمیس  یاپراتورها  یبرا  ی نگران  کی  ک،یپ

مجاور، که هر کدام  ییایجغرافاز نظر شبه مستقل کنترل شده  یهاMGقدرت، شامل   ستمیس  کیها مورد بحث قرار گرفته است.  زشبکه یر نه یو اثرات آنها بر عملکرد روزانه به

حداکثر استفاده از توان   ،یاز شبکه اصل دی حداقل توان خر ی عنی یاقتصاد-یاجتماع یها  OFاز  یاند. مجموعه اشده یسازمدل مقاله نی در ا ،دارند یمتفاوت  ی اتیتابع هدف عمل

شود. اثر   یم ظاهر MG یمختلف بر اساس خط مش یبا وزن ها یساز نهیبه ندیشود که در فرآ یدر نظر گرفته م MGهر  یراب نشده  نی مورد انتظار تام یسبز و حداقل انرژ

مورد بحث قرار گرفته    EV  یسازکپارچهی مختلف در برابر    ات یعمل  تیریمد  یهااستیعملکرد س  یشده و اثربخش  ی مقاله بررس  نی در ا  زین    زشبکهیچند ر  ستمیدر س  EVادغام  

 است.
 


