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A B S T R A C T  
 

 

The rapid growth in the supply chain of electronic devices has led companies to purchase Intellectual 

Property or Integrated Circuits from unreliable sources. This dispersion in the design to fabrication 

stages of IP/IC has led to new attacks called hardware Trojans. Hardware Trojans can bargain 
information, reduce performance, or cause failure. Various methods have been introduced to detect or 

prevent hardware Trojans. Machine learning methods are one of these. Selecting the type and number 

of input variables in the learning algorithm has an important role in the performance of the learning 
model. Some previous hardware Trojan detection studies have used structural gate-level features to 

create data sets for machine learning models. In this paper, a method based on directed graphs for 

extracting features is proposed. The proposed method use Graph Centrality Algorithm and structural 
gate-level features. To examine the importance and the impact of the extracted features with the 

proposed method, three types of data sets are created as input to the learning model made with 

XGBoost. The trained learning models based on these three data sets show that extracting graph-based 
features has improved the F1-score by 10% and the ROC by 22%. The combination of these features 

with the structural gate-level features improved the F1-score by 17.5% and the ROC by 38.5%. 

doi: 10.5829/ije.2022.35.07a.16 
 

 
1. INTRODUCTION1 
 
Hardware Trojan (HT) can be defined as an action 

meant to change the circuit or cause intentional damage 

to the circuit in order to change the circuit’s 

functionality or reduce circuit reliability or reveal the 

circuit information. A simple block diagram of a HT is 

depicted in Figure , which contains two main parts, 

including Trigger and payload. The Trojans can be 

added to the circuit in all producing stages (descriptive 

IC, design, manufacturing, and test) by the attacker. 

Hence, the HT detection and confrontation with them 

are more complicated than fault detection during 

manufacturing. In the design stage, the Trojan can be 

inserted easily by changing the hardware description. 

Therefore, it is critical to identify Trojans in the design 

stage. 
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According to the literature, machine learning can be 

used as one of the effective methods in identifying the 

HTs. The detection of HTs can be considered as a 

classification process. Also, gate-level netlists can be 

used to create features that distinguish between Trojan 

and normal nets. Therefore, machine learning 

algorithms and efficient mathematical calculations can 

make a more accurate classification between Trojan and 

normal nets. 

The distinguishing features of Trojan nets and the 

normal nets is the key point in this paper in order to 

 

 

 
Figure 1. General structure of a HT [1] 
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identify HTs using the supervised learning method. If 

the extracted feature sets are too small, the machine 

learning cannot cluster and identify the Trojans. In 

addition, if the feature sets are too large, the Curse of 

Dimensionality event occurs, and the clustering will not 

be done in a correct manner. Therefore, it is essential to 

extract the features of Trojan nets and then, reduce the 

number of the features so that the model be efficient. 

Several approaches can be employed to extract the 

features of the HTs as follows: 

• The structural features of the circuit: for instance, 

the number of fan-ins, the number of the flip-flops, 

the distance of each net from the primary input or 

primary output, etc.; 

• The test features of the circuit: these features include 

Sandia Controllability/Observability Analysis 

Program (SCOAP) parameters [2], like the level of 

controllability and observability of the circuit nets; 

• The Register Transfer Level (RTL)-code features of 

the circuit: the structure of the RTL code is 

investigated, and the features like the number of the 

existing modules in the code, the number of existing 

signal types in each module, the number of “always” 

statements in each module, the number of primary 

input or output variables, and the number of register-

type variables, etc. are extracted . 

The idea of graph-level features in detecting HTs 

using machine learning methods can be a starting point 

for future work and development. While using machine 

learning to detect HTs, selecting the type and number of 

input variables of the learning method has a significant 

role in the performance of the learning model. In 

previous studies, the structural features of the gate-level 

netlists have been used to create data sets for the 

machine learning model used to detect HTs. Extracting 

some of these features at the gate-level is difficult and 

requires creating complex data structures from the 

circuit netlist and then implementing specific algorithms 

to extract each feature [3]. In this research, two methods 

based on directed graphs for extracting gate-level 

features are proposed. The proposed tool does 

converting a gate-level netlist to a directed graph easily. 

We use available optimal graph algorithms to work on 

graphs or extract graph-level features. The contributions 

of this paper are summarized as follows: 1) as the size 

of the circuits increases, analyzing the structure of the 

gate-level netlist and extracting its features becomes 

more complex. In this research, in order to simplify and 

increase the efficiency of HT analysis, we used a gate-

level netlist mapped to directed graphs; 2) the 

information of graph is maintained by an efficient data 

structure to be analyzed. In addition, directed graphs 

can express more information about the behavior of the 

circuit, thereby helping detect Trojans; 3) in this study, 

new approaches have been proposed in order to simplify 

the extraction of appropriate features, so that the 

accuracy of the trained model is improved; 4) the 

proposed method uses Graph Centrality Algorithm and 

structural gate-level features; 5) to examine the 

importance and the impact of the extracted features with 

the proposed method, three types of data sets are created 

as input to the learning model made with XGBoost [4]. 

The rest of the paper is organized as follows. Section 

II provides some background regarding the gate-level 

features of HT(s) and the issues of the existing 

approaches. Section III introduces the methodology of 

the proposed methods as well as the metrics that can 

help evaluate the quality of detection. Section IV 

discusses the results in terms of accuracy of detection. 

Finally, section V concludes this study and suggest 

some points that can improve the quality of HT 

detection. 
 
 

2. BACKGROUND AND RELATED WORK  
 

HT detection at the gate-level is essential in identifying 

Trojans in the design stage. The identifying methods in 

the gate-level enable the developers and the System-On-

Chip (SOC) designers to test the IPs provided from 

insecure resources [5]. Using machine learning is one of 

these approaches that can be utilized to identify HTs. 

This approach is based on extracting appropriate feature 

sets for training the model in order to identify Trojans. 

Extraction or calculation of appropriate features that can 

increase the accuracy of trained models is complicated 

and challenging in large gate-level netlists. In this 

section, the conducted studies in the field of identifying 

HTs for gate-level netlists will be reviewed. 

HT detection methods usually include two stages as 

follows: 

• First, the circuit features are extracted; 

• Then, the extracted features are investigated and 

analyzed using different methods. 

According to the analysis methods of the extracted 

features, the Trojan identification approaches can be 

divided into three main classes as follows : 

• Search-based methods; 

• Threshold-based methods;  

• Machine-learning-based methods. 

In the following subsection, the conducted works in 

these fields are reviewed briefly. 

 
2. 1. Search-based Identification Methods         In 

this methods, the netlist of the circuit is processed to 

find the nets with the Trojan feature. Unused Circuitry 

Identification (UCI) [6] is a method that is applied to 

code coverage. However, UCI has also been used to 

identify HT at the gate-level [7]. It is designed to 

identify the parts of the circuit that are inactive during 

the execution or when they are inactive most of the 

time. UCI algorithm makes a Data-flow graph, in which 

the nodes are the circuit nets, and the edges indicate the 

current between the circuit nets. In the next step, it is 
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investigated whether during the simulation the current 

flows between every two nodes of the corresponding 

graph. Therefore, the unused nets can be identified in 

this way. The disadvantage of this method is that it 

cannot be applied to large circuits because the 

exhaustive simulation of these circuits is very time-

consuming, and sometimes impossible. 

VeriTrust is another work in this field [7] that 

includes a tracer and a checker. The checker identifies 

the activation history of the SOP and POS sections of 

the circuit. These inputs are investigated using the 

checker in three aspects: additional inputs, non-

additional inputs, and logic synthesis so that the circuit 

function is simplified again. This solution requires a 

white-box accessibility of the hardware IP since it uses 

static analysis of the code and is based on functional 

verification. Besides, this method is time-consuming. 

 
2. 2. Threshold Value-based Methods                In 

these approaches, a threshold value is defined for each 

of the circuit features, and if any net exceeds this 

threshold limit, the net is recognized as a Trojan. A 

method called FANCI is presented by Waksman et al. 

[8] which is based on functional analysis. This method 

distinguishes the parts of the circuit that are inactive. 

For this purpose, they proposed a metric called control 

value(CV) to identify nearly-unused logic. This metric 

measures the degree of control that an input has on the 

operation and outputs of a digital circuit. Next, the 

Trojan nets and the normal nets are identified according 

to CV and a threshold value. The complexity of CV 

calculation increases exponentially with the circuit’s 

size. Therefore, the authors have approximated the CV 

value using innovative techniques. Hence, this method 

is still time-consuming, and the statistics show that it is 

not accurate, as it identifies many healthy nets as Trojan 

nets. Another disadvantage of this method is that it only 

can be applied to hybrid circuits., Other approaches 

have also been proposed by Fyrbiak et al. [9] and 

Sullivan et al. [10] in order to employ this method in 

hybrid circuits. Nevertheless, this method does not have 

proper performance in hybrid circuits with high clock 

levels. 
 
2. 3. Machine Learning-based Methods             As 

machine learning technology grows rapidly, more 

researchers have become interested in this method to 

identify the HTs. Machine learning methods have been 

utilized for identifying HTs at the gate-level for the first 

time [11]. The gate-level hardware features have been 

employed to accomplish this as follows: 
• 𝐿𝐺𝐹𝑖 (Logic-gate fan-in): The number of inputs of 

two previous levels of the gate; 

• 𝐹𝐹𝑖, 𝐹𝐹𝑜: The least distance (level) of each net from 

the input and output of a flip-flop, respectively; 

• 𝑃𝐼, 𝑃𝑂: The least distance of a net to the primary 

inputs and outputs of the circuit, respectively . 

Figure 2 shows an example of calculating the 

structural gate-level features, and the values of these 

five features have been demonstrated for net n. The fan-

in value of net n at the second level is four. Since the 

distance of flip-flop A distance from net n is two, 𝐹𝐹𝑖 is 

equal 2. 

These features are employed as input in Support 

Vector Machine (SVM) clustering. The main problem 

in this method is the long distance between the number 

of normal nets and the Trojan nets. In order to address 

this issue and data balancing, the repeated-feature 

vectors for the healthy nets are eliminated so that the 

number of the normal nets and the Trojan nets are 

equaled. 

Hasegawa et al. [12] and Ye et al. [13] extracted 51 

features of the Trojan nets have been from the netlists of 

Trust-Hub benchmarks. Salmani et al. [14] and Shakya, 

15] applied machine learning in the first stage in order 

to perform an effective clustering of HTs. In the next 

step, 11 features (logic gate fan-in, the number of 

input/output-side net flip-flops, the number of 

input/output-side net multiplexers, the number of 

input/output-side net loops, the constant values, and the 

distance of net from the primary inputs or outputs) have 

been selected among 51 features in order to reduce the 

dimensions and prevent dimension congestion event. 

Random forest classifier has been used to select more 

essential features. 
Ye et al. [13] and Hoque et al. [16] have balanced 

first the data set by generating new HT data. In this 

approach, the benchmarks are produced by using 

Trojan-insertion tools in IP so that the inserted Trojans 

are difficult to distinguish. Second, the related data to 

Trojan features are extracted from them, and a trained 

model is made based on the extracted data set. This 

trained model is used for identifying HTs.  

Salmani [17] utilized combinational testability 

measured as HT features. By this purpose, the testability 

indices is calculated using SCOAP. They include 

controllability and observability of zero and one values 

of circuit nets. In tsalmani’s work [17], an unsupervised 

method has been used for clustering the Trojans. Some  

 

 

 
Figure 2. An example of structural gate-level features 

calculation [11] 
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Trojans change the sequential nets and signals as well as 

the circuit hybrid signals. Xie et al. [18] utilized the 

sequential testability indices as the features of the HTs. 

An ensemble learning based method has been 

proposed by Wang et al. [19] to identify HT features in 

which the trigger part of Trojans has been used. In this 

approach, as shown in Figure , two different learning 

models have been made to identify hybrid and 

sequential triggers. These two models have been 

combined using hybrid learning. 

Kurihara and Togawa [20] have proposed a 25 

hardware-Trojan features based on the structure of 

trigger circuits for machine-learning-based HT 

detection. Their experimental results show that the 

average true positive rate (TPR) and the average true 

negative rate (TNR) are 63.6% and 100.0%, 

respectively. However, compared to our proposed 

method, the average TPR is 15.46% lower. 
 
 
3. METHODOLOGY AND PROPOSED METHOD 
 

Security analysis for Trojan detection in IP cores have 

been explored mostly in gate-level netlists. In these 

types of analysis, structural features are extracted to find 

the hidden structure of Trojans. Considering the size of 

real circuits, structural analysis to extract features is too 

complex to be done easily. In this paper, we have used a 

simple mapping to convert gate-level netlist to a 

directed graph. This method not only helps to present an 

efficient analysis, but also provides more information 

about the functionality of the circuit. Thus, this would 

be helpful for Trojan detection. 

 

3. 1. Preliminaries 
3. 1. 1. Gate-level Netlist to Directed Graph 
Mapping           The construction of a directed graph of 

a gate-level netlist is done as follows: we consider the 

inputs and outputs of each gate as nodes and the gate as 

an edge, and then the graph based on the relations 

between the gates in the list. Figure 4 shows directed 

graph representations for some gate examples. 
 

 

 
Figure 3. Overall stages of identifying Trojans based on 

hybrid/sequential triggers [19] 

Figure 5 shows the directed graph of the RS232-

T1000 Trojan circuit of the Trust-Hub benchmarks [14, 

15]. To construct a digraph, using a tool implemented in 

Python, the netlist is processed to read the individual 

gates (nets) of the circuit and, depending on the input 

and output of each gate, it extracts an edge-list file 

containing all the pairs (input-output) of the gates. It 

means this is a file containing edges of the directed 

graph. Then, with this file we can create a graph and 

display it by graph tools and Python libraries. For 

example, with a graph library like networkx this edge-

list is read and the graph is displayed. Consider an AND 

gate with a, b as its inputs and c as its output. The 

developed tool adds edges a-c and b-c to the edge-list 

file. 

 

 

 
Figure 4. Directed graph representations for some gates 

 

 

 
Figure 5. Directed graph of RS232-T1000 
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3. 1. 2. Graph Centrality Algorithms             In 

graphs or graphs, centrality measures are used to 

determine the importance of nodes. A centrality 

measure is a function that assigns a number to each 

node according to the importance of that vertex in the 

graph. Extensive research has been done to calculate 

centrality measures in order to reduce its calculation as 

much as possible or to be able to perform these 

calculations in parallel by distributing them on different 

computers. The most important centrality measures are: 

Degree centrality: It is defined as the number of links 

incident upon a node (i.e., the number of ties that a node 

has). The most important node has higher degree. 

Betweenness centrality: It measures the number of 

times a node lies on the shortest path between other 

nodes. In fact, it calculates how many nodes need this 

node to communicate faster (with less intermediaries). 

The higher betweenness of a node means more 

information passes through this node. The betweenness 

of node v in a graph is calculated as follows [22]: 

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡∈𝑉   (1) 

where 𝜎𝑠𝑡 is total number of shortest paths between 

node s and node t, and 𝜎𝑠𝑡(𝑣) is the number of paths 

between s and t that pass through node v. 
Closeness centrality: A node is considered as a close 

node if it requires a small number of interfaces to 

communicate with other nodes [23]. 

Eigen vector centrality: The importance of a node is 

calculated based on adjacent nodes. If a node is 

connected to important nodes, its importance also 

increases under their influence. This method repeatedly 

considers the importance of neighbors to calculate 

eigenvector centrality. All nodes are first given an initial 

score and then, continued in a chain until they reach 

stability. Scoring in this method is based on the concept 

that nodes with high connections help the nodes that 

follow them in terms of eigenvector centrality [24]. 

PageRank: The rank of a page depends on the rank of 

the pages that are linked to it. Since we do not initially 

know the rank of pages, in this algorithm, all pages are 

first given the same rank as the initial rank. Then, the 

algorithm is run repetitively until the rank of each page 

converges to a number. Only nodes that have a neighbor 

and a link from others to themselves will be ranked, 

otherwise their rank will be zero [25, 26]. 

Hub centrality: It is the ability of a node to form a 

relation with other nodes in a graph. 

Authority centrality: It is calculated based on the 

number of relations that other nodes have with a node. 

Clustering coefficient: This criterion calculates the 

tendency of a node to create a cluster with other nodes. 

For example, 0.5 for a node means that there is 50% 

chance of communication between neighboring nodes. 

Modularity class: It calculates the effect of a node on 

other nodes in the community in which it is located and 

on the nodes in other communities. 

 
3. 2. Preparing Data Set               This is the most 

important step in the supervised machine learning 

process. The input data set in a learning model must be 

carefully prepared both in terms of size and quality of 

its features so that the learning model can be well 

trained and be used for a high-precision prediction 

model. In this study, in the first step to prepare a data 

set for detecting HTs using machine learning, the 

benchmarks of Table 1 have been collected [14, 15]. 

The used benchmarks are Verilog-HDL gate-level 

netlists and we know beforehand which net is a Trojan 

net and which net is a normal net. Then, the data sets 

shown in Table 2 have been created. 

 

3. 2. 1. First Data Set: Specified by Graph 
Centrality Algorithm              In the first step, we 

collect the gate-level benchmarks mentioned in the 

previous section. In the second step, using our tool 

written in Python, we start to process each benchmark 

and generate a .csv file containing the edges of the 

graph. In the third step, using Gephi tool [29], we read 

each of these files to calculate the centrality criteria of 

each graph and generate their report as output. In the 

last step, we read these generated reports using a tool 

written in Python to produce a data set containing the  

 

 
TABLE 1. Properties of used benchmarks [14, 15] 

Benchmark 
No. of nets 

Benchmark 
No. of nets 

Normal Trojan Normal Trojan 

RS232-T1000 297 13 s38584-T100 7342 19 

RS232-T1100 297 12 s15850-T100 2417 28 

RS232-T1200 297 14 s35932-T100 6405 15 

RS232-T1300 297 9 s35932-T200 6382 17 

RS232-T1400 297 13 s35932-T300 6405 36 

RS232-T1500 297 15 s38417-T100 5798 12 

RS232-T1600 297 13 s38417-T200 5798 15 

   s38417-T300 5827 15 

 

 

TABLE 2. Data sets used in this work 
Data Set Description 

Proposed 1 
Based on graph centrality features of directed 

graphs extracted from benchmarks 

SGL Structural Gate-Level features [12, 27, 28]  

Proposed 2 Merge features extracted from Prop.1 and SGL 
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nets of all circuits along with 18 centrality features for 

each net. Given that in the first step we identify the 

Trojan sections of each circuit, in this step the labeling 

of each net would be also done for the data set. We label 

Trojan nets as “1” and other nets as “0”. 

 
3. 2. 2. Second Data Set: Specified by Structural 
Gate-Level Features            The use of structural 

features of gate-level netlist in detection of HTs by 

machine learning has been studied in several studies. 

Here, we use the structural gate-level features published 

[12, 27, 28] to construct the data set. Because we do not 

have a database based on this type of features, we have 

written a tool in Python to extract these types of features 

from the gate-level netlist. Then the information of each 

net (including input/output to net, type of gate, and a 

gate-level structural feature vector) has been calculated 

and stored in the dictionary. After completing 

dictionary, we store its information as a data set file in 

the output. 

 

3. 2. 3. Third Data Set: Specified by Structural 
Gate-Level Features and Graph Centrality 
Algorithm              In order to add more accuracy to 

the extracted features of the proposed method with the 

structural features of the gat-level netlist, we have 

created a new data set based on the integration of these 

two types of data sets, which are mentioned in Table 3. 

Some structural features that are introduced in [12, 27, 

28], are: 

• Fan_in_x: In case of combinational circuits, trigger 

circuits require multiple logic gates since they have 

to implement complex trigger conditions. If the 

trigger is a rare condition, the number of fan-ins 

tends to become large. Since hts tend to have rare 

trigger conditions, the number of fan-ins in Trojan 

nets must be large compared to normal nets. Hence, 

fan_in_x that is defined as the number of fan-ins up 

to x-level away from the net n is an important 

feature to detect hts. 

• In_ff_x (out_ff_x), in_nearestff (out_nearestff): 

Since the hts circuits are too small and placed 

locally, the level of flip-flops for sequential-trigger 

circuits must be small enough. So, in_ff_x that is 

designed as the number of flip-flops up to x-level 

away from the input (output) side of the net n, plays 

an important role to detect hts. Also, the levels of the 

nearest flip-flops from the input (output) side of the 

net n  are defined as in_nearest flip-flop and out 

nearest flip-flop, respectively and are extracted as 

Trojan features. 

• In_mux_x (out_mux_x), in_nearestmux (out_ 

nearestmux): Some hts have multiplexers which 

receive trigger signals from trigger circuits and 

switch output signals to activate malfunctions. 

Therefore, the number of multiplexers up to x-level 

away from the input side and output side of the net n 

(in multiplexer x and out multiplexer x, 

respectively), and the level of the nearest 

multiplexers from the input side and output side of 

the net n (in nearest multiplexer and out nearest 

multiplexer respectively) are extracted as Trojan 

features. 

• In_nearestpi (out_nearestpi): Primary inputs (PI) are 

often selected as triggers of hts. Primary outputs 

(PO) are often used as output ports of internal 

signals for malfunctions. It means Trojan nets are 

likely to be placed close to pis and pos. So, 

in_nearestpi (out_nearestpi) that equals the 

minimum levels from net n to any PI (PO) is 

extracted as Trojan feature. 

Graph centrality features that are used by Gephi tool 

are introduced by Tarjan [30], hence, we skip detailed 

introduction. As a brief review: 

• Strong component: a strongly connected component 

of a digraph is a maximal set of vertices that there is 

a path from any one vertex to any other vertex in the 

set. 

 
3. 3. Use of Machine Learning           XGBoost is a 

decision-tree-based ensemble Machine Learning 

algorithm that uses a gradient boosting framework. The 

implementation of the algorithm was engineered for 

efficiency of compute time and memory resources. A 

design goal was to make the best use of available 

resources to train the model. Some key algorithm 

implementation features include: 

• Sparse aware implementation with automatic 

handling of missing data values; 

• Block structure to support the parallelization of tree 

construction; 

 

 
TABLE 3. Merging extracted features from Prop.1 and SGL 

Graph Centrality Features 

Structural Features 

(𝟏 ≤ 𝒙 ≤ 𝟓) [12, 27, 

28] 

Strong Component no. PageRank fan_in_x 

Component no. Authority in_ff_x 

weighted degree degree out_ff_x 

Weighted in Degree In degree in_mux_x 

Weighted out Degree Out degree out_mux_x 

Eigen Centrality Hub in_nearestFF 

Closeness Centrality Eccentricity out_nearestFF 

Betweenness Centrality  in_nearestPI 

Harmonic Closeness Centrality  out_nearestPO 

Clustering Coefficient  in_nearestMux 

Modularity Class  out_nearestMux 
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• Continued training to further boost an already fitted 

model on new data. 

In this research, XGBoost learning model is used for 

classification. The inputs to the model are the data sets 

with their related set of features and the learning 

parameters. Default parameters are used in this learning 

model, some of them are listed in Table 4. The output is 

the trained model that we use for HT detection. Also, 

We have used three different methods, XGBoost, Scikit-

learn, and SHAP libraries, to analyze the importance 

and impact of the proposed extracted features of three 

data sets on the accuracy of HT detection:  

• Method 1: Use XGBoost function to determine the 

importance of features. In XGBoost algorithm, the 

relative importance of features is measured by 

several criteria. One of these criteria is the split 

weight, which is the number of times a feature has 

been used to separate data in a tree in all boosted 

trees. More important features are more involved in 

the construction of trees, and the other features are 

used to reduce errors; 

• Method 2: Use Scikit-learn library for computing 

permutation importance of features. In fact, we used 

the feature permutation method that is available in 

Scikit-learn library to calculate the importance of 

features. In this method, the increasing rate of the 

learning model prediction error is measured for each 

change in features (until the relation between the 

feature and the correct output is lost). Permuting the 

feature that has lower importance will not greatly 

affect the accuracy of the output of model; 

• Method 3: Determine the importance of the features 

based on the calculated Shapley additive explanation 

(SHAP) values. SHAP is a library that provides a 

mechanism to calculate Shapley values. In this 

method that is based on the concept of Shapley 

values in game theory, the effect of each feature on 

the output of the learning model is measured using 

co-operative game theory. Each feature is 

considered as a player in the game and the output of 

the predicted model is the final reward of the game. 

Shapley values determine the role of each player 

(feature) in the final reward (predicted model).  

 

 
TABLE 3. Used learning model parameters 

Paremeter Value 

base score 0.5 

booster gbtree 

Learning rate 0.1 

Max depth 3 

 

 

 
TABLE 4. Statistical features of the first data set 

Feature mean std min 0.25 0.5 0.75 max 

in degree 3.0352 1.33 0 2 4 4 6 

out degree 3.0352 37.69 0 1 2 3 2553 

degree 6.0704 37.65 1 4 5 7 2553 

weighted in degree 3.0352 1.33 0 2 4 4 6 

weighted out degree 3.0352 37.695 0 1 2 3 2553 

weighted degree 6.0704 37.65 1 4 5 7 2553 

eccentricity 62.16 37.245 0 37 49 97 171 

ClosnessCentrality 0.0528 0.072 0 0.03 0.037 0.06 1 

HarmonicClosenessCentrality 0.0623 0.076 0 0.039 0.046 0.071 1 

BetweennessCentrality 0.0044 0.014 0 0.001 0.001 0.003 0.37 

authority 0.0085 0.015 0 0 0 0.019 0.114 

hub 0.0008 0.018 0 0 0 0 0.72 

ModularityClass 9.1958 8.79 0 2 7 15 38 

ClusteringCoefficient 0.9583 2.75 0 0 0.1 0.3 15 

PageRank 0.0003 0.001 0 0 0 0 0.022 

component no. 0.0164 0.478 0 0 0 0 22 

StrongComponent no. 104.63 149.05 0 37 59 85 1010 

EigenCentrality 0.277 0.202 0 0.14 0.24 0.363 1 
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4. RESULTS AND ANALYSIS 
 

Based on the two proposed methods and the structural 

features of the gate-level netlist, three data sets on 15 

benchmarks have been created in total. Using XGBoost 

learning model, we have evaluated and compared these 

data sets and their features. We used Jupyter to develop 

our Python tool on a Core(TM) i5-4200M CPU 

machine. 

 

4. 1. Statistical Results of the First Data Set      

Table 5 summarizes the statistical characteristics of the 

first data set with 48,722 rows and 18 columns. The 

rows of this data set contain all 15 netlists of the Trust-

Hub benchmarks [14, 15]. Its columns contain 18 

features of graph centrality extracted from directed 

graphs of benchmarks and one column for the label. 

Statistical characteristics include mean, standard 

deviation, minimum, maximum and quartile values of 

each feature. 

As shown in Figure 6, there is a significant 

difference between the mean features of the normal nets 

and Trojan nets in this data set. The value distribution of 

different features for Trojan and normal nets has a 

significant difference in Figure 7. So, these features can 

be used to detect Trojan nets using a machine learning 

model.  

 

4.2 Importance of the First Data Set Features and 
the Accuracy of the Learning Model      Figure  

shows the importance of the features using the XGBoost  

 

 

 
Figure 6. Mean value of features for normal and Trojan nets 

 
Figure 7. Value distribution of some features in normal and 

Trojan nets 

 

 

 
Figure 8. High importance features of the first data set in 

XGBoost 

 

 

functions. Sorting these types of features is based on the 

effectiveness of each feature in improving the F-score 

value. Figure 9 shows the importance of the features by 

permutation method using Scikit-learn library. High 

importance features in XGBoost method are also ranked 

higher with a slight difference. 

Figure 10 shows the importance of the features of 

this data set. It also shows how each features affects the 

output, using Shapley values method. Shapley is a 

unified framework for interpreting predictions that 

assigns each feature an important value for a particular 

prediction. According to Shapley values chart, the Hub 

has the highest importance. The lower value of the Hub 

per net increases the probability of being a Trojan net. 

The betweenness centrality feature ranks second and 

higher value for that means high probability to be 

Trojan. The betweenness centrality determines how  
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Figure 9. Features of the first data set with permutation and 

Scikit-learn library 

 

 

 
Figure 10. Importance of the features of the first data set by 

Shapley values 
 

 

many times a node is in the shortest paths in a graph. 

Because there is a complex circuit with many inputs 

before a Trojan net, these nets have higher betweenness 

centrality in the directed graph. The harmonic closeness 

centrality is the next important feature. It can be seen 

that nets with higher centrality features have greater 

probability of being Trojan nets. This is because Trojan 

nets are placed farther away from other nets, as a result, 

their average distance from other nets is greater in 

directed graph Table 6 and Table 7. show the accuracy 

of XGBoost learning model trained with the first data 

set. The experimental results show that the average true 

positive rate (TPR), and the average true negative rate 

(TNR) are 66.66 and 99.99%, respectively. 

 

4. 3. Statistical Results of the Second Data Set      

Table 8 summarizes the statistical characteristics of the 

second data set. There are 48,321 rows and 32 columns 
 

TABLE 5. Accuracy of classifying the trained learning model 

with first data set 
Class Precision Recall F1-score Support 

Normal nets 1.00 1.00 1.00 14542 

Trojan nets 0.96 0.67 0.79 75 

 

 

TABLE 6. Confusion matrix based on first data set 
                            Predicted 

Actual  
Normal Trojan 

Normal nets 14540 2 

Trojan nets 25 50 

 

 

in this data set. The rows of this data set contain all 15 

netlists of the benchmarks. Its columns contain 31 gate-

level structural features and 1 column for label. 

Statistical characteristics include mean, standard 

deviation, minimum, maximum, and quartile values of 

each feature. 
While calculating features such as out-nearestMUX, 

which indicates the distance of the nearest multiplexer 

to a net, if there is no multiplexer after a net to the main 

outputs of the circuit, the value of that feature is set to a 

constant value (approximately equivalent to the longest 

path of the circuit). 

 

4. 4. Analysis of the Third Data Set              In 

previous sections, the importance of structural gate-

level features and features based on the graph centrality 

algorithm were discussed. In addition, the effect of each 

of these features on the accuracy of the learning model 

was considered. In this section, the third data set that is 

a combination of these two data sets is examined in 

terms of the importance of features and the accuracy of 

the trained learning model.  

Figure 11 shows the features of this data set 

obtained with the XGBoost functions. As shown in this 

figure, the centrality features of the graph are mostly in 

higher order than the structural features of the gate-

level. Only out-ff-5 that is a gate-level feature is among 

the top 10 features. The three most important features in 

this data set are the graph centrality features (PageRank, 

harmonic closeness centrality, and betweenness 

centrality) which are far from the others. 

As Error! Reference source not found. shows, the 

centrality features of the graph are mostly in higher 

order compared to others in the third data set with 

permutation and Scikit-learn library. In this method, 

out-ff-5, out-nearestMUX, in-nearestPI, and in-

nearestFF features, which are structural gate-level 

features, have been able to be among the top features.  
The importance of the features of the third data set 

with Shapley values is shown in Figure . In this method, 

graph centrality features are still in higher  
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TABLE 8. Statistical features of the second data set 

Feature Count mean std min 0.25 0.5 0.75 max 

fan-in-1 48321 3.07 1.37 0 2 4 4 6 

fan-in-2 48321 6.31 3.12 0 5 6 8 23 

fan-in-3 48321 11.55 6.6 0 7 10 16 58 

fan-in-4 48321 20.39 13.21 0 11 19 30 129 

fan-in-5 48321 34.86 25.18 0 15 31 52 258 

in-mux-1 48321 0 0.026 0 0 0 0 2 

in-mux-2 48321 0 0.039 0 0 0 0 2 

in-mux-3 48321 0 0.053 0 0 0 0 2 

in-mux-4 48321 0 0.073 0 0 0 0 2 

in-mux-5 48321 0 0.098 0 0 0 0 2 

out-mux-1 48321 0 0.035 0 0 0 0 3 

out-mux-2 48321 0 0.059 0 0 0 0 3 

out-mux-3 48321  0.08 0 0 0 0 3 

out-mux-4 48321 0.1 0.12 0 0 0 0 3 

out-mux-5 48321 0.01 0.16 0 0 0 0 3 

out-ff-1 48321 1.7 37.81 0 0 1 2 2552 

out-ff-2 48321 3.24 37.9 0 0 2 4 2552 

out-ff-3 48321 5.9 38.2 0 2 4 7 2553 

out-ff-4 48321 10.13 39.13 0 4 7 11 2553 

out-ff-5 48321 16.54 41.77 0 7 12 18 2553 

in-ff-1 48321 0 0.03 0 0 0 0 2 

in-ff-2 48321 3.13 2.05 0 2 3 4 15 

in-ff-3 48321 6.26 3.887 0 4 6 8 33 

in-ff-4 48321 11.17 7.14 0 7 10 15 69 

in-ff-5 48321 18.4 12.52 0 11 16 25 139 

out-nearestMUX 48321 58.91 42.4 0 14 99 99 99 

out-nearestPO 48321 4.76 5.88 0 3 4 6 99 

out-nearestDFF 48321 3.15 12.6 0 0 1 3 99 

in-nearestMUX 48321 79.37 35.02 0 99 99 99 99 

in-nearestPI 48321 2.27 4.05 0 1 2 3 99 

in-nearestDFF 48321 10.24 28.8 0 0 1 2 99 

net_type 48321 0.01 0.07 0 0 0 0 1 

 

 

ranks compared to the structural gate-level features. 

Positive and negative impact of each feature on the 

output of the learning model can also be seen in this 

figure. 

Table 9 shows the accuracy of XGBoost learning 

model trained with third data set, which shows better 

results than all previous methods. Confusion matrix of 

this learning model is shown in Table 10. The 

experimental results demonstrate that the average true 

positive rate (TPR), and the average true negative rate 

(TNR) become 79.06 and 100.0%, respectively. It 

shows this trained learning model improves the average 

TPR, while keeping the average TNR comparable to the 

existing state-of-the-art methods. 
 

4. 5. Accuracy of Trained Learning Models with 
Different Data Sets              Figure 14 compares the 

accuracy   of  the   trained   learning   models   based  on 
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Figure 11. High importance features of the third data set in 

XGBoost 
 

 

 
Figure 12. Features of the third data set with permutation and 

Scikit-learn library 
 

 

 
Figure 13. Importance of the features of the third data set by 

Shapley values 

TABLE 9. Accuracy of classifying the trained learning model 

with third data set 

Class Precision Recall F1-score Support 

Normal nets 1.00 1.00 1.00 14400 

Trojan nets 1 0.79 0.88 86 

 

 

TABLE 10. Confusion matrix based on third data set 

                          Predicted 

Actual  
Normal Trojan 

Normal nets 14400 0 

Trojan nets 18 68 

 

 

 
Figure 14. Accuracy of trained learning models with different 

feature extraction methods 

 

 

different feature sets. As seen in the figure, the trained 

learning model has the highest accuracy with a 

combination of graph centrality and structural gate-level 

features. 

Another method for evaluating performance of 

binary classification is the Receiver Operating 

Characteristic  )ROC( curve. The performance of binary 

classifier algorithms is usually measured by parameters 

called sensitivity or recall. Both of these parameters are 

combined and displayed as a curve in the ROC diagram. 

Figure  shows ROC diagram of three proposed data sets. 

As it turns out, the learning model based on combining 

graph centrality features and structural gate-level 

features has better ROC with 𝐴𝑈𝐶 = 1. 

 

4. 6. Runtime Overhead              Since Hasegawa et al. 

[12], liu et al. [27] and  Kurihara et al. [28] did not report 

the execution time of each feature for the benchmarks 

and we did not have access to those functions, we wrote 

the calculation functions of those features based on the 

description presented by et al. [12], liu et al. [27] and  

Kurihara et al. [28]  to be able to provide comparison. 

Some of the functions were too complex with long  
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Figure 15. ROC diagrams of trained learning models with 

three data sets 

 

 

execution time and motivated us to present graph 

centrality features to be able to use optimal graph 

algorithms available in Gephi tool with a very 

convenient time complexity.  

Time complexity of the training phase is directly 

related to the size of the data set. In all used data sets, 

the number of rows is the same. Our proposed data set 

(based on graph centrality features) has a smaller 

number of features, and as a result, the step of 

calculating the importance of features and selecting 

them is done in less time . 
 

 

5. CONCLUSION AND FUTURE WORKS 
 

In this paper, a method based on directed graphs for 

extracting features is proposed. The proposed method 

use Graph Centrality Algorithm and structural gate-

level features. To examine the importance and the 

impact of the extracted features with the proposed 

method, three types of data sets are created as input to 

the learning model made with XGBoost. The trained 

learning models based on these three data sets shows 

that extracting graph-based features has improved the 

F1-score by 10% and the ROC by 22%. The 

combination of these features with the structural gate-

level features improved the F1-score by 17.5% and the 

ROC by 38.5%. 
In the proposed method, Gephi tool is used to extract 

the graph-level features. To integrate the steps of 

creating a data set and training the learning model and 

then HT detection, a suitable library in Python can be 

used to calculate these features. Also, an API can be 

designed to communicate with Gephi tool. 

To improve the accuracy of HT detection, graph 

embedding methods or graph node classification can be 

used. In this way, first the directed graph should be 

extracted. Then, a set of features would be assigned to 

each nodes in the graph. This set of features can be 

obtained in the following ways for each node in graph: 

• Using the Node2vec method; 

• Calculate the structural features of the gate-level and 

assign these features to graph nodes. 

After performing the above steps, we will have a 

multigraph where a feature vector is assigned to each its 

node. Thereby, it is possible to use different methods of 

node classification such as GCN and GraphSAG to 

classify Trojan nodes. 
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Persian Abstract 

 چکیده 
ا هحمله   نی مجتمع منجر شده است. ا  یمدارها  دیتول  رهیدر زنج  یفزاربه نام تروجان سخت  یدیجد  یهامجتمع، به حمله  یتا ساخت مدارها  ی موجود در مراحل طراح  یپراکندگ

 یهااز تروجان   ی ریجلوگ  ا ی  صیتشخ  یبرا  یمختلف  یهاتراشه شوند. روش   یکل  ی موجب خراب  ا یشده را سرقت کنند، عملکرد مدار را کاهش دهند    ی اطلاعات رمزنگار  توانندیم

سطح   یساختار  یهایژگیاز و  یقبل  یهاقرار گرفته است. در پژوهش  اریمورد توجه بس  رایکه اخها بوده  روش   نیاز ا  یکی  نیماش  یری ادگیشده که استفاده از    یمعرف  یافزارسخت

داده    جادیا  یبرا  تیگ تشخ  نیماش  یریادگیمدل    درمجموعه  ا  یافزارسخت  یهاتروجان   صیو  در  است.  شده  مبتن  نیاستفاده  روش  دو  گراف   یمقاله  برا جهت  یهابر   ی دار 

دو   نیاست. بر اساس ا  تیسطح گ  یساختار  یهایژگیبا و  ارهایمع   نیا  بیگراف و روش دوم ترک  تیمرکز  یهااریشده است: روش اول استفاده از مع   شنهادیپ  هایژگیاستخراج و

استخراج  یهای ژگیو ر یو تاث تیاهم زانیم یبررس یشده است. برا جادیدر مجموع سه مجموعه داده متفاوت ا ت،یسطح گ یساختار یها ی ژگیو روش استخراج و یشنهادیروش پ

روش با  مقا  یشنهادیپ  یهاشده  و  سهیو  استخراج  روش  با  گ  یهای ژگیآنها  ا  ت،یسطح  داده  مجموعه  نوع  ورود  جادیسه  عنوان  به  مدل    یشده  با   یریادگیبه  شده  ساخته 

XGBoost  ار یگراف، مع   ت یبر مرکز  ی مبتن  یهایژگ ی سه مجموعه داده نشان داد که روش استخراج و  ن یبراساس ا  دهیآموزش د  ی ریادگی  ی هادقت مدل   ی داده شد. بررس  F1-

score  اریدرصد و مع   10  زانیرا به م  ROC  اریمع   ت،یسطح گ  یساختار  یهایژگیبا و  های ژگیو  نیا  بیدرصد بهبود داده است. ترک  22  زانیرا به م  F1-score  17.5  زان یرا به م 

 درصد بهبود داده است.  38.5 زانیبه مرا  ROC اریدرصد و مع 
 


