
IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

Please cite this article as: M. Hashemi, A. Momeni, A. Pashrashid, S. Mohammadi, Graph Centrality Algorithms for Hardware Trojan Detection
at Gate-Level Netlists, International Journal of Engineering, Transactions A: Basics, Vol. 35, No. 07, (2022) 1375-1387

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Graph Centrality Algorithms for Hardware Trojan Detection at Gate-Level Netlists

M. Hashemi+a, A. Momeni+a, A. Pashrashidb, S. Mohammadi*a

a School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
b Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

P A P E R I N F O

Paper history:
Received 12 January 2022
Received in revised form 24 April 2022
Accepted 25 April 2022

Keywords:
Hardware Trojan Detection
Structural Gate-Level Analysis
Graph Centrality Algorithms
Feature Extraction
Feature Selection

A B S T R A C T

The rapid growth in the supply chain of electronic devices has led companies to purchase Intellectual

Property or Integrated Circuits from unreliable sources. This dispersion in the design to fabrication

stages of IP/IC has led to new attacks called hardware Trojans. Hardware Trojans can bargain
information, reduce performance, or cause failure. Various methods have been introduced to detect or

prevent hardware Trojans. Machine learning methods are one of these. Selecting the type and number

of input variables in the learning algorithm has an important role in the performance of the learning
model. Some previous hardware Trojan detection studies have used structural gate-level features to

create data sets for machine learning models. In this paper, a method based on directed graphs for

extracting features is proposed. The proposed method use Graph Centrality Algorithm and structural
gate-level features. To examine the importance and the impact of the extracted features with the

proposed method, three types of data sets are created as input to the learning model made with

XGBoost. The trained learning models based on these three data sets show that extracting graph-based
features has improved the F1-score by 10% and the ROC by 22%. The combination of these features

with the structural gate-level features improved the F1-score by 17.5% and the ROC by 38.5%.

doi: 10.5829/ije.2022.35.07a.16

1. INTRODUCTION1

Hardware Trojan (HT) can be defined as an action

meant to change the circuit or cause intentional damage

to the circuit in order to change the circuit’s

functionality or reduce circuit reliability or reveal the

circuit information. A simple block diagram of a HT is

depicted in Figure , which contains two main parts,

including Trigger and payload. The Trojans can be

added to the circuit in all producing stages (descriptive

IC, design, manufacturing, and test) by the attacker.

Hence, the HT detection and confrontation with them

are more complicated than fault detection during

manufacturing. In the design stage, the Trojan can be

inserted easily by changing the hardware description.

Therefore, it is critical to identify Trojans in the design

stage.

*Corresponding Author Institutional Email: smohamadi@ut.ac.ir

(S. Mohammadi)
+M. Hashemi and A. Momeni equally contributed in this work

According to the literature, machine learning can be

used as one of the effective methods in identifying the

HTs. The detection of HTs can be considered as a

classification process. Also, gate-level netlists can be

used to create features that distinguish between Trojan

and normal nets. Therefore, machine learning

algorithms and efficient mathematical calculations can

make a more accurate classification between Trojan and

normal nets.

The distinguishing features of Trojan nets and the

normal nets is the key point in this paper in order to

Figure 1. General structure of a HT [1]

mailto:smohamadi@ut.ac.ir

1376 M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

identify HTs using the supervised learning method. If

the extracted feature sets are too small, the machine

learning cannot cluster and identify the Trojans. In

addition, if the feature sets are too large, the Curse of

Dimensionality event occurs, and the clustering will not

be done in a correct manner. Therefore, it is essential to

extract the features of Trojan nets and then, reduce the

number of the features so that the model be efficient.

Several approaches can be employed to extract the

features of the HTs as follows:

• The structural features of the circuit: for instance,

the number of fan-ins, the number of the flip-flops,

the distance of each net from the primary input or

primary output, etc.;

• The test features of the circuit: these features include

Sandia Controllability/Observability Analysis

Program (SCOAP) parameters [2], like the level of

controllability and observability of the circuit nets;

• The Register Transfer Level (RTL)-code features of

the circuit: the structure of the RTL code is

investigated, and the features like the number of the

existing modules in the code, the number of existing

signal types in each module, the number of “always”

statements in each module, the number of primary

input or output variables, and the number of register-

type variables, etc. are extracted .

The idea of graph-level features in detecting HTs

using machine learning methods can be a starting point

for future work and development. While using machine

learning to detect HTs, selecting the type and number of

input variables of the learning method has a significant

role in the performance of the learning model. In

previous studies, the structural features of the gate-level

netlists have been used to create data sets for the

machine learning model used to detect HTs. Extracting

some of these features at the gate-level is difficult and

requires creating complex data structures from the

circuit netlist and then implementing specific algorithms

to extract each feature [3]. In this research, two methods

based on directed graphs for extracting gate-level

features are proposed. The proposed tool does

converting a gate-level netlist to a directed graph easily.

We use available optimal graph algorithms to work on

graphs or extract graph-level features. The contributions

of this paper are summarized as follows: 1) as the size

of the circuits increases, analyzing the structure of the

gate-level netlist and extracting its features becomes

more complex. In this research, in order to simplify and

increase the efficiency of HT analysis, we used a gate-

level netlist mapped to directed graphs; 2) the

information of graph is maintained by an efficient data

structure to be analyzed. In addition, directed graphs

can express more information about the behavior of the

circuit, thereby helping detect Trojans; 3) in this study,

new approaches have been proposed in order to simplify

the extraction of appropriate features, so that the

accuracy of the trained model is improved; 4) the

proposed method uses Graph Centrality Algorithm and

structural gate-level features; 5) to examine the

importance and the impact of the extracted features with

the proposed method, three types of data sets are created

as input to the learning model made with XGBoost [4].

The rest of the paper is organized as follows. Section

II provides some background regarding the gate-level

features of HT(s) and the issues of the existing

approaches. Section III introduces the methodology of

the proposed methods as well as the metrics that can

help evaluate the quality of detection. Section IV

discusses the results in terms of accuracy of detection.

Finally, section V concludes this study and suggest

some points that can improve the quality of HT

detection.

2. BACKGROUND AND RELATED WORK

HT detection at the gate-level is essential in identifying

Trojans in the design stage. The identifying methods in

the gate-level enable the developers and the System-On-

Chip (SOC) designers to test the IPs provided from

insecure resources [5]. Using machine learning is one of

these approaches that can be utilized to identify HTs.

This approach is based on extracting appropriate feature

sets for training the model in order to identify Trojans.

Extraction or calculation of appropriate features that can

increase the accuracy of trained models is complicated

and challenging in large gate-level netlists. In this

section, the conducted studies in the field of identifying

HTs for gate-level netlists will be reviewed.

HT detection methods usually include two stages as

follows:

• First, the circuit features are extracted;

• Then, the extracted features are investigated and

analyzed using different methods.

According to the analysis methods of the extracted

features, the Trojan identification approaches can be

divided into three main classes as follows :

• Search-based methods;

• Threshold-based methods;

• Machine-learning-based methods.

In the following subsection, the conducted works in

these fields are reviewed briefly.

2. 1. Search-based Identification Methods In

this methods, the netlist of the circuit is processed to

find the nets with the Trojan feature. Unused Circuitry

Identification (UCI) [6] is a method that is applied to

code coverage. However, UCI has also been used to

identify HT at the gate-level [7]. It is designed to

identify the parts of the circuit that are inactive during

the execution or when they are inactive most of the

time. UCI algorithm makes a Data-flow graph, in which

the nodes are the circuit nets, and the edges indicate the

current between the circuit nets. In the next step, it is

M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387 1377

investigated whether during the simulation the current

flows between every two nodes of the corresponding

graph. Therefore, the unused nets can be identified in

this way. The disadvantage of this method is that it

cannot be applied to large circuits because the

exhaustive simulation of these circuits is very time-

consuming, and sometimes impossible.

VeriTrust is another work in this field [7] that

includes a tracer and a checker. The checker identifies

the activation history of the SOP and POS sections of

the circuit. These inputs are investigated using the

checker in three aspects: additional inputs, non-

additional inputs, and logic synthesis so that the circuit

function is simplified again. This solution requires a

white-box accessibility of the hardware IP since it uses

static analysis of the code and is based on functional

verification. Besides, this method is time-consuming.

2. 2. Threshold Value-based Methods In

these approaches, a threshold value is defined for each

of the circuit features, and if any net exceeds this

threshold limit, the net is recognized as a Trojan. A

method called FANCI is presented by Waksman et al.

[8] which is based on functional analysis. This method

distinguishes the parts of the circuit that are inactive.

For this purpose, they proposed a metric called control

value(CV) to identify nearly-unused logic. This metric

measures the degree of control that an input has on the

operation and outputs of a digital circuit. Next, the

Trojan nets and the normal nets are identified according

to CV and a threshold value. The complexity of CV

calculation increases exponentially with the circuit’s

size. Therefore, the authors have approximated the CV

value using innovative techniques. Hence, this method

is still time-consuming, and the statistics show that it is

not accurate, as it identifies many healthy nets as Trojan

nets. Another disadvantage of this method is that it only

can be applied to hybrid circuits., Other approaches

have also been proposed by Fyrbiak et al. [9] and

Sullivan et al. [10] in order to employ this method in

hybrid circuits. Nevertheless, this method does not have

proper performance in hybrid circuits with high clock

levels.

2. 3. Machine Learning-based Methods As

machine learning technology grows rapidly, more

researchers have become interested in this method to

identify the HTs. Machine learning methods have been

utilized for identifying HTs at the gate-level for the first

time [11]. The gate-level hardware features have been

employed to accomplish this as follows:
• 𝐿𝐺𝐹𝑖 (Logic-gate fan-in): The number of inputs of

two previous levels of the gate;

• 𝐹𝐹𝑖, 𝐹𝐹𝑜: The least distance (level) of each net from

the input and output of a flip-flop, respectively;

• 𝑃𝐼, 𝑃𝑂: The least distance of a net to the primary

inputs and outputs of the circuit, respectively .

Figure 2 shows an example of calculating the

structural gate-level features, and the values of these

five features have been demonstrated for net n. The fan-

in value of net n at the second level is four. Since the

distance of flip-flop A distance from net n is two, 𝐹𝐹𝑖 is

equal 2.

These features are employed as input in Support

Vector Machine (SVM) clustering. The main problem

in this method is the long distance between the number

of normal nets and the Trojan nets. In order to address

this issue and data balancing, the repeated-feature

vectors for the healthy nets are eliminated so that the

number of the normal nets and the Trojan nets are

equaled.

Hasegawa et al. [12] and Ye et al. [13] extracted 51

features of the Trojan nets have been from the netlists of

Trust-Hub benchmarks. Salmani et al. [14] and Shakya,

15] applied machine learning in the first stage in order

to perform an effective clustering of HTs. In the next

step, 11 features (logic gate fan-in, the number of

input/output-side net flip-flops, the number of

input/output-side net multiplexers, the number of

input/output-side net loops, the constant values, and the

distance of net from the primary inputs or outputs) have

been selected among 51 features in order to reduce the

dimensions and prevent dimension congestion event.

Random forest classifier has been used to select more

essential features.
Ye et al. [13] and Hoque et al. [16] have balanced

first the data set by generating new HT data. In this

approach, the benchmarks are produced by using

Trojan-insertion tools in IP so that the inserted Trojans

are difficult to distinguish. Second, the related data to

Trojan features are extracted from them, and a trained

model is made based on the extracted data set. This

trained model is used for identifying HTs.

Salmani [17] utilized combinational testability

measured as HT features. By this purpose, the testability

indices is calculated using SCOAP. They include

controllability and observability of zero and one values

of circuit nets. In tsalmani’s work [17], an unsupervised

method has been used for clustering the Trojans. Some

Figure 2. An example of structural gate-level features

calculation [11]

1378 M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

Trojans change the sequential nets and signals as well as

the circuit hybrid signals. Xie et al. [18] utilized the

sequential testability indices as the features of the HTs.

An ensemble learning based method has been

proposed by Wang et al. [19] to identify HT features in

which the trigger part of Trojans has been used. In this

approach, as shown in Figure , two different learning

models have been made to identify hybrid and

sequential triggers. These two models have been

combined using hybrid learning.

Kurihara and Togawa [20] have proposed a 25

hardware-Trojan features based on the structure of

trigger circuits for machine-learning-based HT

detection. Their experimental results show that the

average true positive rate (TPR) and the average true

negative rate (TNR) are 63.6% and 100.0%,

respectively. However, compared to our proposed

method, the average TPR is 15.46% lower.

3. METHODOLOGY AND PROPOSED METHOD

Security analysis for Trojan detection in IP cores have

been explored mostly in gate-level netlists. In these

types of analysis, structural features are extracted to find

the hidden structure of Trojans. Considering the size of

real circuits, structural analysis to extract features is too

complex to be done easily. In this paper, we have used a

simple mapping to convert gate-level netlist to a

directed graph. This method not only helps to present an

efficient analysis, but also provides more information

about the functionality of the circuit. Thus, this would

be helpful for Trojan detection.

3. 1. Preliminaries
3. 1. 1. Gate-level Netlist to Directed Graph
Mapping The construction of a directed graph of

a gate-level netlist is done as follows: we consider the

inputs and outputs of each gate as nodes and the gate as

an edge, and then the graph based on the relations

between the gates in the list. Figure 4 shows directed

graph representations for some gate examples.

Figure 3. Overall stages of identifying Trojans based on

hybrid/sequential triggers [19]

Figure 5 shows the directed graph of the RS232-

T1000 Trojan circuit of the Trust-Hub benchmarks [14,

15]. To construct a digraph, using a tool implemented in

Python, the netlist is processed to read the individual

gates (nets) of the circuit and, depending on the input

and output of each gate, it extracts an edge-list file

containing all the pairs (input-output) of the gates. It

means this is a file containing edges of the directed

graph. Then, with this file we can create a graph and

display it by graph tools and Python libraries. For

example, with a graph library like networkx this edge-

list is read and the graph is displayed. Consider an AND

gate with a, b as its inputs and c as its output. The

developed tool adds edges a-c and b-c to the edge-list

file.

Figure 4. Directed graph representations for some gates

Figure 5. Directed graph of RS232-T1000

M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387 1379

3. 1. 2. Graph Centrality Algorithms In

graphs or graphs, centrality measures are used to

determine the importance of nodes. A centrality

measure is a function that assigns a number to each

node according to the importance of that vertex in the

graph. Extensive research has been done to calculate

centrality measures in order to reduce its calculation as

much as possible or to be able to perform these

calculations in parallel by distributing them on different

computers. The most important centrality measures are:

Degree centrality: It is defined as the number of links

incident upon a node (i.e., the number of ties that a node

has). The most important node has higher degree.

Betweenness centrality: It measures the number of

times a node lies on the shortest path between other

nodes. In fact, it calculates how many nodes need this

node to communicate faster (with less intermediaries).

The higher betweenness of a node means more

information passes through this node. The betweenness

of node v in a graph is calculated as follows [22]:

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡∈𝑉 (1)

where 𝜎𝑠𝑡 is total number of shortest paths between

node s and node t, and 𝜎𝑠𝑡(𝑣) is the number of paths

between s and t that pass through node v.
Closeness centrality: A node is considered as a close

node if it requires a small number of interfaces to

communicate with other nodes [23].

Eigen vector centrality: The importance of a node is

calculated based on adjacent nodes. If a node is

connected to important nodes, its importance also

increases under their influence. This method repeatedly

considers the importance of neighbors to calculate

eigenvector centrality. All nodes are first given an initial

score and then, continued in a chain until they reach

stability. Scoring in this method is based on the concept

that nodes with high connections help the nodes that

follow them in terms of eigenvector centrality [24].

PageRank: The rank of a page depends on the rank of

the pages that are linked to it. Since we do not initially

know the rank of pages, in this algorithm, all pages are

first given the same rank as the initial rank. Then, the

algorithm is run repetitively until the rank of each page

converges to a number. Only nodes that have a neighbor

and a link from others to themselves will be ranked,

otherwise their rank will be zero [25, 26].

Hub centrality: It is the ability of a node to form a

relation with other nodes in a graph.

Authority centrality: It is calculated based on the

number of relations that other nodes have with a node.

Clustering coefficient: This criterion calculates the

tendency of a node to create a cluster with other nodes.

For example, 0.5 for a node means that there is 50%

chance of communication between neighboring nodes.

Modularity class: It calculates the effect of a node on

other nodes in the community in which it is located and

on the nodes in other communities.

3. 2. Preparing Data Set This is the most

important step in the supervised machine learning

process. The input data set in a learning model must be

carefully prepared both in terms of size and quality of

its features so that the learning model can be well

trained and be used for a high-precision prediction

model. In this study, in the first step to prepare a data

set for detecting HTs using machine learning, the

benchmarks of Table 1 have been collected [14, 15].

The used benchmarks are Verilog-HDL gate-level

netlists and we know beforehand which net is a Trojan

net and which net is a normal net. Then, the data sets

shown in Table 2 have been created.

3. 2. 1. First Data Set: Specified by Graph
Centrality Algorithm In the first step, we

collect the gate-level benchmarks mentioned in the

previous section. In the second step, using our tool

written in Python, we start to process each benchmark

and generate a .csv file containing the edges of the

graph. In the third step, using Gephi tool [29], we read

each of these files to calculate the centrality criteria of

each graph and generate their report as output. In the

last step, we read these generated reports using a tool

written in Python to produce a data set containing the

TABLE 1. Properties of used benchmarks [14, 15]

Benchmark
No. of nets

Benchmark
No. of nets

Normal Trojan Normal Trojan

RS232-T1000 297 13 s38584-T100 7342 19

RS232-T1100 297 12 s15850-T100 2417 28

RS232-T1200 297 14 s35932-T100 6405 15

RS232-T1300 297 9 s35932-T200 6382 17

RS232-T1400 297 13 s35932-T300 6405 36

RS232-T1500 297 15 s38417-T100 5798 12

RS232-T1600 297 13 s38417-T200 5798 15

 s38417-T300 5827 15

TABLE 2. Data sets used in this work
Data Set Description

Proposed 1
Based on graph centrality features of directed

graphs extracted from benchmarks

SGL Structural Gate-Level features [12, 27, 28]

Proposed 2 Merge features extracted from Prop.1 and SGL

1380 M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

nets of all circuits along with 18 centrality features for

each net. Given that in the first step we identify the

Trojan sections of each circuit, in this step the labeling

of each net would be also done for the data set. We label

Trojan nets as “1” and other nets as “0”.

3. 2. 2. Second Data Set: Specified by Structural
Gate-Level Features The use of structural

features of gate-level netlist in detection of HTs by

machine learning has been studied in several studies.

Here, we use the structural gate-level features published

[12, 27, 28] to construct the data set. Because we do not

have a database based on this type of features, we have

written a tool in Python to extract these types of features

from the gate-level netlist. Then the information of each

net (including input/output to net, type of gate, and a

gate-level structural feature vector) has been calculated

and stored in the dictionary. After completing

dictionary, we store its information as a data set file in

the output.

3. 2. 3. Third Data Set: Specified by Structural
Gate-Level Features and Graph Centrality
Algorithm In order to add more accuracy to

the extracted features of the proposed method with the

structural features of the gat-level netlist, we have

created a new data set based on the integration of these

two types of data sets, which are mentioned in Table 3.

Some structural features that are introduced in [12, 27,

28], are:

• Fan_in_x: In case of combinational circuits, trigger

circuits require multiple logic gates since they have

to implement complex trigger conditions. If the

trigger is a rare condition, the number of fan-ins

tends to become large. Since hts tend to have rare

trigger conditions, the number of fan-ins in Trojan

nets must be large compared to normal nets. Hence,

fan_in_x that is defined as the number of fan-ins up

to x-level away from the net n is an important

feature to detect hts.

• In_ff_x (out_ff_x), in_nearestff (out_nearestff):

Since the hts circuits are too small and placed

locally, the level of flip-flops for sequential-trigger

circuits must be small enough. So, in_ff_x that is

designed as the number of flip-flops up to x-level

away from the input (output) side of the net n, plays

an important role to detect hts. Also, the levels of the

nearest flip-flops from the input (output) side of the

net n are defined as in_nearest flip-flop and out

nearest flip-flop, respectively and are extracted as

Trojan features.

• In_mux_x (out_mux_x), in_nearestmux (out_

nearestmux): Some hts have multiplexers which

receive trigger signals from trigger circuits and

switch output signals to activate malfunctions.

Therefore, the number of multiplexers up to x-level

away from the input side and output side of the net n

(in multiplexer x and out multiplexer x,

respectively), and the level of the nearest

multiplexers from the input side and output side of

the net n (in nearest multiplexer and out nearest

multiplexer respectively) are extracted as Trojan

features.

• In_nearestpi (out_nearestpi): Primary inputs (PI) are

often selected as triggers of hts. Primary outputs

(PO) are often used as output ports of internal

signals for malfunctions. It means Trojan nets are

likely to be placed close to pis and pos. So,

in_nearestpi (out_nearestpi) that equals the

minimum levels from net n to any PI (PO) is

extracted as Trojan feature.

Graph centrality features that are used by Gephi tool

are introduced by Tarjan [30], hence, we skip detailed

introduction. As a brief review:

• Strong component: a strongly connected component

of a digraph is a maximal set of vertices that there is

a path from any one vertex to any other vertex in the

set.

3. 3. Use of Machine Learning XGBoost is a

decision-tree-based ensemble Machine Learning

algorithm that uses a gradient boosting framework. The

implementation of the algorithm was engineered for

efficiency of compute time and memory resources. A

design goal was to make the best use of available

resources to train the model. Some key algorithm

implementation features include:

• Sparse aware implementation with automatic

handling of missing data values;

• Block structure to support the parallelization of tree

construction;

TABLE 3. Merging extracted features from Prop.1 and SGL

Graph Centrality Features

Structural Features

(𝟏 ≤ 𝒙 ≤ 𝟓) [12, 27,

28]

Strong Component no. PageRank fan_in_x

Component no. Authority in_ff_x

weighted degree degree out_ff_x

Weighted in Degree In degree in_mux_x

Weighted out Degree Out degree out_mux_x

Eigen Centrality Hub in_nearestFF

Closeness Centrality Eccentricity out_nearestFF

Betweenness Centrality in_nearestPI

Harmonic Closeness Centrality out_nearestPO

Clustering Coefficient in_nearestMux

Modularity Class out_nearestMux

M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387 1381

• Continued training to further boost an already fitted

model on new data.

In this research, XGBoost learning model is used for

classification. The inputs to the model are the data sets

with their related set of features and the learning

parameters. Default parameters are used in this learning

model, some of them are listed in Table 4. The output is

the trained model that we use for HT detection. Also,

We have used three different methods, XGBoost, Scikit-

learn, and SHAP libraries, to analyze the importance

and impact of the proposed extracted features of three

data sets on the accuracy of HT detection:

• Method 1: Use XGBoost function to determine the

importance of features. In XGBoost algorithm, the

relative importance of features is measured by

several criteria. One of these criteria is the split

weight, which is the number of times a feature has

been used to separate data in a tree in all boosted

trees. More important features are more involved in

the construction of trees, and the other features are

used to reduce errors;

• Method 2: Use Scikit-learn library for computing

permutation importance of features. In fact, we used

the feature permutation method that is available in

Scikit-learn library to calculate the importance of

features. In this method, the increasing rate of the

learning model prediction error is measured for each

change in features (until the relation between the

feature and the correct output is lost). Permuting the

feature that has lower importance will not greatly

affect the accuracy of the output of model;

• Method 3: Determine the importance of the features

based on the calculated Shapley additive explanation

(SHAP) values. SHAP is a library that provides a

mechanism to calculate Shapley values. In this

method that is based on the concept of Shapley

values in game theory, the effect of each feature on

the output of the learning model is measured using

co-operative game theory. Each feature is

considered as a player in the game and the output of

the predicted model is the final reward of the game.

Shapley values determine the role of each player

(feature) in the final reward (predicted model).

TABLE 3. Used learning model parameters

Paremeter Value

base score 0.5

booster gbtree

Learning rate 0.1

Max depth 3

TABLE 4. Statistical features of the first data set

Feature mean std min 0.25 0.5 0.75 max

in degree 3.0352 1.33 0 2 4 4 6

out degree 3.0352 37.69 0 1 2 3 2553

degree 6.0704 37.65 1 4 5 7 2553

weighted in degree 3.0352 1.33 0 2 4 4 6

weighted out degree 3.0352 37.695 0 1 2 3 2553

weighted degree 6.0704 37.65 1 4 5 7 2553

eccentricity 62.16 37.245 0 37 49 97 171

ClosnessCentrality 0.0528 0.072 0 0.03 0.037 0.06 1

HarmonicClosenessCentrality 0.0623 0.076 0 0.039 0.046 0.071 1

BetweennessCentrality 0.0044 0.014 0 0.001 0.001 0.003 0.37

authority 0.0085 0.015 0 0 0 0.019 0.114

hub 0.0008 0.018 0 0 0 0 0.72

ModularityClass 9.1958 8.79 0 2 7 15 38

ClusteringCoefficient 0.9583 2.75 0 0 0.1 0.3 15

PageRank 0.0003 0.001 0 0 0 0 0.022

component no. 0.0164 0.478 0 0 0 0 22

StrongComponent no. 104.63 149.05 0 37 59 85 1010

EigenCentrality 0.277 0.202 0 0.14 0.24 0.363 1

1382 M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

4. RESULTS AND ANALYSIS

Based on the two proposed methods and the structural

features of the gate-level netlist, three data sets on 15

benchmarks have been created in total. Using XGBoost

learning model, we have evaluated and compared these

data sets and their features. We used Jupyter to develop

our Python tool on a Core(TM) i5-4200M CPU

machine.

4. 1. Statistical Results of the First Data Set

Table 5 summarizes the statistical characteristics of the

first data set with 48,722 rows and 18 columns. The

rows of this data set contain all 15 netlists of the Trust-

Hub benchmarks [14, 15]. Its columns contain 18

features of graph centrality extracted from directed

graphs of benchmarks and one column for the label.

Statistical characteristics include mean, standard

deviation, minimum, maximum and quartile values of

each feature.

As shown in Figure 6, there is a significant

difference between the mean features of the normal nets

and Trojan nets in this data set. The value distribution of

different features for Trojan and normal nets has a

significant difference in Figure 7. So, these features can

be used to detect Trojan nets using a machine learning

model.

4.2 Importance of the First Data Set Features and
the Accuracy of the Learning Model Figure

shows the importance of the features using the XGBoost

Figure 6. Mean value of features for normal and Trojan nets

Figure 7. Value distribution of some features in normal and

Trojan nets

Figure 8. High importance features of the first data set in

XGBoost

functions. Sorting these types of features is based on the

effectiveness of each feature in improving the F-score

value. Figure 9 shows the importance of the features by

permutation method using Scikit-learn library. High

importance features in XGBoost method are also ranked

higher with a slight difference.

Figure 10 shows the importance of the features of

this data set. It also shows how each features affects the

output, using Shapley values method. Shapley is a

unified framework for interpreting predictions that

assigns each feature an important value for a particular

prediction. According to Shapley values chart, the Hub

has the highest importance. The lower value of the Hub

per net increases the probability of being a Trojan net.

The betweenness centrality feature ranks second and

higher value for that means high probability to be

Trojan. The betweenness centrality determines how

M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387 1383

Figure 9. Features of the first data set with permutation and

Scikit-learn library

Figure 10. Importance of the features of the first data set by

Shapley values

many times a node is in the shortest paths in a graph.

Because there is a complex circuit with many inputs

before a Trojan net, these nets have higher betweenness

centrality in the directed graph. The harmonic closeness

centrality is the next important feature. It can be seen

that nets with higher centrality features have greater

probability of being Trojan nets. This is because Trojan

nets are placed farther away from other nets, as a result,

their average distance from other nets is greater in

directed graph Table 6 and Table 7. show the accuracy

of XGBoost learning model trained with the first data

set. The experimental results show that the average true

positive rate (TPR), and the average true negative rate

(TNR) are 66.66 and 99.99%, respectively.

4. 3. Statistical Results of the Second Data Set

Table 8 summarizes the statistical characteristics of the

second data set. There are 48,321 rows and 32 columns

TABLE 5. Accuracy of classifying the trained learning model

with first data set
Class Precision Recall F1-score Support

Normal nets 1.00 1.00 1.00 14542

Trojan nets 0.96 0.67 0.79 75

TABLE 6. Confusion matrix based on first data set
 Predicted

Actual
Normal Trojan

Normal nets 14540 2

Trojan nets 25 50

in this data set. The rows of this data set contain all 15

netlists of the benchmarks. Its columns contain 31 gate-

level structural features and 1 column for label.

Statistical characteristics include mean, standard

deviation, minimum, maximum, and quartile values of

each feature.
While calculating features such as out-nearestMUX,

which indicates the distance of the nearest multiplexer

to a net, if there is no multiplexer after a net to the main

outputs of the circuit, the value of that feature is set to a

constant value (approximately equivalent to the longest

path of the circuit).

4. 4. Analysis of the Third Data Set In

previous sections, the importance of structural gate-

level features and features based on the graph centrality

algorithm were discussed. In addition, the effect of each

of these features on the accuracy of the learning model

was considered. In this section, the third data set that is

a combination of these two data sets is examined in

terms of the importance of features and the accuracy of

the trained learning model.

Figure 11 shows the features of this data set

obtained with the XGBoost functions. As shown in this

figure, the centrality features of the graph are mostly in

higher order than the structural features of the gate-

level. Only out-ff-5 that is a gate-level feature is among

the top 10 features. The three most important features in

this data set are the graph centrality features (PageRank,

harmonic closeness centrality, and betweenness

centrality) which are far from the others.

As Error! Reference source not found. shows, the

centrality features of the graph are mostly in higher

order compared to others in the third data set with

permutation and Scikit-learn library. In this method,

out-ff-5, out-nearestMUX, in-nearestPI, and in-

nearestFF features, which are structural gate-level

features, have been able to be among the top features.
The importance of the features of the third data set

with Shapley values is shown in Figure . In this method,

graph centrality features are still in higher

1384 M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

TABLE 8. Statistical features of the second data set

Feature Count mean std min 0.25 0.5 0.75 max

fan-in-1 48321 3.07 1.37 0 2 4 4 6

fan-in-2 48321 6.31 3.12 0 5 6 8 23

fan-in-3 48321 11.55 6.6 0 7 10 16 58

fan-in-4 48321 20.39 13.21 0 11 19 30 129

fan-in-5 48321 34.86 25.18 0 15 31 52 258

in-mux-1 48321 0 0.026 0 0 0 0 2

in-mux-2 48321 0 0.039 0 0 0 0 2

in-mux-3 48321 0 0.053 0 0 0 0 2

in-mux-4 48321 0 0.073 0 0 0 0 2

in-mux-5 48321 0 0.098 0 0 0 0 2

out-mux-1 48321 0 0.035 0 0 0 0 3

out-mux-2 48321 0 0.059 0 0 0 0 3

out-mux-3 48321 0.08 0 0 0 0 3

out-mux-4 48321 0.1 0.12 0 0 0 0 3

out-mux-5 48321 0.01 0.16 0 0 0 0 3

out-ff-1 48321 1.7 37.81 0 0 1 2 2552

out-ff-2 48321 3.24 37.9 0 0 2 4 2552

out-ff-3 48321 5.9 38.2 0 2 4 7 2553

out-ff-4 48321 10.13 39.13 0 4 7 11 2553

out-ff-5 48321 16.54 41.77 0 7 12 18 2553

in-ff-1 48321 0 0.03 0 0 0 0 2

in-ff-2 48321 3.13 2.05 0 2 3 4 15

in-ff-3 48321 6.26 3.887 0 4 6 8 33

in-ff-4 48321 11.17 7.14 0 7 10 15 69

in-ff-5 48321 18.4 12.52 0 11 16 25 139

out-nearestMUX 48321 58.91 42.4 0 14 99 99 99

out-nearestPO 48321 4.76 5.88 0 3 4 6 99

out-nearestDFF 48321 3.15 12.6 0 0 1 3 99

in-nearestMUX 48321 79.37 35.02 0 99 99 99 99

in-nearestPI 48321 2.27 4.05 0 1 2 3 99

in-nearestDFF 48321 10.24 28.8 0 0 1 2 99

net_type 48321 0.01 0.07 0 0 0 0 1

ranks compared to the structural gate-level features.

Positive and negative impact of each feature on the

output of the learning model can also be seen in this

figure.

Table 9 shows the accuracy of XGBoost learning

model trained with third data set, which shows better

results than all previous methods. Confusion matrix of

this learning model is shown in Table 10. The

experimental results demonstrate that the average true

positive rate (TPR), and the average true negative rate

(TNR) become 79.06 and 100.0%, respectively. It

shows this trained learning model improves the average

TPR, while keeping the average TNR comparable to the

existing state-of-the-art methods.

4. 5. Accuracy of Trained Learning Models with
Different Data Sets Figure 14 compares the

accuracy of the trained learning models based on

M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387 1385

Figure 11. High importance features of the third data set in

XGBoost

Figure 12. Features of the third data set with permutation and

Scikit-learn library

Figure 13. Importance of the features of the third data set by

Shapley values

TABLE 9. Accuracy of classifying the trained learning model

with third data set

Class Precision Recall F1-score Support

Normal nets 1.00 1.00 1.00 14400

Trojan nets 1 0.79 0.88 86

TABLE 10. Confusion matrix based on third data set

 Predicted

Actual
Normal Trojan

Normal nets 14400 0

Trojan nets 18 68

Figure 14. Accuracy of trained learning models with different

feature extraction methods

different feature sets. As seen in the figure, the trained

learning model has the highest accuracy with a

combination of graph centrality and structural gate-level

features.

Another method for evaluating performance of

binary classification is the Receiver Operating

Characteristic)ROC(curve. The performance of binary

classifier algorithms is usually measured by parameters

called sensitivity or recall. Both of these parameters are

combined and displayed as a curve in the ROC diagram.

Figure shows ROC diagram of three proposed data sets.

As it turns out, the learning model based on combining

graph centrality features and structural gate-level

features has better ROC with 𝐴𝑈𝐶 = 1.

4. 6. Runtime Overhead Since Hasegawa et al.

[12], liu et al. [27] and Kurihara et al. [28] did not report

the execution time of each feature for the benchmarks

and we did not have access to those functions, we wrote

the calculation functions of those features based on the

description presented by et al. [12], liu et al. [27] and

Kurihara et al. [28] to be able to provide comparison.

Some of the functions were too complex with long

1386 M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387

Figure 15. ROC diagrams of trained learning models with

three data sets

execution time and motivated us to present graph

centrality features to be able to use optimal graph

algorithms available in Gephi tool with a very

convenient time complexity.

Time complexity of the training phase is directly

related to the size of the data set. In all used data sets,

the number of rows is the same. Our proposed data set

(based on graph centrality features) has a smaller

number of features, and as a result, the step of

calculating the importance of features and selecting

them is done in less time .

5. CONCLUSION AND FUTURE WORKS

In this paper, a method based on directed graphs for

extracting features is proposed. The proposed method

use Graph Centrality Algorithm and structural gate-

level features. To examine the importance and the

impact of the extracted features with the proposed

method, three types of data sets are created as input to

the learning model made with XGBoost. The trained

learning models based on these three data sets shows

that extracting graph-based features has improved the

F1-score by 10% and the ROC by 22%. The

combination of these features with the structural gate-

level features improved the F1-score by 17.5% and the

ROC by 38.5%.
In the proposed method, Gephi tool is used to extract

the graph-level features. To integrate the steps of

creating a data set and training the learning model and

then HT detection, a suitable library in Python can be

used to calculate these features. Also, an API can be

designed to communicate with Gephi tool.

To improve the accuracy of HT detection, graph

embedding methods or graph node classification can be

used. In this way, first the directed graph should be

extracted. Then, a set of features would be assigned to

each nodes in the graph. This set of features can be

obtained in the following ways for each node in graph:

• Using the Node2vec method;

• Calculate the structural features of the gate-level and

assign these features to graph nodes.

After performing the above steps, we will have a

multigraph where a feature vector is assigned to each its

node. Thereby, it is possible to use different methods of

node classification such as GCN and GraphSAG to

classify Trojan nodes.

6. REFERENCES

1. Bhunia, S., Hsiao, M.S., Banga, M. and Narasimhan, S.,

"Hardware trojan attacks: Threat analysis and countermeasures",

Proceedings of the IEEE, Vol. 102, No. 8, (2014), 1229-1247,

doi: 10.1109/JPROC.2014.2334493.

2. Goldstein, L.H. and Thigpen, E.L., "Scoap: Sandia

controllability/observability analysis program", in Proceedings
of the 17th Design Automation Conference., (1980), 190-196,

doi: 10.1145/800139.804528.

3. Esfandian, N. and Hosseinpour, K., "A clustering-based
approach for features extraction in spectro-temporal domain

using artificial neural network", International Journal of

Engineering,Transactions B: Applications, Vol. 34, No. 2,

(2021), 452-457, doi: 10.5829/IJE.2021.34.02B.17.

4. Chen, T. and Guestrin, C., "Xgboost: A scalable tree boosting

system", in Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery anionsd data mining. Vol.,

No. Issue, (2016), 785-794, doi: 10.1145/2939672.2939785.

5. Yang, Y., Ye, J., Cao, Y., Zhang, J., Li, X., Li, H. and Hu, Y.,
"Survey: Hardware trojan detection for netlist", in 2020 IEEE

29th Asian Test Symposium (ATS), IEEE. , (2020), 1-6, doi:

10.1109/ATS49688.2020.9301614.

6. Hicks, M., Finnicum, M., King, S.T., Martin, M.M. and Smith,

J.M., "Overcoming an untrusted computing base: Detecting and
removing malicious hardware automatically", in 2010 IEEE

symposium on security and privacy, IEEE., (2010), 159-172,

doi: 10.1109/SP.2010.18.

7. Zhang, J., Yuan, F., Wei, L., Liu, Y. and Xu, Q., "Veritrust:

Verification for hardware trust", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,
Vol. 34, No. 7, (2015), 1148-1161, doi:

10.1109/TCAD.2015.2422836.

8. Waksman, A., Suozzo, M. and Sethumadhavan, S., "FANCI:
Identification of stealthy malicious logic using boolean

functional analysis", in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security., (2013),

697-708, doi: 10.1145/2508859.2516654.

9. Fyrbiak, M., Wallat, S., Swierczynski, P., Hoffmann, M.,

Hoppach, S., Wilhelm, M., Weidlich, T., Tessier, R. and Paar,
C., "Hal—the missing piece of the puzzle for hardware reverse

engineering, trojan detection and insertion", IEEE Transactions

on Dependable and Secure Computing, Vol. 16, No. 3, (2018),

498-510, doi: 10.1109/TDSC.2018.2812183.

10. Sullivan, D., Biggers, J., Zhu, G., Zhang, S. and Jin, Y., "Fight-

metric: Functional identification of gate-level hardware
trustworthiness", in Proceedings of the 51st Annual Design

Automation Conference., (2014), 1-4, doi:

10.1145/2593069.2596681.

11. Hasegawa, K., Oya, M., Yanagisawa, M. and Togawa, N.,

"Hardware trojans classification for gate-level netlists based on

machine learning", in 2016 IEEE 22nd International Symposium
on On-Line Testing and Robust System Design (IOLTS), IEEE.,

(2016), 203-206, doi: 10.1109/IOLTS.2016.7604700.

M. Hashemi et al. / IJE TRANSACTIONS A: Basics Vol. 35, No. 07, (July 2022) 1375-1387 1387

12. Hasegawa, K., Yanagisawa, M. and Togawa, N., "Trojan-feature
extraction at gate-level netlists and its application to hardware-

trojan detection using random forest classifier", in 2017 IEEE

International Symposium on Circuits and Systems (ISCAS),

IEEE., (2017), 1-4, doi: 10.1109/ISCAS.2017.8050827.

13. Ye, J., Yang, Y., Gong, Y., Hu, Y. and Li, X., "Grey zone in

pre-silicon hardware trojan detection", in 2018 IEEE
International Test Conference in Asia (ITC-Asia), IEEE.,

(2018), 79-84, doi: 10.1109/ITC-Asia.2018.00024.

14. Salmani, H., Tehranipoor, M. and Karri, R., "On design
vulnerability analysis and trust benchmarks development", in

2013 IEEE 31st international conference on computer design
(ICCD), IEEE., (2013), 471-474, doi:

10.1109/ICCD.2013.6657085.

15. Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S. and
Tehranipoor, M., "Benchmarking of hardware trojans and

maliciously affected circuits", Journal of Hardware and

Systems Security, Vol. 1, No. 1, (2017), 85-102, doi:

10.1007/s41635-017-0001-6.

16. Hoque, T., Cruz, J., Chakraborty, P. and Bhunia, S., "Hardware

ip trust validation: Learn (the untrustworthy), and verify", in
2018 IEEE International Test Conference (ITC), IEEE., (2018),

1-10, doi: 10.1109/TEST.2018.8624727.

17. Salmani, H., "COTD: Reference-free hardware trojan detection
and recovery based on controllability and observability in gate-

level netlist", IEEE Transactions on Information Forensics

and Security, Vol. 12, No. 2, (2016), 338-350, doi:

10.1109/TIFS.2016.2613842.

18. Xie, X., Sun, Y., Chen, H. and Ding, Y., "Hardware trojans

classification based on controllability and observability in gate-
level netlist", IEICE Electronics Express, Vol. 14, No. 18,

(2017), 20170682-20170682, doi: 10.1587/elex.14.20170682.

19. Wang, Y., Han, T., Han, X. and Liu, P., "Ensemble-learning-
based hardware trojans detection method by detecting the trigger

nets", in 2019 IEEE International Symposium on Circuits and

Systems (ISCAS), IEEE., (2019), 1-5, doi:

10.1109/ISCAS.2019.8702539.

20. Kurihara, T. and Togawa, N., "Hardware-trojan classification

based on the structure of trigger circuits utilizing random
forests", in 2021 IEEE 27th International Symposium on On-

Line Testing and Robust System Design (IOLTS), IEEE.,

(2021), 1-4, doi: 10.1109/IOLTS52814.2021.9486700.

21. Hagberg, A., Swart, P. and S Chult, D., Exploring network

structure, dynamics, and function using networkx. 2008, Los

Alamos National Lab.(LANL), Los Alamos, NM (United

States).

22. Brandes, U., "A faster algorithm for betweenness centrality",
Journal of Mathematical Sociology, Vol. 25, No. 2, (2001),

163-177, doi: 10.1080/0022250X.2001.9990249.

23. Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C. and Zhou, T.,
"Identifying influential nodes in complex networks", Physica a:

Statistical mechanics and its applications, Vol. 391, No. 4,

(2012), 1777-1787, doi: 10.1016/j.physa.2011.09.017.

24. Rodrigues, F.A., "Network centrality: An introduction", in A

mathematical modeling approach from nonlinear dynamics to

complex systems. 2019, Springer. 177-196, doi:

10.48550/arXiv.1901.07901.

25. Upstill, T., Craswell, N. and Hawking, D., "Predicting fame and

fortune: Pagerank or indegree?", (2003).

26. Jaderyan, M. and Khotanlou, H., "Automatic hashtag

recommendation in social networking and microblogging
platforms using a knowledge-intensive content-based approach",

International Journal of Engineering, Transactions B:

Applications, Vol. 32, No. 8, (2019), 1101-1116, doi:

10.5829/IJE.2019.32.08B.06.

27. Liu, Q., Zhao, P. and Chen, F., "A hardware trojan detection

method based on structural features of trojan and host circuits",
IEEE Access, Vol. 7, (2019), 44632-44644, doi:

10.1109/ACCESS.2019.2908088.

28. Kurihara, T., Hasegawa, K. and Togawa, N., "Evaluation on
hardware-trojan detection at gate-level ip cores utilizing

machine learning methods", in 2020 IEEE 26th International

Symposium on On-Line Testing and Robust System Design
(IOLTS), IEEE., (2020), 1-4, doi:

10.1109/IOLTS50870.2020.9159740.

29. Bastian, M., Heymann, S. and Jacomy, M., "Gephi: An open

source software for exploring and manipulating networks", in

Third international AAAI conference on weblogs and social

media., (2009) , doi: 10.13140/2.1.1341.1520.

30. Tarjan, R., "Depth-first search and linear graph algorithms",

SIAM Journal on Computing, Vol. 1, No. 2, (1972), 146-160,

doi: 10.1137/0201010.

31. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.

and Dubourg, V., "Scikit-learn: Machine learning in python",
the Journal of Machine Learning Research, Vol. 12, (2011),

2825-2830, doi: 10.5555/1953048.2078195.

32. Lundberg, S.M. and Lee, S.-I., "A unified approach to
interpreting model predictions", in Proceedings of the 31st

international conference on neural information processing

systems., (2017), 4768-4777, doi: 10.48550/arXiv.1705.07874.

Persian Abstract

 چکیده
ا هحمله نی مجتمع منجر شده است. ا یمدارها دیتول رهیدر زنج یفزاربه نام تروجان سخت یدیجد یهامجتمع، به حمله یتا ساخت مدارها ی موجود در مراحل طراح یپراکندگ

 یهااز تروجان ی ریجلوگ ا ی صیتشخ یبرا یمختلف یهاتراشه شوند. روش یکل ی موجب خراب ا یشده را سرقت کنند، عملکرد مدار را کاهش دهند ی اطلاعات رمزنگار توانندیم

سطح یساختار یهایژگیاز و یقبل یهاقرار گرفته است. در پژوهش اریمورد توجه بس رایکه اخها بوده روش نیاز ا یکی نیماش یری ادگیشده که استفاده از یمعرف یافزارسخت

داده جادیا یبرا تیگ تشخ نیماش یریادگیمدل درمجموعه ا یافزارسخت یهاتروجان صیو در است. شده مبتن نیاستفاده روش دو گراف یمقاله برا جهت یهابر ی دار

دو نیاست. بر اساس ا تیسطح گ یساختار یهایژگیبا و ارهایمع نیا بیگراف و روش دوم ترک تیمرکز یهااریشده است: روش اول استفاده از مع شنهادیپ هایژگیاستخراج و

استخراج یهای ژگیو ر یو تاث تیاهم زانیم یبررس یشده است. برا جادیدر مجموع سه مجموعه داده متفاوت ا ت،یسطح گ یساختار یها ی ژگیو روش استخراج و یشنهادیروش پ

روش با مقا یشنهادیپ یهاشده و سهیو استخراج روش با گ یهای ژگیآنها ا ت،یسطح داده مجموعه نوع ورود جادیسه عنوان به مدل یشده با یریادگیبه شده ساخته

XGBoost ار یگراف، مع ت یبر مرکز ی مبتن یهایژگ ی سه مجموعه داده نشان داد که روش استخراج و ن یبراساس ا دهیآموزش د ی ریادگی ی هادقت مدل ی داده شد. بررس F1-

score اریدرصد و مع 10 زانیرا به م ROC اریمع ت،یسطح گ یساختار یهایژگیبا و های ژگیو نیا بیدرصد بهبود داده است. ترک 22 زانیرا به م F1-score 17.5 زان یرا به م

 درصد بهبود داده است. 38.5 زانیبه مرا ROC اریدرصد و مع

