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A B S T R A C T  
 

 

The control of movement rehabilitation robots is necessary for the recovery of physically disabled 
patients and is an interesting open problem. This paper presents a mathematical model of the upper limb 

rehabilitation robot using Euler-Lagrange approach. Since the PID controller is one of the most popular 

feedback controllers in the control strategy due to its simplicity, we proposed an ACO-PID controller for 
an upper limb rehabilitation robot. The main part of designing the PID controller is determining the gains 

of the controller. For this purpose, we used Ant Colony Optimization Algorithm (ACO) to tune the 

coefficients. To evaluate the validity of the proposed controller, we have compared it to Fuzzy-PID 
controller and the PID controller adjusted with the Ziegler-Nichols method (ZN-PID). The results 

showed that the performance of the ACO-PID controller is better than the others. Also, the adaptive PID 

controllers (ACO-PID and Fuzzy-PID) ensure accurate tracking, finite-time convergence, and stability. 
The results showed that the mean absolute error and normalized root mean square (NRMS) of tracking 

error using the ACO-PID are less than that using the Fuzzy-PID and ZN-PID controller. 

doi: 10.5829/ije.2022.35.08b.04 
 

 
1. INTRODUCTION1 
 
Today, the increasing number of stroke patients has 

increased the need for rehabilitation. A simple definition 

of rehabilitation is an increase in the ability of human 

muscles by doing certain movements frequently [1]. The 

traditional rehabilitation method is not effective due to 

the lack of hospital resources and trained therapist. 

Robots, as a new method, are useful tools to help patients 

in need of rehabilitation. Accurate tracking of desired 

motion by the robot requires a good control strategy [2]. 

One of the most popular controllers is the PID controller, 

which is used widely in various applications due to its 

simplicity and convenient operation. Piltan et al. [3] have 

used a feedback linearization compensator (FLC) to 

assist the PID controller performance in the presence of 

system uncertainty and concluded that the above 

compensator improves the performance of the classic 

PID controller. Widhiada et al. [4] have designed an 
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advanced PID control with automatic adjustment for the 

multi-fingered robot hand. The purpose of the design was 

to achieve a fast steady-state response and reduce 

convergence time. They also showed that the system has 

a stable response under different inputs using a designed 

controller.  A PID controller, using the PSO algorithm 

and the cuckoo search algorithm, has been tuned by Ayas 

et al. [5]. The proposed controller has been used to 

control the performance of the ankle rehabilitation robot 

with 2-degree of freedom. The results showed that the 

adjusted PID controller by intelligent algorithms has 

lesser tracking error than the classical PID. Ayas et al. [6] 

have compared a fuzzy logic controller with a PID 

controller to control the movement of an ankle 

rehabilitation robot. The boundary scales of the fuzzy 

controller membership functions are adjusted using the 

cuckoo search algorithm. Experimental results showed 

that the proposed fuzzy controller has about 50% less 

tracking error than the PID controller. A PID controller 
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has been proposed to control the performance of the 

lower limb rehabilitation robot by Mohanta et al. [7], 

which have showed good accuracy in tracking the desired 

path. Cheng et al. [8] have developed a rehabilitation 

robot to perform flexion exercises of fingers with nine 

degrees of freedom. They have evaluated the 

performance of their rehabilitation robot with a PID 

controller and a combined controller of the active 

disturbance rejection control (ADRC) and the iterative 

learning control (ILC) and have achieved satisfactory 

results. Due to the highly nonlinear nature of the walking 

robot, Aldair et al. [9] have proposed a robust adaptive 

Fuzzy-ACO controller. Also, the stability of the proposed 

controller has been examined by the Lyapunov 

algorithm. Jiang et al. [10] have provided a Fuzzy-PID 

controller for precise tracking by the lower limb 

rehabilitation robot. The suggested controller test has 

shown high accuracy, smooth operation, and limited-time 

convergence. To some applications of the PID controller 

to control the rehabilitation robots, interested readers 

may refer to literature [11-16], to name a few. Other 

applications of fuzzy logic and optimization algorithms 

can be found in literature [17-21].  

Dorigo et al. [22], using the behavior of ants to find 

food, have introduced the ant algorithm. For a 

comprehensive study about the ACO algorithm, we refer 

to literature [23, 24].  Now, by considering the non-linear 

nature of the upper limb rehabilitation robot system and 

the conditions of uncertainty and disturbances, the 

coefficients of the classic PID controller should be 

adjusted to ensure system stability and high tracking 

accuracy. In this paper, we use the ACO algorithm and 

fuzzy logic to adjust the coefficients of the adaptive PID 

controller. The organization of the paper is as follows. 

Section 2 is devoted to the dynamic modeling of a 

rehabilitation robot. In section 3, the controller is 

designed. Section 4 explains the ACO algorithm. The 

simulation results are given in Section 5. Finally, section 

6 concludes the paper. 

 
 

2. SYSTEM MODELING 
 
By considering the Euler-Lagrange method [25], we 

know: 

𝑑

𝑑𝑡
(
𝜕𝐿(𝛿,𝛿̇)

𝜕𝛿̇
) −

𝜕𝐿(𝛿,𝛿̇)

𝜕𝛿
= 𝜏 , (1) 

where 𝛿 is a joint position, 𝛿̇ is time derivative of the 

position, τ is the driving torque from the servo motor, L 

represents lagrangian, and: 

𝐿(𝛿(𝑡), 𝛿̇(𝑡)) = 𝐾(𝛿(𝑡), 𝛿̇(𝑡)) − 𝑈(𝛿(𝑡))  (2) 

where 𝐾 is kinetic energy and equal to 
1

2
𝑚||𝜈||2 +

1

2
𝐼𝛿2, 

𝑈 = 𝑚𝑔ℎ is potential energy, 𝑚 is the mass, ν is the 

angular velocity vector, and I is the inertia. The structure 

of an upper limb robot is shown in Figure . For the upper 

limb rehabilitation robot, we have: 

𝑋 = [
𝑥
𝑦] = [

𝑙1sin(𝜗) + 𝑙2sin(𝜗 + 𝛿)
− 𝑙1cos(𝜗) − 𝑙2cos(𝜗 + 𝛿)

], 
 

where 𝑋 is a position vector,  𝜗 is a constant angle and 

𝛿 ∈ ℝ is the position angle for the vertical axis, 𝑙1 and 𝑙2 

are the lengths of link 1 and link 2, respectively. 

According to Equation (1), we developed the following 

expression: 

(𝑚2𝑙2
2)𝛿̈ + 𝑚2𝐼2𝑔sin(𝜗 + 𝛿) = 𝜏 − 𝐹𝑒𝑥𝑡,  (3) 

where 𝐹𝑒𝑥𝑡(𝛿, 𝛿̇, 𝑡) ∈ ℝ is external forces as friction or 

disturbances  and considered as follow:  

Fext(δ, δ̇, t) = fcsign(δ̇) + fvδ̇ , (4) 

where 𝑓𝑐  is the coulomb-friction constant and 𝑓𝑣 is the 

viscous friction coefficient. On the other hand, the 

actuator dynamics are equal to:  

𝐽𝑚𝛿̈ +
1

𝑟
𝑓𝑚(𝑟𝛿̇) +

𝐾𝑎𝐾𝑏

𝑅𝑎
𝛿̇ +

𝜏

𝑟2
=

𝐾𝑎

𝑟𝑅𝑎
𝑣 , (5) 

where 𝐽𝑚, 𝑓𝑚(𝑟𝛿̇), 𝐾𝑎 , 𝐾𝑏 , 𝑅𝑎, 𝑟 the inertia are,  𝑣(𝑡)and

of the rotor, the friction between the rotor and its bearing, 

the motor-torque constant, the back emf constant, the 

armature resistance, the gears reduction ratio, the 

armature voltage and control input, respectively. Thus, 

the dynamic model of rehabilitation upper limb robot will 

be equal to [26]: 

[
1

𝑟2
(𝑚2𝑙2

2 + 𝐼2) + 𝐽𝑚]𝛿̈ +
1

𝑟
𝑓𝑚(𝑟𝛿̇) +

𝑚2𝑙2𝑔

𝑟2
𝑠𝑖𝑛(𝜗 +

𝛿) + [
𝐾𝑎𝐾𝑏

𝑅𝑎
+

𝐹𝑣

𝑟2
]𝛿̇ +

𝐹𝑐

𝑟2
𝑠𝑖𝑔𝑛(𝛿̇) =

𝐾𝑎

𝑟𝑅𝑎
𝑣 . 

(6) 

 

 

3. TRAJECTORY TRACKING CONTROL FOR THE 
UPPER LIMB REHABILITATION ROBOT 
 

3. 1. The ZN-PID Controller Design           The block 

diagram of the PID controller is shown in Figure 2 and it 

presents the following equation: 

𝑈(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝜕𝜏
𝑡

0
+𝐾𝑑

𝑑𝑒(𝜏)

𝑑𝜏
  (7) 

 

 

 
Figure 1. Structure of an upper limb robot 
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Figure 2. Structure of PID controller 

 

 

where 𝑈(𝑡) is control input, Kp is proportional 

parameter, Ki delegates integral gain, Kd is derivative 

constant, and e(t) is the tracking error as e = δd − δ. To 

tune the coefficients of ZN-PID, one can use the Ziegler-

Nichols formula as follows [27]: 

𝐾𝑝 = 0.6𝐾𝑢 , 𝐾𝑖 =
2𝐾𝑝

𝑇𝑢
 , 𝐾𝑑 =

𝐾𝑝𝑇𝑢

8
 (8) 

where 𝐾𝑢 and  𝑇𝑢 are the Critical gain and the oscillation 

period, respectively. 

 

3. 2. The Fuzzy-PID Controller Design                In this 

section, the gains of the Fuzzy-PID controller are adapted 

based on the fuzzy rules. Figure 1 depicts the block 

diagram of the Fuzzy-PID controller. 
Suppose [𝐾𝑝,𝑚𝑖𝑛 , 𝐾𝑝,𝑚𝑎𝑥]  and [𝐾𝑑,𝑚𝑖𝑛 , 𝐾𝑑,𝑚𝑎𝑥]  are 

the bounds of 𝐾𝑝and 𝐾𝑑, respectively [27]; and 

𝐾𝑝,𝑚𝑖𝑛 = 0.32𝐾𝑢, 𝐾𝑝,𝑚𝑎𝑥 = 0.6𝐾𝑢, 𝐾𝑑,𝑚𝑖𝑛 =

0.08𝐾𝑢𝑇𝑢,  𝐾𝑑,𝑚𝑎𝑥 = 0.15𝐾𝑢𝑇𝑢 

 

The coefficients of Fuzzy-PID controller are  

𝐾𝑝 = 𝐾𝑝,𝑚𝑖𝑛 +𝐾′𝑝(𝐾𝑝,𝑚𝑎𝑥 − 𝐾𝑝,𝑚𝑖𝑛)   (9) 

𝐾𝑑 = 𝐾𝑑,𝑚𝑖𝑛 + 𝐾′𝑑(𝐾𝑑,𝑚𝑎𝑥 − 𝐾𝑑,𝑚𝑖𝑛) (10) 

𝐾𝑖 = 𝐾𝑝
2 𝛼𝐾𝑑⁄ , (11) 

where 𝐾′𝑝 , 𝐾′𝑑 ∈ [0,1] , and 𝛼 ∈ [2,5]  are obtained 

outputs from fuzzy logic controller by the fuzzy rules 

with following form [27]: 

if 𝑒(𝑘) is 𝐴𝑖  and ∆𝑒(𝑘) is 𝐵𝑖 , then 𝐾′𝑝  is 𝐶𝑖 , 𝐾′𝑝  is 𝐷𝑖  , 

and 𝛼 = 𝛼𝑖, where 𝑖 = 1, 2, … ,𝑚. 

The fuzzy sets 𝐴𝑖 and Bi are depicted in Figure 2 (a), 

and the fuzzy sets Ci and Di are shown in Figure 2 (b) and 

αi is constant (Figure 2 (c)). Where ZO, S, M, B, N, and 

P are zero, small, medium, big, and negative, positive, 

respectively.  
 

 

  
Figure 1. Block diagram of the closed-loop system for 

Fuzzy-PID  

 
(a) 

 
(b) 

 
(c) 

Figure 2. Membership functions of: (a) Inputs (e and ∆𝑒), 

(b) Outputs (𝐾′𝑝 and 𝐾′𝑑), (c) output (𝛼) 

 

 

3. 3. The ACO-PID Controller Design            We use 

the ACO algorithm to find the optimal values of the PID 

controller gains. Figure  shows the block diagram of the 

closed-loop system for the ACO-PID.  
The flow chart of the ACO algorithm follows from 

Figure . The ant algorithm optimization method is as 

follows: 

1. First, we consider some ants. Then for each ant, a path 

that lacks a pheromone is randomly assigned to look for 

food. The intersections of the trajectories are also 

determined. 

2. Ants mark the path to food by pheromone on the way 

back to the nest. Each intersection that has more 

pheromones (more ants have passed through it) attracts 

more ants. 

3. The shortest path to food has more pheromones due to 

the faster return of ants to the nest and movement in the 

previous path. At the same time, the pheromones of the 

other pathways evaporate over time, and eventually, 

large numbers of ants converge toward the shorter 

pathway. 

4. One can calculate the concentration of pheromone at 

time t by ∅(𝑡) = ∅0𝑒
−𝛾𝑡, where ∅0 and 𝛾 are the initial 

𝑘𝑝  
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 𝜕𝜏
𝑡

0

 𝑒 𝑈  Σ 

+
-
𝑒(𝑡) 𝛿𝑑  

𝛿  

Robot
𝑈(𝑡) 

Fuzzy rules

𝛿  

Fuzzy-PID

-1 -0.5 0 0.5 1
0

0.5

1

e and e

D
eg

re
e 

o
f 

M
em

b
er

sh
ip

NB NM NS ZO PS PM PB

Membership Functions for Inputs e and e

0 0.2 0.4 0.6 0.8 1
0

0.5

1

K
p
 and K

d

D
eg

re
e 

o
f 

M
em

b
er

sh
ip Small Big

Membership Functions for Outputs K
p
 and K

d

1 2 3 4 5 6
0

0.5

1



D
eg

re
e 

o
f 

M
em

b
er

sh
ip S MS M B

Membership Functions for Input 



N. Mirrashid et al. / IJE TRANSACTIONS B: Applications  Vol. 35, No. 08, (August 2022)   1488-1493                                 1491 

 

focus of the pheromone and constant rate of pheromone 

evaporation. This amount is updated in the next iterations 

as ∅𝑖𝑗
𝑡+1 = (1 − 𝛾)∅𝑖𝑗

𝑡 + 𝛼∅𝑖𝑗
𝑡  (if there is no ant left in the 

path, the amount of pheromone will be zero), where 𝛼∅𝑖𝑗
𝑡  

is the amount of pheromone stored in time t for the i to j 

path. 

The cost function (C_F) is defined as integral time 

absolute error (ITAE):  

C_F=∫ t|e(t)|dt
∞

0
, 

where e(𝑡) = 𝛿𝑑 − 𝛿 . 

 

 

 
Figure 5. Block diagram of the closed-loop system for 

ACO-PID 
 
 

 
Figure 6. The flow chart of the ACO algorithm 

4. RESULT AND DISCUSSION 
 

The relationship for the desired path and velocity of 

tracking are given as follows. 

𝛿𝑑 = 𝑠𝑖𝑛(2𝜋𝑓𝑡) + 1 (12) 

𝛿̇𝑑 = 2𝜋𝑓𝑐𝑜𝑠(2𝜋𝑓𝑡) (13) 

System velocity and acceleration ranges are [28]: 

−2
𝑟𝑎𝑑

𝑠
< 𝛿̇𝑑 < 2

𝑟𝑎𝑑

𝑠
         ,       −10

rad

s2
< δ̈d < 10

𝑟𝑎𝑑

𝑠2
 

Figures 7 and 8 show the desired and measured position 

(δ) trajectories and the measured velocity (δ̇) by applying 

the controllers, respectively. One can see from Figures 7 

and 8, the adjusted gains using the fuzzy logic cause a 

good performance for the PID controller. The tracking is 

accurate, and the tracking error is small. Also, the 

convergence time for the Fuzzy-PID controller is shorter 

than the others. The position error in radians is illustrated 

in Figure 9.The convergence rate for the ACO-PID cost 

function shows in Figure 10. It is clear from the figure 

the best value of the cost function is 1.78 which is 

happened in iteration 47. 

 

 

 
Figure 3. The measured and the desired elbow position 

trajectories 
 

 
Figure 4. The measured and the desired elbow velocity 

trajectories 
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Some statistical indices corresponding to the error, 

such as mean absolute error (MAE), root mean square 

error (RMS), and normalized root mean square error 

(NRMS), are summarized in TABLE  as follows:  

MAE(rad) =
∑ |𝑒𝑖|
𝑛
𝑖=1

𝑛
  (14) 

RMS(rad) = √
∑ |𝑒𝑖|
𝑛
𝑖=1

𝑛
  (15) 

NRMS(%) =
𝑅𝑀𝑆

max (𝛿𝑑)−min (𝛿𝑑)
  (16) 

In the case of uncertainty, we change the system 

parameters values between 5 and 10%. 

 

 

TABLE 1. RMS, NRMS, and MAE of controllers 
Nominal conditions 

 ZN-PID Fuzzy-PID ACO-PID 

MAE(rad) 0.0033 0.0021 0.0014 

RMS(rad) 0.0668 0.0447 0.0341 

NRMS(%) 3.3387 2.2366 1.7036 

Uncertainties 

 ZN-PID Fuzzy-PID ACO-PID 

MAE(rad) 0.0034 0.0023 0.0015 

RMS(rad) 0.0687 0.0452 0.0357 

NRMS(%) 3.4259 2.2604 1.7847 

 

 

 
Figure 5. The position error 

 

 
Figure 10. The convergence rate for ACO-PID cost function 

5. CONCLUSION 
 

In this paper, three controllers, ACO-PID, Fuzzy-PID, 

and ZN-PID, were designed to control the movement of 

the arm rehabilitation robot. The simulation results 

showed that the PID controller adjusted by the Ziegler-

Nichols method, in addition to slowing down the 

convergence, has lower detection accuracy than the 

adaptive controllers (ACO-PID and Fuzzy-PID). Also, 

the ACO-PID controller converged to the desired path 

earlier than the other controllers and had higher tracking 

accuracy. To better evaluate the proposed controllers, the 

statistical comparison indices such as MAE, RMS, and 

NRMS reported. By analyzing the results, one can 

conclude that an adaptive PID controller (ACO-PID and 

Fuzzy-PID), while simple, can accurately track the 

movement of the upper limb rehabilitation robot. 
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Persian Abstract 

 چکیده 
با   یاندام فوقان  یاز ربات توانبخش  یاضیمدل ر  یکمقاله    یندر ا  های توانبخشی برای بهبود بیماران ناتوان جسمی ضروری و یک مسئله مورد علاقه است.کنترل حرکت ربات 

  یک کنترل است،    یبازخورد در استراتژ  ی هاکنندهکنترل  ینترمحبوب از    یکی  یسادگ  یلبه دل  PIDکننده  لاگرانژ ارائه شده است. از آنجا که کنترل-یلراو  یکرداستفاده از رو

منظور، از   ینا  یکننده است. براکنترل  هایبهره  یینتع   PIDکننده  کنترل  یطراح  ی. بخش اصلیمکنیم  یشنهادپ  یاندام فوقان  یبات توانبخشکنترل ر  یبرا  ACO-PIDکننده  کنترل

  PIDکننده  و کنترل  ACO-PID  کنندهآن با کنترل   یسهبا مقا  یشنهادیپ  کننده. اعتبار کنترلیمکنیاستفاده م  یب ضرا  یم تنظ  ی( براACOها )مورچه  ی کلون  یساز  ینهبه  یتمالگور

-ZN  کنندهو کنترل  Fuzzy-PIDکننده  بهتر از کنترل  ACO-PIDکننده  دهد که عملکرد کنترلینشان م   یج شود. نتایم  یابی ( ارزZN-PID)  یکولزن -یگلرشده با روش ز  یم تنظ

PID  یقی  تطب   یهاکننده، کنترلیناست. همچنPID   (Fuzzy-PID  وACO-PID رد )دهد که  ینشان م  یجکنند. نتایم  ینزمان محدود و ثبات را تضم  ییگرا، همیقدق  یابی

 .شودیاستفاده م ZN-PID و Fuzzy-PID کنندهاست که از کنترل حالتیکمتر از  ACO-PID( با استفاده از NRMS) یابیرد  یمربع نرمال خطا یانگینم
 


