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A B S T R A C T  
 

 

Incidents that occur suddenly due to natural and human functions and impose hardships on society are 

called crises. As the Earth’s climate changes have increased the number of natural crises, including 
earthquakes, floods, hurricanes, etc., in recent years, human beings have felt the need for crisis 

management and the necessary planning in critical situations more than ever. This research aims to model 

and solve the problem of location, allocation, and inventory in post-crisis conditions. To meet this 
purpose, first, we have conducted a review of the previous papers. Then, we have identified the research 

gaps in management and planning in critical situations. In this study, uncertain budgets and demands and 

bi-level programming decision-making are the innovations. As a result, we have developed mixed-
integer linear mathematical models to cover the research gaps. Finally, several problems have been 

solved in small dimensions by GAMS software and large-sized problems by genetic and electromagnetic 
meta-heuristic algorithms. Then, we analyzed the algorithms’ performance which indicates the genetic 

algorithm is better than the electromagnetic algorithm in this issue. 

doi: 10.5829/ije.2022.35.10a.01 

 
1. INTRODUCTION1 
 

A disaster or crisis is a set of events that disrupt human 

beings’ environmental relations with their surroundings. 

Due to the accidental and unpredictable nature of natural 

crises, comprehensive plans are necessary to reduce and 

mitigate the risks and consequences of the crisis and deal 

with it. Demand for logistic items and services increases 

with the emergence of critical situations and the reduced 

capabilities due to the damage to infrastructures. In 

recent years, Earth’s climate changes are increasing the 

number of natural disasters, including earthquakes, 

floods, hurricanes, etc., and their corresponding losses. 

According to the related latest statistics, approximately, 

70000 people die, and 200 million people are annually 

injured due to natural disasters [1]. Despite the 

governmental and non-governmental organizations’ 

efforts to respond promptly to disasters and use resources 

effectively, numerous studies indicate a relatively low 

level of crisis preparedness [2]. In addition, there was not 
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any research that considered the problem as discussed in 

this paper. As a result, the above reasons motivated us to 

do this research. 

The first step that we required to take in the case of a 

crisis is building local warehouses to transport medicine, 

food, and other necessities of the victims and allocate the 

warehouses to the disaster areas. In this research, the 

proposed mathematical model determines local 

warehouses’ optimal location among the potential points 

intending to minimize construction costs and the optimal 

allocation of constructed warehouses to the damaged 

sites to minimize allocation costs. After constructing 

local warehouses and simultaneous with their optimal 

allocation, we need to take necessary measures to 

purchase emergency items such as food, medicine, 

clothing and blankets, and transfer them to the 

warehouses. Since there is a possibility of an aftershock, 

and it will be almost time-consuming to respond to a 

catastrophe, it is also essential to plan, manage, and 

inventory control in each period after preparing the items. 
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The mathematical model in this research considers this 

issue by using the periodic preparation and distribution 

of items to minimize inventory costs [3-6]. Ferreira et al. 

[7] have addressed the issue of the distribution of relief 

items with the assumption of the items’ normalcy. Failure 

to pay attention to the expiration date of some items, such 

as medicine and food, can cause further damage to the 

victims because the slightest negligence can endanger the 

lives of the people who survived the disaster or prevent 

the timely supply and distribution of essential items. For 

instance, in Bam earthquake in Iran in 2007, about 30% 

of the antibiotics stored in the warehouses expired. The 

relief network faced the problem of preparing and 

responding quickly to the crisis [8]. Therefore, it is 

necessary to adopt the most appropriate policy to recover 

perishable products to preclude this problem. In this 

research, we assumed that in our periodic ordering 

policy, some necessary items are perishable, and we need 

to check the expiry date of the products and take out the 

obsolete items. 

In the real world, we can state uncertainty in all 

factors. In critical situations, indeterminacy can also 

occur at the time and place of the accident, the severity 

of the incident, the likelihood of a strike, infrastructure 

disruption, the amount of damage, access to 

communication routes to the affected areas, supply and 

demand of relief items, and the specific budget allocated 

to cover the existing costs. Such uncertainties may 

happen because of insufficient information about the 

degree of personal injuries or financial damages, so they 

should be regarded when making more accurate and 

realistic planning decisions. Since few surveys have 

considered the assumption of uncertainty in demand 

(54%) and budget (0.02%) in their model, the present 

study covered the premise of demand and budget 

uncertainty by considering the scenarios on the 

magnitude of the earthquake. 

Bi-level programming is a powerful tool for modeling 

and solving decentralized planning problems, but it has 

enormous computational complexity. In the real world, 

various systems have different subsystems that make it a 

hierarchical structure, and decision-making has its 

characteristics. In this type of planning, decisions are at 

different levels, and each identifies only some decision 

variables. Because of the computational complexity of 

planning, few articles in recent years have included this 

assumption in their research. In the present study, we turn 

the issue into bi-level programming, in which the leading 

decision-maker determines the variable of the optimal 

location of warehouses. Consequently, the decision-

maker at the lower level determines the optimal amount 

of the items’ allocation and inventory control according 

to the parameters and functional criteria. 

The remaining structure of the paper is as follows: 

Literature review of the related papers is presented in 

section 2. Problem description, assumptions, and 

mathematical model are given in section 3. Using solving 

methods consisting of the electromagnetic and genetic 

algorithms are in section 4. Section 5 is related to the 

computational results and discussions for different 

problems. Finally, in the last section, conclusion and 

future research directions are presented. 

 
 
2. LITERATURE REVIEW 
 

Cozzolino et al. [9] define disaster cycle management as 

the four main stages of mitigation, preparedness, 

response, and recovery. In our research, we have 

performed part of the measures related to the response 

phase. Naji Azimi et al. [10] proposed a location model. 

The points are selected from some potential points as 

satellite distribution centers, and people come to these 

locations to receive relief items. Their purpose was to 

minimize the distance that the vehicles traveled. Hu and 

Sheu [11] examined the reverse supply chain issue in 

waste management after a disaster. Their multi-objective 

linear programming model minimizes reverse logistic 

costs, the corresponding environmental and operational 

risks and the psychological harm to residents. Bozorgi 

Amiri et al. [12] proposed a mixed-integer linear 

programming model for natural disaster relief logistics 

under uncertain conditions. They used the particle swarm 

optimization approach to solve their proposed 

mathematical model. Finally, they presented 

computational results for several cases of this problem to 

demonstrate the feasibility and effectiveness of their 

proposed model and algorithm. A location-allocation 

model in uncertain crisis conditions for post-disaster 

debris management was presented by Habib and Sarkar 

[4]. It selected the temporary disaster debris management 

site and allocated waste from the affected areas to 

selected areas in two phases. Yu [13] proposed a multi-

objective optimization model to maximize minimum 

access guarantee and minimize operating costs for pre-

determining the location of emergency facilities. For this 

purpose, he used the concepts of the maximum flow and 

the shortest path in the network, respectively. He also 

showed the effect of the minimum access guarantee in the 

model by solving an example and comparing the number 

of inaccessible points in different random scenarios and 

proved that the proposed model could effectively 

determine the appropriate location of emergency 

facilities. Oksuz and Satoglu [14] presented a two-staged 

random model to determine the location and number of 

temporary medical centers in the event of a disaster, 

intending to minimize the total cost of construction and 

transportation. They tried to find an optimal solution for 

locating temporary medical centers by considering the 

location of the existing hospitals, the types of casualties, 

demand, the possibility of damage to roads and hospitals, 

and the distance between the disaster area and the 

medical center. Boonmee et al. [15] examined an 

integrated mathematical optimization model and the 



Z. Sahraei and P. Samouei / IJE TRANSACTIONS A: Basics  Vol. 35 No. 10, (October 2022)   1803-1819                              1805 
 

fuzzy hierarchical analysis process for shelter location 

and evacuation planning. They tested their proposed 

model with a real case study in Banta Municipality, 

Chiang Rai Province, Thailand. Finally, they proposed a 

suitable and realistic plan as an alternative for the 

decision-maker, whether an organization or the 

government in Banta Municipality. One year later, 

Boonmee et al. [3] examined post-crisis waste 

management issue to optimize the location and allocate 

resources. Chakravarty [16] offered a stochastic two-

stage mathematical model for determining response time 

and post-accident relief values to minimize order, 

maintenance, and transportation costs as well as the 

expected response time. Hong et al. [17] proffered a two-

stage stochastic programming model that determined the 

number and location of facilities with a limited capacity 

and the number of relief supplies available at each center. 

They efficiently calculated the proposed model using a 

method based on hybrid patterns. Mohammadi et al. [18] 

proposed a multi-objective stochastic programming 

model to develop earthquake response planning that 

integrated pre-and post-disaster decisions. They aimed to 

locate distribution centers, determine their inventory 

levels, and the relief items’ flow to distribute essential 

items immediately in affected areas. Tofighi et al. [19] 

developed a two-stage stochastic programming problem 

consisting of multiple central warehouses and local 

distribution centers. They have implemented their relief 

network in Tehran city in the probable pre-and post- 

earthquake stages. One year later, Hu et al. [20] proposed 

a two-stage stochastic programming model to integrate 

decisions in critical situations. The model determines the 

location and number of suppliers and the pre-disaster 

inventory level in the first phase. In the second phase, this 

model makes decisions about logistic quantifying, 

transportation fleet, and selection of post-disaster 

procurement quantities. Their purpose is to minimize 

transportation, logistics, and construction costs and set 

penalties for customer dissatisfaction. Some researchers 

have added inventory management to facility location, 

resource allocation, and other types of disaster 

management to improve their work in recent years. Shen 

et al. [21] proposed a modified economic manufacturing 

quantity model for perishable inventory with a minimum 

volume limit for drug management for the National 

Strategic Plan. They indicated in their article that 

minimizing such a system’s maintenance cost can be 

formulated as an optimization issue without non-uniform 

convex constraints. They showed the performance of 

their proposed model by analyzing sensitivities for 

various parameters. Manopiniwes et al. [22] offered a 

mixed-integer programming model to locate distribution 

centers and their inventory level according to capacity 

and time constraints with minimum total logistic costs. 

Roni et al. [23] proffered a mixed-integer programming 

model, including regular and irregular demand modes. 

They solved their model using the forbidden search 

algorithm for a hypothetical example to minimize the 

total costs of ordering, maintenance, and scarcity, 

showing the proposed model’s efficiency. Tavana et al. 

[24] scrutinized the location-inventory-routing problem 

in the humanitarian supply chain, assuming pre-and post-

disaster management. Their model determines the 

location of central warehouses and the amount of 

purchase and transfer of items from suppliers to central 

warehouses based on the prediction of product demands 

before the disaster. In the second phase and after the 

disaster, it determines the location of local warehouses, 

allocation of demand points to the local warehouses, and 

the local warehouses inventory. To solve this Mixed-

integer linear programming problem, they proposed an 

Epsilon-constraint method, a Nondominated Sorting 

Genetic Algorithm (NSGA-II), and the Reference-Point-

Based Nondominated Sorting Genetic Algorithm-II. 

Ferreira et al. [7] presented a decision-making model for 

the inventory management of perishable items for long-

term relief operations (continuous assistance) using the 

Markov decision-making process. They sought to 

determine the optimal quantity of perishable items to 

minimize inventory costs (maintenance and corruption). 

Resource allocation models allot resources or tasks 

without considering the flow of items in each direction. 

Researchers often model resource allocation in addition 

to facility location. Celik et al. [25] presented a two-stage 

stochastic location-allocation model to determine the 

number and the location of relief distribution centers in 

the pre-disaster phase and to allocate the demand points 

to the relief distribution centers in the post-disaster phase. 

Loree et al. [26] developed a mathematical model for 

determining the location of different distribution centers 

and allocating them to the demand points in post-crisis 

conditions. They modeled their problem to minimize the 

costs of construction, procurement, and deprivation (such 

as some points of demand’s lack of access to vital 

resources). Cavdur et al. [27] provided a spreadsheet-

based decision support tool for allocating temporary 

disaster relief facilities to distribute relief resources. 

Their tool allowed the user (i.e., decision-makers) to 

provide the necessary facilities for the transient response 

to various disasters by considering the possible 

uncertainties after the disaster (i.e., different rates of the 

affected population, planning periods, etc.). Baharmand 

et al. [28] offered a multi-objective multi-layered model 

to locate and allocate facilities for sudden disasters, 

assuming limitations in the facilities and fleets’ number 

and capacity. They selected the 2015 Nepal earthquake 

as a case study to solve the model. Recently, Liu et al. 

[29] proposed an integrated model of location-inventory-

routing for perishable products, considering the factors of 

carbon emissions and product freshness. They developed 

a multi-objective mathematical model to minimize cost 

and carbon emissions and maximize product freshness. 

They used the YALMIP toolbox to solve the model. 

Mahtab et al. [30] proposed a multi-objective robust-



1806                              Z. Sahraei and P. Samouei / IJE TRANSACTIONS A: Basics  Vol. 35 No. 10, (October 2022)   1803-1819 
 

stochastic humanitarian logistics model for relief goods 

distribution. They determined the location of temporary 

facilities, and the number of commodites to be pre-

positioned and provided a detailed schedule for the 

distribution of commodities and the dispatch of vehicles.  

Having reviewed the previous research (from 2008 

until now), we realized that the increasing number of 

natural disasters had increased the papers on crisis and its 

management, demonstrating the importance of research 

in this field. More than 75% (30 out of 39) of the articles 

have dealt with determining the optimal location of 

emergency facilities. Table 1 clearly shows this 

information. As a result, we can state that the issue of 

locating emergency facilities like the optimal location of 

local warehouses is one of the essential topics in the 

research on crisis management. However, there were 

gaps in the reviewed articles we covered in this study. 

Table 1 shows the most related reviewed papers’ 

comparison in terms of subject matter, planning horizon, 

solution method, proposed mathematical model and used 

algorithms, optimization levels, facility capacity, type of 

relief items, and definite or indefinite demand budget. 

 

 
TABLE 1. Review of the latest studies in disaster 
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[3]  ● ●  ●  ●  PSO/DE MILP ●  ●  ●  ●    

[15]  ● ●  ●   ●  MILP ●  ●  ●  ●    

[31]  ● ●  ●   ●  
MINL

P 
●  ●  ●  ●    

[4]  ● ●  ●   ●  MILP ●  ●  ●   ● ●  

[11]  ● ●  ●   ●  LP ●  ●  ●  ●    

[32]  ● ●  ●  ●  

Shortest 

path 

problem 

LP ●   ● ●  ●    

[5]  ● ●  ●   ●  MILP ●  ●  ●  ●    

[33]  ● ●  ●  ●  NSGA-ll MILP ●   ● ●  ●    

[34]  ● ●  ●  ●  
Tabu 

Search 
MILP ●  ●  ●  ●    

[35]   ●  ●  ● ● 
Warshall 

Floyd 
MILP ●  ●  ●  ●    

[6]  ●  ●  ●   

Evolutionary 

Optimization 

Algorithm 

LP ●  ●  ●   ● ●  

[10]  ●   ● ●   
Modified 

local search 
MILP ●  ●  ●   ●   

[36] ● ●  ● ●   ●  MILP ●  ●  ●   ● ●  

[12] ● ● ● ●    ●  MILP ●  ●  ●   ●   

[16] ●   ● ●   ●  

sto
ch

astic 

p
ro

g
ram

m
in

g
 

●  ●  ●   ●  ● 

[37] ●   ●  ●   
Sample 

average 

approximation 

MILP ●  ●  ●   ●   

[17] ● ●  ●    ●  MILP  ● ●  ●   ●   

[22] ● ●  ●    ●  MILP ●  ●  ●  ●    
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[18] ● ●  ● ●  ●  MOPSO 

sto
ch

astic 

p
ro

g
ram

m
in

g
 

●  ●  ●   ● ●  

[38] ● ●   ● ●     ●  LP ●  ●   ●  ●   

[39] ● ● ● ●       ●  MILP ●  ●  ●  ●    

[19] ● ●   ● ●   ●   
Tailored 

Differential 

Evolution 

LP  ● ●  ●   ●   

[7] ●       ● ●     VI MDP ●   ●  ●  ●   

[20] ● ●   ● ●     ●  MILP ●  ●  ●   ●   

[40] ● ● ●   ●     ●  MILP  ● ●  ●   ●   

[23] ●       ●   ●   
Tabu 

Search 
MILP ●   ● ●   ●   

[21] ●       ●     ●  EMQ ●   ● ●  ●    

[26]  ● ●   ●     ●  
MINL

P 
●  ●  ●  ●    

[41]  ● ●   ●     ●  MILP ●  ●  ●   ●   

[12]  ● ● ● ●   ●   PSO MILP ●   ● ●   ●   

[24] ● ● ● ● ●   ●   
An epsilon-
constraint/

NSGA-II 

MILP ●  ●   ●  ●   

[25]  ● ● ● ●   ●   Genetic MILP ●  ●  ●   ●   

[1] ● ● ● ● ● ●      MILP ●  ●   ●  ●   

[27] ●   ●   ●     ●  IP ●  ●  ●  ●    

[28]  ● ●   ● ●     

Augmented 

epsilon-
constraint 

method 

version 2 
(AUGMECO

N2) 

MILP ●  ●  ●  ●    

[13]  ●   ●       ●  MILP ●   ● ●  ●  ●  

[14]  ●     ●     ●  MILP ●  ●        

This 

Study 
● ● ●  ●  ●  

Electromagnet

ic and Genetic 

Algorithms 

MILP  ● ●   ●  ●  ● 

 

 

In this research, an attempt has been made to examine 

recent articles in crisis management in terms of 

uncertainty in budget and demand parameters. Most 

papers do not address the budget in their research and 

often assume sufficient and available financial resources. 

But in reality, this may not be the case because the 

problem of examining budget deficits and surpluses is 

one of the most challenging issues facing organizations. 

According to Table 1, out of only six articles that have 

applied the budget in their model, one of them has 

considered the uncertain budget. Uncertainty in demand 

is also one of the gaps studied in this research  that more 

than half of the articles have ignored. Humanitarian relief 

operations management involves many actors, who differ 

in culture, goals, interests, commitments, capacity, and, 

most importantly, expertise. Therefore, each actor has a 

different role and task in crisis management. In many of 

the articles reviewed in this study (about 87%), only one 

decision-maker makes decisions about facility location, 

inventory control, or resource allocation. But in the real 

world, there are different organizations involved in crisis 

management that have various tasks. It is necessary to 

establish the required coordination to exchange 

information and establish coordinated communication in 

decisions. In recent years, this issue has been considered 

a research gap and needs more research than we have 

covered in this study. 
 
 
3. MODELING 
 

Defining and expressing an issue necessitates the 

statement, analysis, and resolution of the problem. In this 

research, we developed two mixed-integer linear 
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programming models. These models determine the 

optimal location of local warehouses among the existing 

points, allocation of disaster-affected areas to the 

warehouses, purchase, inventory control, and the 

distribution of relief items. Figure 1 indicates an 

overview of the proposed supply chain network. In these 

models, we assume the unlimited supply capacity of 

perishable and ordinary relief items. Perishable items 

have an expiration date, before which we take them out 

of local warehouses at a cost to preclude the storage and 

distribution of spoiled items. Demand for items and the 

budget for the construction of local warehouses are 

considered uncertain. Decisions to determine the optimal 

location of warehouses, optimal allocation, and control of 

the inventory of items are modeled as mixed-integer and 

bi-level mathematical models. Then, they are compared 

with each other. A quadratic constraint has caused the 

model to deviate from the linear mode. For linearization 

and improvement of the model, we use a series of 

changes. At the first, we propose a nonlinear model, and 

then introduce its linear form. 

The proposed mathematical model includes the 

following assumptions: 

1) The problem is a three-level supply chain network with 

a central warehouse (supplier), several local warehouses 

(distributors), and several demand points (disaster-

affected areas). 

2) Relief items include two categories of ordinary and 

perishable items. 

3) Crisis management is related to the post-disaster 

phase. 

4) The central warehouse location and the demand points 

are known, and the location of the local warehouses is 

unknown. 

5) The inventory policy is considered by the method of 

[1]. In this way, perishable items have an expiration date 

that we should pay attention to their date. Also, to reduce 

the risk of the items remaining in the warehouses and 

their decay, we should not purchase items with longer 

expiration dates. Moreover, since the deterioration items, 

such as canned food, can endanger human lives and even 

contaminate the warehouse environment, we will remove 

them from the warehouse at a cost before the expiration 

date. 
 

 

 
Figure 1. Overview of the relief supply chain 

6) Demand and budget are considered uncertain. 

Therefore, the budget and demand will be different in 

various scenarios. 

7) In this research, a bi-level decision-making process is 

considered. In this way, one organization is responsible 

for locating warehouses, and another makes decisions 

about inventory control and allocation. These two 

organizations make the optimal decision by contributing 

and swapping information. How one decision-maker 

makes all the decisions is also considered and compared 

to the multi-decision mode. 

8) Some parameters are considered according to various 

scenarios. 

Indices 

i: index of local warehouse i=1,…, I 

j: index of demand point j=1,…, J 

k: index of relief items k=1,…, K 

s: index of possible scenarios s=1,…,S 

t: index of periods t=1,…,T 

ℎ𝑘: index of the remaining lifetime of product k 

 ℎ𝑘=1,…,  𝐻𝑘  

Deterministic parameters 

𝐶𝐻𝑘: additional unit holding penalty of item type k 

𝑆𝑃𝑘: penalty cost of unit shortage of item type k  

𝐶𝑃𝑘: purchase cost for each item type k 

𝐶𝑀𝑘𝑖 ∶ cost of unit item type k movement to warehouse i 

𝛼𝑘:  allowable remaining lifetime (period) for item type 

k for purchasing 

𝛥𝑝𝑞: acceptable difference of the equity level between 

two demand points p and q (p≠q) 

𝐶𝐸𝑘: removal cost for each item type k 

𝑈𝑖𝑘:  The capacity of warehouse i to store item k  

𝛽𝑘: allowable remaining lifetime (period) for item type k 

for removing from warehouses 

𝐶𝑇𝑘𝑖𝑗𝑡𝑠ℎ𝑘
: The cost of transporting item k with the 

lifetime ofℎ𝑘from warehouse i to point j in period t under 

scenario s 

Uncertain parameters 

𝑓𝑖𝑠:The fixed cost of building warehouse 𝑖 under scenario 

𝑠 

 𝑝𝑠: Probability of scenario 𝑠’ occurrence  

𝑑𝑗𝑘𝑠𝑡: The amount of point 𝑗’s demand for item 𝑘 under 

scenario 𝑠 in period t 

𝜏𝑗𝑘𝑠𝑡 ∶  The cost of the shortage of item 𝑘 at point 𝑗 under 

scenario 𝑠 in period 𝑡 

𝜓𝑗𝑘𝑠: The ratio of item 𝑘’s deficiency at point 𝑗 under 

scenario 𝑠 

𝐵𝑠: The available budget for the construction of 

warehouses under scenario 𝑠 

variables: 

Scenario dependent 

𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
: The amount of the type-k item transferred from 

warehouse i to point j in period t under scenario s 

𝑊𝑗𝑘𝑠𝑡: The amount of the shortage of item k at point j 

under scenario s in period t 
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𝑄𝑘𝑖𝑡𝑠ℎ𝑘
: The quantity of the item k purchased for 

warehouse i in period t under scenario s with a lifetime 

ofℎ𝑘 

𝐼𝑘𝑖𝑡𝑠ℎ𝑘
: The Inventory level of item k with the lifetime 

ofℎ𝑘in warehouse i kept in period t under scenario s 

𝑏𝑘𝑖𝑡𝑠ℎ𝑘
: The amount of item k with the lifespan of ℎ𝑘 

taken out from warehouse i under scenario s in period t 

to prevent decay 

Scenario independent 

𝐸𝑘𝑖𝑡: The mathematical expectation of the shortage of 

item k in warehouse i in period t 

𝜑𝑗𝑡: The amount of deficiency at point j in period t 

𝑦𝑖 : The binary variable whose value is one if warehouse 

i is constructed; otherwise, its value is zero 

𝑔𝑖𝑗: The binary variable whose value is one if point j is 

allocated to warehouse i; otherwise, it is zero. 
 
 

3. 1. Mixed Integer Linear Programming Model 
Mathematical Model 

(1 ) 

𝑀𝑖𝑛            𝑧 = ∑ ∑ 𝑓1𝑠𝑦𝑖
𝑆
1=1  𝑝𝑠  𝐼

𝑖=1 +

∑ (∑ (∑ ∑ 𝜏𝑗𝑘𝑠𝑡𝑊𝑗𝑘𝑠𝑡𝑝𝑠
𝑆
𝑠=1

𝐽
𝑗=1 +𝑇

𝑡=1
𝐾
𝑘=1

∑ (𝑆𝑃𝑘  𝐸𝑘𝑖𝑡 + ∑ (∑  𝑄𝑘𝑖𝑡𝑠ℎ𝑘
( 𝐶𝑀𝑘𝑖 +

 𝐻𝑘
 ℎ𝑘= 𝛼𝑘

𝑆
𝑠=1

𝐼
𝑖=1

 𝐶𝑃𝑘) 𝑝𝑠 + ∑  𝐶𝐸𝑘 𝑏𝑘𝑖𝑡𝑠ℎ𝑘
 𝑝𝑠 +

 𝛽𝑘
 ℎ𝑘=1

∑ ( 𝐶𝐻𝑘 𝐼𝑘1𝑡𝑠ℎ𝑘
 𝑝𝑠 +

 𝐻𝑘
 ℎ𝑘=1

∑  𝐶𝑇𝑘𝑖𝑗𝑡𝑠ℎ𝑘
𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

 𝑝𝑠
𝐽
𝑗=1 )))))  

(2 ) 𝐼𝑘𝑖𝑡𝑠ℎ𝑘
= 0             ∀𝑘. 𝑖. 𝑠.  ℎ𝑘 . 𝑡 = 0  

(3 ) 𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
= 0          ∀𝑖. 𝑗. 𝑘. 𝑠.  ℎ𝑘. 𝑡 = 0   

(4 ) 
𝐼𝑘𝑖𝑡𝑠ℎ𝑘

=  𝐼𝑘𝑖𝑡−1𝑠ℎ𝑘+1 +  𝑄𝑘𝑖𝑡𝑠ℎ𝑘
−  𝑏𝑘𝑖𝑡𝑠ℎ𝑘

−

∑  𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
∗

𝐽
𝑗=1  𝑝𝑠       ∀𝑘. 𝑖. 𝑠. ℎ𝑘 . 𝑡 ∊ {1. … . 𝑇}.  

(5 ) 
𝑏𝑘𝑖𝑡𝑠ℎ𝑘

= 0                 ∀𝑘. 𝑖. 𝑠. ℎ𝑘 ∊ { 𝛽𝑘 +

1. … .  𝐻𝑘}. 𝑡 ∊ {1. … . 𝑇}  

(6 ) 𝑄𝑘𝑖𝑡𝑠ℎ𝑘
= 0      ∀𝑘. 𝑖. 𝑠. ℎ𝑘 . 𝑡. ∊ {1. … . 𝛼𝑘}          

(7 ) 
𝑏𝑘𝑖𝑡𝑠ℎ𝑘

≤  𝐼𝑘𝑖𝑡𝑠ℎ𝑘
        ∀𝑘. 𝑖. 𝑠. 𝑡 ∊ {1. … . 𝑇}.  ℎ𝑘 ∊

{1. … .  𝛽𝑘}  

(8 ) ∑  𝑄𝑘𝑖𝑡𝑠ℎ𝑘

 𝐻𝑘
ℎ𝑘= 𝛼𝑘

≤  𝑈𝑖𝑘 𝑦𝑖              ∀𝑘. 𝑠. 𝑖. 𝑡    

(9 ) 𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
≤  𝑔𝑖𝑗  𝐼𝑘𝑖𝑡𝑠ℎ𝑘

   ∀𝑖. 𝑗. 𝑘. ℎ𝑘 . 𝑠. 𝑡 ∊ {1. … . 𝑇}  

(10 ) 
𝑊𝑗𝑘𝑠𝑡 + ∑ ∑  𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

 𝐻𝑘
ℎ𝑘

=  𝑑𝑗𝑘𝑠𝑡       ∀𝑗. 𝑘. 𝑠. 𝑡 ∊𝐼
𝑖=1

{1. … . 𝑇}    

(11 ) 𝑊𝑗𝑘𝑠𝑡 ≤  𝜓𝑗𝑘𝑠 𝑑𝑗𝑘𝑠𝑡        ∀𝑗. 𝑘. 𝑠. 𝑡 ∊ {1. … . 𝑇}         

(12 ) ∑ 𝑓𝑖𝑠𝑦𝑖 ≤𝐼
𝑖=1  𝐵𝑠          ∀𝑠            

(13 ) 𝑔𝑖𝑗 ≤ 𝑦𝑖         ∀𝑖. 𝑗     

(14 ) 
−𝛥𝑝𝑞 ≤  𝜑𝑝𝑡 −  𝜑𝑞𝑡 ≤  𝛥𝑝𝑞     ∀𝑝. 𝑞 ∊
{1. … . 𝐽} . 𝑡           𝑝 ≠ 𝑞     

(15 ) 𝜑𝑗𝑡 = ∑ ∑  𝑊𝑗𝑘𝑠𝑡 ∗𝑆
𝑠=1

𝐾
𝑘=1  𝑝𝑠      ∀𝑗. 𝑡 ∊ {1. … . 𝑇}   

(16 ) 
𝐸𝑘𝑖𝑡 = ∑ ∑  𝑑𝑗𝑘𝑠𝑡

𝑆
𝑠=1

𝐽
𝑗=1  𝑔𝑖𝑗 ∗  𝑝𝑠 −

∑ ∑  𝐼𝑘𝑖𝑡𝑠ℎ𝑘

 𝐻𝑘
 ℎ𝑘=1 ∗  𝑝𝑠        ∀𝑘. 𝑖. 𝑡 ∊ {1. … . 𝑇} 𝑆

𝑠=1   

(17 ) 
𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

. 𝑊𝑗𝑘𝑠𝑡 . 𝐸𝑘𝑖𝑡 . 𝑄𝑘𝑖𝑡𝑠ℎ𝑘
 . 𝐼𝑘𝑖𝑡𝑠ℎ𝑘

 . 𝑏𝑘𝑖𝑡𝑠ℎ𝑘
 . 𝜑𝑗𝑡 ≥

0      ∀𝑖. 𝑗. 𝑘. 𝑠. 𝑡.  ℎ𝑘   

(18 )  𝑦𝑖 .  𝑔𝑖𝑗 ∊ {0.1}             ∀𝑖. 𝑗   

Relation (1) represents the objective function of the 

problem which minimizes total cost. Its first part is the 

cost of the warehouse construction. Total shortage cost in 

demand points is in the second part of this relation. Total 

shortage cost in warehouses is shown in the third part, 

and the fourth part is the costs of purchasing and 

transporting items from the central warehouse to local 

warehouses. Part five to seven, respectively, demonstrate 

the costs of transporting items out of the warehouse to 

prevent decay and their maintenance and transportation 

from local warehouses to demand points. In this model, 

we assume the disaster occurred at t = 0. Constraints (2) 

to (4) show the number of items in the warehouses and 

their purchase and transfers at t = 0 are zero. The 

Constraint sets (5) and (6) show the inventory balance the 

constraint set’s difference is between the lifetimes of the 

purchased and transferred items. The Constraint set (7) 

indicates the number of items transported out of the 

warehouse to prevent decay should be less than the 

inventory of items in that period. The Constraint set (8) 

guarantees that the total purchased items for that 

warehouse shall not exceed its capacity if a warehouse is 

constructed. The Constraint set (9) ensures that if a 

warehouse is allocated to a demand point, the quantity of 

the items sent from that warehouse to that point shall not 

exceed that warehouse's inventory. Constraints (10) and 

(11) prove that the shortage at one point is equal to the 

difference between the demand of that point and the 

quantity of the items transferred to the point, and it should 

not be more than the allowed limit. The Constraint set 

(12) ensures the construction of warehouses does not cost 

more than the available budget. The Constraint set (13) 

proves if there is no warehouse, no demand point will be 

allocated. The Constraint set (15) calculates the weight 

deficit of a point in various periods. The Constraint set 

(14) indicates the difference in the weight deficiency of 

two points in a period should not exceed a particular 

value. This limitation assures us that the weight 

deficiency of the points is close to each other. The 

Constraint set (16) shows deficiencies in each warehouse, 

and Constraints (17) and (18) indicate the types of 
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decision variables. The Constraint set (9) has taken the 

mathematical model out of the linear form. To solve this 

problem, we convert it to the following two constraints: 

(19 ) 𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
≤  𝑔𝑖𝑗  𝑈𝑖𝑘                          ∀𝑖. 𝑗. 𝑘. 𝑠. ℎ𝑘 . 𝑡    

(20 ) 𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
≤  𝐼𝑘𝑖𝑡𝑠ℎ𝑘

                          ∀𝑖. 𝑗. 𝑘. 𝑠. ℎ𝑘 . 𝑡  

Which show that the number of transferred items will not 

exceed the warehouse’s capacity and inventory. 
 

3. 2. Scenarios             According to Rezaei-Malek et al. 

[1], the magnitude of an earthquake is considered in three 

ranges: less than 6 Richter, between 6 and 8 Richter, and 

more than 8 Richter, which their probabilities are 0.3, 0.5, 

and 0.2, respectively. In this study, we divide the day’s 

hours into two categories, rest and working hours. These 

categories occupy eight and sixteen hours of the day, 

respectively. Since planning is related to the post-crisis 

phase, we considered the scenarios for the aftershocks. 

The importance of this classification lies in considering 

the difference in human beings’ reaction speed to 

earthquakes during sleep and wakefulness; different 

reaction speeds affect the extent of the possible damage. 

Accordingly, we regarded six different scenarios with 

different probabilities and calculated them. Table 2 

summarized the calculation results. For example, 

statement 21 is the calculated probability of the first 

scenario related to an earthquake with less than 6 Richter 

during sleep or rest. 

(21) 𝑝1 = (
8

24
) × 0.3 = 0.1  

Since the question is related to the post-crisis phase, we 

have considered the scenarios for the possible 

aftershocks. 

 

3. 3. Bi-level Programming                  Bi-level 

programming is an effective tool for modeling and 

solving decentralized planning problems, but it has too 

many computational complexities. In the real world, 

numerous existing systems have different subsystems 

that make them a hierarchical structure, and decision-

making in this structure has its characteristics. For 

instance, consider a company includes several factories. 

The board of directors is at the forefront of decision-

making. Given its responsibilities and information, this  

 

 
TABLE 2. Probability of the occurrence of scenarios  

Scenario 

Magnitude≤6 

(Richter) 
6≤Magnitude≤8 

Magnitude≥8 

(Richter) 

W N W N W N 

Scenario 

Number 
1 2 3 4 5 6 

Probability 0.1 0.2 0.17 0.33 0.07 0.13 

Note: N, Non-Working; W, Working 

board makes more critical decisions to develop and 

optimize the objective functions of the company. 

Managers of the subsidiary factories must make such 

decisions because they have higher ranks; however, 

factory managers can make decisions based on their 

authority to optimize their performance criteria. Different 

parts of factories have the same attitude towards 

managers. 

On the other hand, these decisions can affect the 

company's goal and the decision-making space of the 

board and force them to change their decisions. These 

types of decisions are called bi-level programming. In 

this structure, decisions are at different levels, and each 

identifies only a few decision variables. In this study, we 

also turned the problem into bi-level programming, and 

while the leader determines the optimal location of 

warehouses, the follower determines the optimal amount 

of the items’ allocation and inventory according to their 

parameters and criteria. 

Relations 22 to 42 specify the bi-level programming 

model. In this model, at the first, the optimal location of 

warehouses is determined, then, the optimal allocation 

and control of the inventory of the items are planned. 

(22 ) 𝑀𝑖𝑛      𝑧 = ∑ ∑ 𝑓𝑖𝑠𝑦𝑖
𝑆
𝑠=1   𝐼

𝑖=1   

(23 ) 𝑠. 𝑡: ∑ 𝑓𝑖𝑠𝑦𝑖 ≤𝐼
𝑖=1  𝐵𝑠             ∀𝑠    

(24 ) 𝑔𝑖𝑗 ≤ 𝑦𝑖               ∀𝑖. 𝑗     

(25 ) 𝑦𝑖 .  𝑔𝑖𝑗 ∊ {0.1}         ∀𝑖. 𝑗        

(26 ) 

𝑀𝑖𝑛   𝑧𝑧 =

  ∑ (∑ (∑ ∑ 𝜏𝑗𝑘𝑠𝑡  𝑊𝑗𝑘𝑠𝑡  𝑝𝑠
𝑆
𝑠=1

𝐽
𝑗=1 +𝑇

𝑡=1
𝐾
𝑘=1

∑ (𝑆𝑃𝑘  𝐸𝑘𝑖𝑡 + ∑ (∑  𝑄𝑘𝑖𝑡𝑠ℎ𝑘
( 𝐶𝑀𝑘𝑖 +

 𝐻𝑘
 ℎ𝑘= 𝛼𝑘

𝑆
𝑠=1

𝐼
𝑖=1

 𝐶𝑃𝑘) + ∑  𝐶𝐸𝑘 𝑏𝑘𝑖𝑡𝑠ℎ𝑘
+

 𝛽𝑘
 ℎ𝑘=1

∑ ( 𝐶𝐻𝑘 𝐼𝑘𝑖𝑡𝑠ℎ𝑘
+

 𝐻𝑘
 ℎ𝑘=1

∑  𝐶𝑇𝑘𝑖𝑗𝑡𝑠ℎ𝑘
𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

 𝑝𝑠
𝐽
𝑗=1 )))))  

(27 ) 
𝑠. 𝑡: 

𝐼𝑘𝑖𝑡𝑠ℎ𝑘
= 0           ∀𝑘. 𝑖.  ℎ𝑘 . 𝑡 = 0         

(28 ) 𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
= 0        ∀𝑖. 𝑗. 𝑘. 𝑠.  ℎ𝑘. 𝑡 = 0 

(29 ) 
𝐼𝑘𝑖𝑡𝑠ℎ𝑘

=  𝐼𝑘𝑖𝑡−1𝑠ℎ𝑘+1
+  𝑄𝑘𝑖𝑡𝑠ℎ𝑘

−  𝑏𝑘𝑖𝑡ℎ𝑘
−

∑ ∑  𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
∗𝑆

𝑠=1
𝐽
𝑗=1  𝑝𝑠       ∀𝑘. 𝑖. 𝑠. ℎ𝑘 . 𝑡 ∉ {0}  

(30 ) 
𝑏𝑘𝑖𝑡𝑠ℎ𝑘

= 0          ∀𝑘. 𝑖. 𝑠. ℎ𝑘 ∊ { 𝛽𝑘 + 1. … .  𝐻𝑘}. 𝑡 ∊

{1. … . 𝑇}  

(31 ) 𝑄𝑘𝑖𝑡𝑠ℎ𝑘
= 0           ∀𝑘. 𝑖. 𝑠. ℎ𝑘 . 𝑡. ∊ {1. … . 𝛼𝑘}       

(32 ) 
𝑏𝑘𝑖𝑡𝑠ℎ𝑘

≤  𝐼𝑘𝑖𝑡𝑠ℎ𝑘
        ∀𝑘. 𝑖. 𝑠. 𝑡 ∊ {1. … . 𝑇}.  ℎ𝑘 ∊

{1. … .  𝛽𝑘}     
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(33 ) ∑  𝑄𝑘𝑖𝑡𝑠ℎ𝑘

 𝐻𝑘
ℎ𝑘= 𝛼𝑘

≤  𝑈𝑖𝑘 𝑦𝑖          ∀𝑘. 𝑠. 𝑖. 𝑡        

(34 ) 𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘
≤  𝑔𝑖𝑗  𝑈𝑖𝑘        ∀𝑖. 𝑗. 𝑘. 𝑠. ℎ𝑘 . 𝑡 ∊ {1. … . 𝑇}  

(35 ) 
𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

≤ ∑  𝐼𝑘𝑖𝑡ℎ𝑘

 𝐻𝑘
 ℎ𝑘=1 𝜌𝑖𝑘𝑠       ∀𝑖. 𝑗. 𝑘. 𝑠. ℎ𝑘 . 𝑡 ∊

{1. … . 𝑇}    

(36 ) 
𝑊𝑗𝑘𝑠𝑡 + ∑  𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

=  𝑑𝑗𝑘𝑠𝑡     ∀𝑗. 𝑘. 𝑠. ℎ𝑘 . 𝑡 ∊𝐼
𝑖=1

{1. … . 𝑇}   

(37 ) 𝑊𝑗𝑘𝑠𝑡 ≤  𝜓𝑗𝑘𝑠 𝑑𝑗𝑘𝑠𝑡       ∀𝑗. 𝑘. 𝑠. 𝑡 ∊ {1. … . 𝑇}     

(38 ) 
−𝛥𝑝𝑞 ≤  𝜑𝑝𝑡 −  𝜑𝑞𝑡 ≤  𝛥𝑝𝑞       ∀𝑝. 𝑞 ∊
{1. … . 𝐽} . 𝑡           𝑝 ≠ 𝑞    

(39 ) 𝜑𝑗𝑡 = ∑ ∑  𝑊𝑗𝑘𝑠𝑡 ∗𝑆
𝑠=1

𝐾
𝑘=1  𝑝𝑠     ∀𝑗. 𝑡 ∊ {1. … . 𝑇}   

(40 ) 
𝐸𝑘𝑖𝑡 = ∑ ∑  𝑑𝑗𝑘𝑠

𝑆
𝑠=1

𝐽
𝑗=1  𝑔𝑖𝑗 ∗  𝑝𝑠 −

∑ ∑  𝐼𝑘𝑖𝑡𝑠ℎ𝑘

 𝐻𝑘
 ℎ𝑘=1 ∗  𝑝𝑠        ∀𝑘. 𝑖. 𝑡 ∊ {1. … . 𝑇} 𝑆

𝑠=1   

(41 ) 
𝑋𝑖𝑗𝑘𝑠𝑡ℎ𝑘

. 𝑊𝑗𝑘𝑠𝑡 . 𝐸𝑘𝑖𝑡 . 𝑄𝑘𝑖𝑡𝑠ℎ𝑘
 . 𝐼𝑘𝑖𝑡𝑠ℎ𝑘

 . 𝑏𝑘𝑖𝑡𝑠ℎ𝑘
 . 𝜑𝑗𝑡 ≥

0       ∀𝑖. 𝑗. 𝑘. 𝑠. 𝑡.  ℎ𝑘  

(42 )  𝑔𝑖𝑗 ∊ {0.1}      ∀𝑖. 𝑗      

 
 
4. SOLVING METHODS 
 
4. 1. The Electromagnetic Algorithm               
Electromagnetism is a branch of physics that considers 

electrical and magnetic phenomena and their 

relationship. In electromagnetic theory, forces are 

described by an electromagnetic field. In fact, 

electromagnetism states that the force exerted on a point 

by other points is inversely related to the distance 

between the points and is directly related to these points’ 

charge. This algorithm is a population-based method and 

like the genetic algorithm, we equate an answer with a 

chromosome. Each solution is announced as a charged 

particle. Each point is assumed to be a charged particle in 

space, and its amount of charge also changes based on the 

value of its objective function. As a result, the fitness 

function in this algorithm is the particle charge. In each 

iteration, after changing the charge of each point, we 

determine the result of the forces acting on the points and 

their movement. Like electromagnetic forces, the force 

exerted on each point is obtained by summing all the 

forces exerted on it. Hence, after getting the initial 

population, calculating the total forces on each particle 

and moving the particle using the resultant force exerted 

are necessary. 
• Steps of electromagnetic algorithm 

This algorithm consists of four main phases: 

1. Setting up or producing an initial population 

2. Local search (using local search in neighborhoods to 

find the optimal local) 

3. Calculation of the force exerted on each particle 

(calculation of the total force exerted on each particle) 

4. Moving in the direction of the exerted force 
 

4. 2. Genetic Algorithm           A genetic algorithm is a 

search technique in computer science to find approximate 

solutions to optimize models, mathematics, and search 

problems. It is a type of evolutionary algorithm that 

utilizes biological processes like inheritance, biology 

mutation, and Darwin’s selection principles to find the 

optimal solution. Genetic algorithms are often item 

choices for regression-based prediction techniques. The 

problem to be solved has inputs converted into solutions 

during a modeled process of genetic evolution. Then, the 

solutions are investigated by the evaluation function, and 

if the stopping rule has been satisfied, the algorithm 

terminates. In general, it is an iteration-based algorithm 

whose parts are selected through random processes; these 

algorithms consist of parts of the fitness function, 

display, selection, and modification. 
• Steps of the genetic algorithm  

1. Creating an initial population and evaluating it, 

2. Selecting parents and combining them to create a 

crossover population 

3. Selecting population members to cause mutations and 

create mutation populations (mutation) 

4. Integrating the initial population and crossover and 

mutation populations, as well as developing a new main 

population and evaluating it 

5. Checking the termination condition (If the condition is 

met, the algorithm is terminated; otherwise, we go to step 

two). 

In this algorithm, the way the problem’s answer is 

displayed is called a chromosome. Since this algorithm is 

population-based, we first generate a set of chromosomes 

randomly or based on an innovative method as the initial 

population selection. After examining the fitness 

function's value, we select some of these chromosomes 

as parents for neighborhood production. Then we create 

neighborhoods using crossover and mutation concepts. 

The crossover operator directs the answers to the optimal 

solution, and the mutation operator prevents falling into 

the optimal local trap. We perform this procedure until 

the stop condition occurs. 
 

4. 3. How To Display the Answers            The first step 

in applying and implementing any metaheuristic 

algorithm is to display its coding. 
 

4. 3. 1. How to Display the Answer in the Ga             
This section displays the answer or the chromosome 

associated with the problem using Figure 2. The answer 

is represented by a matrix in which the number of rows 

equals the number of items. The number of columns 

represents the sum of the number of local warehouses and 
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demand points. In each row, the cells have integer values 

between one and the sum of the number of local 

warehouses and the number of demand points. These 

values indicate the importance of the warehouses for 

distributing the desired items or the importance of 

receiving the items by the demand points; the larger the 

numbers, the higher the priority. 

An example of solution representation is displayed in 

Figure 2 which the first row represents the product 

distribution priorities. In this row, considering the largest 

number, i.e., number 5, is located in the second cell, and 

this cell belongs to the second warehouse, the priority is 

distributing items from the second warehouse. According 

to the distribution cost, out of the four demand points, the 

point to which sending items from this warehouse costs 

the lowest obtains the license to receive the items, and the 

items have transferred to that point. Based on the 

warehouse's capacity, the quantity of the transferred 

items is equal to or less than the demand at that point. In 

this way, items are distributed based on the priority of 

each warehouse or point. In this problem, if there is no 

warehouse within the potential points, the cell value of 

that warehouse and the number of dispatched items from 

there will be zero, and the cost of delivering items will be 

infinite. 

 

4. 3. 2. Operators            Genetic operators imitate the 

process of inherited gene transfer to create new offspring 

in each generation. An essential part of the genetic 

algorithm is the creation of new chromosomes called 

parents. This critical process is carried out by mutation 

and crossover operators. But in practice, operators are 

defined by the type of problem and are utterly dependent 

on the analyst’s ability, and are empirical. The efficiency 

of these operators in achieving optimal solutions varies 

in different problems. Some operators work on just one 

chromosome and others on a few chromosomes or even 

all the chromosomes in the previous population. The role 

of genetic operators in the performance algorithm is very 

significant. Genetic operators are divided into mutation 

operators and crossover operators. 
• Crossover operators 

Operators select one or more points from two or more 

answers and exchange their values. These operators 

consider a solution and swap their places with other 

solutions to generate new solutions. The fewer the 

responses that participate in this operation, the closer the 

responses will be to the previous population. These 

operators are themselves divided into one, two, or 

multiple cutting points. 

In this study, the crossover operator is defined is as 

follows. First, a pair of current-generation chromosomes 

are selected. Since the chromosome in question is a 

matrix chromosome, we cut both selected chromosomes 

longitudinally and transversely. Thus, we divide each 

chromosome into four parts. These two parent 

chromosomes produce two children; the upper-left- and 

 
Figure 2. An example of a solution representation in the GA 

 

 

lower-right-corner genes of the first parent make the 

values of the first child’s upper-left and lower-right 

corner genes, and the second parent genes produce the 

second child. The remaining values of the genes are 

examined cell by cell from the other parent chromosome 

and if repeated, removed from the parent cell's same 

values. In this way, two children are produced with 

different amounts of genes. Figure 3 shows an example 

of producing offspring with this crossover method.  

• Mutation operators 

Mutation operators are operators with random change 

characteristics. One or more locations of a string of 

characters with a certain length are considered in them, 

and the values of the characters in those locations are 

varied. Important items in this type of operator are: 

• The number of locations to be changed 

• How to select locations 

• How the change operation is performed 

In this study, for mutation, we select two genes in 

each row randomly and exchange their values. Figure 4 

indicates an example of producing a new chromosome by 

this method. 
 

4. 3. 3. How to Display the Answer in the 
Electromagnetic Algorithm            Figure 5 displays 

the answer for the electromagnetic algorithm in the 

present research. In this case, we computed the charged 

particle’s length by multiplying the number of items by 

the total number of local warehouses and demand points.  

 

 

 
Figure 3. An example of child production employing the 

crossover method 

 

 

 
Figure 4. An example of producing a new chromosome 

using a mutation operator 

1 3 5 2 4 1 3 2 5 4

4 2 1 5 3 4 2 3 1 5

5 2 4 3 1 5 2 4 3 1

4 2 3 5 1 4 2 5 3 1

5 3 4 1 2 5 3 1 4 2

3 4 1 2 5 3 4 1 2 5

The second parent

The first parent The first child

The second child

1 5 3 2 4 1 2 3 5 4

2 4 1 5 3 3 4 1 5 2

4 3 5 1 2 4 3 1 5 2
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There are also upper and lower limits for the cell values. 

Each cell, in the initial population takes a random value 

between -10 and 10. Subsequent generations are 

produced based on the structure of the algorithm. We 

consider the discrete problem-solving space and use the 

electromagnetic algorithm structurally for continuous 

problems. Therefore, to convert the discrete solution after 

creating the initial population, we reshape the charged 

particle to the number of items and the total number of 

warehouses and demand points and convert it to a matrix. 

Then, we arrange the numbers in each row to produce a 

matrix containing integers. At this stage, the display 

mode turns into the display mode in the genetic 

algorithm. Then we calculate the fitness function and 

continue the algorithm until the procedure stops. 

Figure 5 shows an example of how the coding of the 

answer in the electromagnetic algorithm is prepared for a 

problem with three types of items, two demand points, 

and two local warehouses. Figure 6 indicates the 

conversion of an array to a matrix. Figure 5 transforms 

into Figure 6 because the array is converted to a matrix 

with the number of rows equal to the number of items and 

the number of columns equal to the total number of 

warehouses and demand points. MATLAB software uses 

the reshape function for this purpose. Figure 7 also shows 

the sorted mode of the matrix indicated in Figure 6. 
 

4. 3. 4. Stop Condition of the Algorithm         We 

continue repeating algorithms and producing a new 

generation until the stop condition is met. The stop 

condition in algorithms can be one way to reach an 

acceptable minimum of response (objective function), 

the number of iterations, time, convergence, and getting 

a certain number of responses in the solution space. In 

this research, both algorithms’ stop condition is the 

number of repetitions of the new generation production. 
 
 
5. COMPUTATIONAL RESULTS 

 

5. 1. Small-Sized Problems          To show the proposed 

model’s efficiency and compare the solution methods, we 
 
 

 
Figure 5. An example of an answer displaying in the 

electromagnetic algorithm 
 

 
2.5- 5.24 2.15 0.25 

7.65 8.14 - 7.59 - 4.95 

3.78 4.87 - 3.69 5.78 

Figure 6. Figure 5’s converted array into a matrix 
 
 

1 4 3 2 

4 1 2 3 

3 1 2 4 

Figure 7. The sorted mode of Figure 6 

have first solved several small-sized problems with 

GAMS software version 24.1.3 by a core i5 computer 

with 4GB of memory. Table 3 presents the information 

about the problem’s size, the objective function’s value, 

solution time, and the number of constructed warehouses. 

Table 4 shows the number of items allocated to the 

demand points from local warehouses for the first 

problem. The dash in the column corresponding to each 

demand point means that point is unassigned to the 

warehouse associated with its row. Since the problem is 

a Np-hard and cannot be solved in large-scale in 

polynomial time, we have solved several small-sized 

problems with GAMS which their results have shown the 

results in Tables 3 and 4. 
We have considered two scenarios with probabilities 

of 0.25 and 0.75 to solve small-sized problems. Figure 8 

shows the sensitivity of the objective function to these 

parameters by changing the cost parameters from 0.75% 

to 200%. As it is known, the total cost varies more with 

the change in purchase cost and shows the sensitivity of 

the total cost to this parameter. As a result, to reduce 

costs, managers should look for cheaper suppliers than 

trying to reduce other parameters. Also, Figure 9 shows 

increasing the number of warehouses reduces the total 

cost, even though it incurs construction costs because 

having several different warehouses with different 

shipping costs reduces the total costs. However, since we 

have a budget constraint for the construction of 

warehouses, it is impossible to build the desired number 

of local warehouses. If the relevant organizations can get 

more funding from the government, the total cost can be 

reduced. 
 

5. 2. Problem-solving by the Bi-level Method        In 

this study, we considered a bi-level programming 

approach for only small-sized problems. Out of the 

problems solved in Table 3, we selected three problems 

and solved them by Gams software with EPM solver. we 

turned the issue into a bi-level programming in which the 

leader decision-maker determines the optimal location of 

the warehouses, and the follower determines the optimal 

allocation and inventory planning. 
 

 

 
Figure 8. Impact of changing parameters on the objective 

function 
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Figure 9. Impact of changing the number of warehouses on 

the value of the objective function 
 

 

As indicated in Figure 10, the total cost of the bi-

level programming increases compared to the mixed-

integer linear programming. This type of planning has 

complexities that can be optimally addressed and 

answered at a cost. In critical situations, unsuitable 

planning, such as buying fewer items to reduce costs, can 

have irreparable consequences; thus, spending a little 

more if the budget is responsive will benefit the decisive 

bi-level programming decision-making.  

 

 

 
Figure 10. Comparing the mixed-integer linear 

programming model and bi-level programming 
 

 

 
TABLE 3. Sample problems solved with a Mixed integer linear programming model method by GAMS software 

Example I.J T S K Hk Objective Function (dollar) Constructed Warehouse Solving Time (s) 

1 2.2 2 2 1 2 9434 1,2 1 

2 2.3 2 2 1 2 8419 1,2 1000 

3 3.3 2 2 1 2 17387 1,2,3 428 

4 3.2 2 2 1 2 13640 1,2 30 

5 4.2 2 2 1 3 19481 1,2 1995 

6 4.3 2 2 1 3 15550 1,3 1872 

7 2.2 5 2 1 2 15952 1,2 3 

8 2.2 2 2 1 5 12272 1,2 13 

 

 
TABLE 4. Distribution of items from warehouses to demand points 

Example Scenario Period Remainaing Lifetime Warehouse Demand Point 

1 

    1 2 

1 

1 

1 
1 19 3 

2 - 0 

2 
1 30 63 

2 - 30 

2 

1 
1 28 35 

2 - 19 

2 
1 19 4 

2 - 0 

2 

1 

1 
1 18 16 

2 - 0 

2 
1 5 4 

2 - 30 

2 

1 
1 23 24 

2 - 7 

2 
1 0 17 

2 - 0 
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5. 3. Large-Size Problems            NP-hard class 

problems are the problems that no known definitive 

algorithm solves in polynomial time. In these cases, we 

use meta-heuristic algorithms to find solutions close to 

the optimal solution in a short time. This research solves 

and analyzes several relatively large problems in the 

mixed-integer programming model with genetic meta-

heuristic and electromagnetic algorithms. 
 

5. 3. 1. Parameter Setting          The importance of 

any optimization algorithm parameters, especially meta-

heuristic algorithms that have been designed to simplify 

the solution of optimization problems, is unquestionable. 

The optimal values of these parameters have a significant 

impact on the algorithms’ performance and better 

searching of the answer space. Regarding this issue, we 

set the parameters of both algorithms to solve different 

problems by the Taguchi method in this research. The 

Taguchi method is a fractional factor scheme that selects 

the levels to be tested from orthogonal arrays. Each array 

is a specific set of parameter levels to be tested. An 

essential and critical factor in the Taguchi method is the 

reduction of variability. As indicated in Table 5, there are 

three different levels for setting the parameters. Because 

most articles graded them this way, we have considered 

an example of the experiment design answer in the same 

way. In Tables 5 and 6, Maxiter is the number of 

iterations, Npop is the number of the population, Pc and 

Pm are crossovers and mutation rates, respectively. Beta 

is the selection pressure by the roulette wheel method, 

and alpha is the movement radius. After designing the 

experiments and setting the parameter using the Taguchi 

method, we obtained the optimal levels of these 

parameters for each problem. Figures 11 and 12 show 

these results. 
Higher rates of the SN demonstrate the algorithm’s 

better performance. Table 7 shows the optimal value of 

both algorithms’ parameters in this problem. 
 

 

 
TABLE 5. Different levels of the genetic algorithm parameters 

Beta Pm Pc Maxiter Npop Level 

5 0.1 0.7 100 50 1 

10 0.2 0.8 150 100 2 

15 0.3 0.9 200 150 3 

 

 

 

TABLE 6. Different levels of ELA parameters 

Maxiter Npop Alpha Level 

100 50 0.7 1 

150 100 0.8 2 

200 150 0.9 3 
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Figure 11. The SN rate in the genetic algorithm 
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Figure 12. The SN rate in the electromagnetic algorithm 

 

 
TABLE 7. The optimal value of the algorithms’ parameters 

Pc Pm Beta Alpha Maxiter Npop Algorithm 

0.9 0.3 5 - 100 150 Genetic 

- - - 0.7 100 150 Electromagnetic 

 

 

After setting the algorithms’ parameters, we solved 

ten problems in different sizes 25 times by GA and ELA 

which their results for maximum (the worth), minimum 

(the best), and the average objective function for each 

problem and their average solution time have presented 

in Table 8. Furthermore, for better comparison in terms 

of objective function and solution time have given in 

Table 8. According to this table, the genetic algorithm has 

better answers in most problems and less solution time 

than the electromagnetic algorithm. Also this table shows 

the standard deviation values for different problems for 

the both algorithms. Clearly, the standard deviation in the 

GA was less in most cases. In other words, the amount of 

variability is less, and this algorithm has achieved 

solutions closer to its mean than the electromagnetic 

algorithm. 

To ensure the analysis and its generalization to the 

whole community, we initially test the normality of each 

index’s data by Minitab software. After confirming the 

normality of the data, we perform the statistical 
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TABLE 8. Results of solving various problems with GA, ELA, and GAMS 

GAMS 
Standard 

deviation 

The average 

solution time in 

25 run 

The worst objective 

functions in 25 run 

(the maximum 

values) 

The best objective 

functions in 25 run 

(the Minimum 

values) 

The average objective 

functions in 25 run 

Problem 

Size 

P
r
o

b
lem

 

Time 
Objective 

function 
GA ELA GA ELA GA ELA GA ELA GA ELA I,J,K,S,T,Hk  

2000 
Out of 

terminated time 
0 0 36.114 49.88 1137430 1137430 1137430 1137430 1137430 1137430 3,2,3,2,3,3 1 

2000 
Out of 

terminated time 
3.146 64.12 90.113 91.952 6721358 6864270 6701451 6771344 6708191.1 6826893.4 5,10,3,2,3,3 2 

2000 
Out of 

terminated time 
15.17 34.52 113.889 117.831 7426157 7657959 7110647 7156690 7235276.3 7360067.4 10,10,3,2,3,3 3 

2000 
Out of 

terminated time 
9.17 75.42 265.552 231.106 14257658 14572258 14181847 14331598 14194760.2 14490057.9 5,10,3,6,3,3 4 

2000 
Out of 

terminated time 
52.37 85.45 318.311 328.024 23654123 23578461 20541369 21968322 21741634.5 22863938.4 10,10,3,6,3,3 5 

2000 
Out of 

terminated time 
31.25 36.45 217.643 204.939 9331584 9369298 9321457 9351950 9326083.7 9362477.2 10,15,3,2,3,3 6 

2000 
Out of 

terminated time 
3.71 47.98 223.776 229.376 122458763 12463952 12147362 12362354 23276003.1 12404516.8 15,15,3,2,3,3 7 

30 13640 65.7 72.15 367.407 407.472 35124784 36312488 33457812 34125874 34226200.2 35103002.2 10,10,5,6,3,3 8 

1872 15550 0 0 2.16 2.384 13640 13640 13640 13640 13640 13640 2,3,1,2,2,2 9 

2000 
Out of 

terminated time 
0 0 24.756 26.023 15550 15550 15550 15550 15550 15550 3,4,1,2,2,2 

1

0 

 

 

hypothesis test to prove our claim. Table 9 present the 

normality test results by the Kolmogorov-Smirnov 

method in Minitab software. Since the p-value is greater 

than 0.05 in all cases, all data have a normal distribution. 

Figure 13 shows an example of the normality test result 

performed on the electromagnetic algorithm’s MID index 

data. 

Having assured that the data are normal, we can now 

perform the t-test, a statistical hypothesis test, to compare 

the indicators more accurately. Table 10 indicates the test 

results conducted in the Minitab software with a 95% 

confidence level. 

As indicated in Table 10, the p-values for both 

hypotheses are greater than 0.05, so there is no reason to 

reject the H0 hypothesis. Moreover, the genetic 

algorithm’s convergence time to the answer is earlier 

than that of the electromagnetic algorithm. The genetic 

algorithm converges to its optimal solution in fewer 
 

 

TABLE 9. The normality test result 

Result P-Value Algorithm Index 

Normal 0.065 GA 
MID 

Normal 0.118 ELA 

Normal 0.15 GA 
MT 

Normal 0. 32 ELA 
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StDev 0.05316

N 10

KS 0.235

P-Value 0.118

Probability Plot of MID-ELA
Normal 

 
Figure 13. The result of the normality test on the MID index 

of the electromagnetic algorithm 
 

 

TABLE 10. The results of the t-test 

Result P-Value T-Test Null(H0) hypothesis 

H0 Hypothesis 

is not rejected 
0.35 2.25 

The MID index in GA is 

lower than ELA. 

H0 Hypothesis 

is not rejected 
0.28 1.84 

The MT index in GA is 

lower than ELA. 

 

 

iterations. We infer this result from Figure 14 obtained 

for Problem 2 in one iteration, and Table 11 presents the 

result. As observed from the table’s values, the genetic 

algorithm gets to the answer in fewer iterations. 
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Figure 14. Comparing the convergence speed in genetic and 

electromagnetic algorithms 

 

 
TABLE 11. The results of comparing the convergence in 

genetic and electromagnetic algorithms in problem 2 

 

 

Fallahpour et al. [42] developed an integrated model 

to consider the sustainability and Industry 4.0 criteria for 

the supplier selection management. They used the fuzzy 

best worst method and the two-stage fuzzy inference 

system to assess the selection of suppliers. Researchers 

can use their approach for extension of our paper. 

Fathollahi-Fard  et al. [43] presented a bi-level 

programming for home health care supply chain 

considering outsourcing. Another direction for 

developing our paper is considering home health care 

with outsourcing in post-disaster phase. Another issue for 

developing our paper is related to Pasha et al. [44] 

research. They developed an integrated optimization 

model for liner shipping. Researchers can extend our 

paper with their approach. 

 

 

6. CONCLUSION 
 

Disaster or crisis is an event that occurs suddenly and 

sometimes increasingly and leads to a dangerous and 

unstable situation for an individual, a group, or society. 

A crisis creates a situation that needs fundamental and 

extraordinary action. The random and unpredictable 

nature of a crisis requires the presentation of 

comprehensive crisis plans to reduce and mitigate the 

crisis’s risks and consequences. The improvement of the 

area of relief and support leads to significant results in 

such reductions. After reviewing the literature in recent 

years, we identified issues like the assumption of a 

budget for relief costs, the uncertainty of the budget and 

demand, bi-level programming in critical issues, and the 

negligence of assuming the items’ decay in most 

reviewed articles as research gaps. The purpose of this 

study is to cover the identified research gaps. For this 

purpose, we developed an integer linear programming 

model that finds the optimal location of local warehouses 

from among the available points and determines the 

optimal allocation of demand points and the optimal 

number of items transferred to those points. Also, we 

designed the inventory policy to take the items out of the 

warehouse before the expiration date at a cost to prevent 

corruption. We solved several hypothetical problems in 

small sizes by GAMS software and in larger sizes by 

genetic and electromagnetic meta-heuristic algorithms to 

investigate the proposed model. After solving 

hypothetical problems with larger dimensions by 

electromagnetic and genetic algorithms and comparing 

the performance indices in these two algorithms, we 

found that genetics has a better performance than 

electromagnetism in this problem. This algorithm also 

converges to its optimal answer in fewer iterations than 

its competing algorithm, showing the high speed of 

genetics compared to electromagnetism. On the other 

hand, in most cases, the standard deviation of the 

objective function in genetics was less than 

electromagnetism, which indicates that genetic responses 

have fewer digressions, and they are close to the mean. 

As a result, genetics generally performed better than 

electromagnetism. This claim has also been substantiated 

in this study by a statistical hypothesis. Consequently, in 

the case of an earthquake, the relevant organizations can 

use this efficient model to decide on the optimal location 

of warehouses or field tents, the optimal number of 

purchased and stored items in local warehouses, and the 

optimal allocation of items to demand points in situations 

with uncertain budgets and demand. 

Relief operations, like any other operations, need 

their costs. Moreover, the premise of demand uncertainty 

enhanced the issue’s verisimilitude. In this study, we also 

covered the bi-level programming gap. After solving a 

problem in both mixed-integer linear programming 

model and bi-level programming models and recording 

the value of the problem’s cost function, we found that 

this assumption increases the total cost to some extent. 

This increased cost is reasonable because we sometimes 

have to change the decision to make the necessary 

coordination for decision-making, and thus, the costs will 

increase. The organizations in charge are responsible for 

accepting the increased cost of the bi-level programming 

compared to the mode; it is up to them to pay the price to 

take advantage of the bi-level programming benefits. 

Unfortunately, one of the limitations of this study was the 

lack of access to real-world data, which we could not 

access despite our best efforts. Therefore, we had to use 

random data. 

In this study, since the scenarios have been arranged 

based on the severity of the events, they can be 

Objective 

function 

Solution 

Time 

The iteration where 

convergence begins 
Algorithm 

6809638 233.19 85 ELA 

6722158 210.65 66 GA 
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generalized to other crises like floods and storms. 

Moreover, because of the high probability of ruining the 

infrastructure for relief during a crisis, we suggest adding 

routing and transportation of items through various 

communication routes such as land and air to the model 

to develop it. Another issue that one can augment is 

temporary hospitals with different equipment and 

conditions to treat the injured. Additionally, other 

objective functions, such as the satisfaction level of the 

victims and, most importantly, the response time to 

demand in the critical situation, can be inserted into the 

model.  
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Persian Abstract 

 چکیده 
یرات اقلیمی کره کارکردهای طبیعی و انسانی به طور ناگهانی رخ می دهد و سختی هایی را بر جامعه تحمیل می کند، بحران نامیده می شود. از آنجایی که تغیحوادثی که بر اثر 

و برنامه ریزی های لازم را در شرایط بحرانی بیش زمین در سال های اخیر بر تعداد بحران های طبیعی از جمله زلزله، سیل، طوفان و ... افزوده است، بشر نیاز به مدیریت بحران  

ابتدا به بررسی  از پیش احساس کرده است. هدف این تحقیق مدلسازی و حل مشکل مکان، تخصیص و موجودی در شرایط پس از بحران است. برای رسیدن به این هدف،  

های نامشخص و ها و خواستهشرایط بحرانی را شناسایی کرده ایم. در این مطالعه، بودجهمقالات قبلی پرداخته ایم. سپس خلأهای پژوهشی در مدیریت و برنامه ریزی در  

ایم. در نهایت چندین های تحقیق توسعه دادههای ریاضی خطی عدد صحیح مختلط را برای پوشش شکافها هستند. در نتیجه، ما مدلریزی دوسطحی نوآوریگیری برنامهتصمیم

ها را تحلیل  و مسائل بزرگ توسط الگوریتم های فراابتکاری ژنتیک و الکترومغناطیسی حل شده است. سپس عملکرد الگوریتم GAMS نرم افزار  مسئله در ابعاد کوچک توسط

 .دهد الگوریتم ژنتیک در این شماره بهتر از الگوریتم الکترومغناطیسی استکردیم که نشان می 
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