
IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

Please cite this article as: R. Ghafari and N. Mansouri, An Efficient Task Scheduling Based on Seagull Optimization Algorithm for Heterogeneous
Cloud Computing Platforms, International Journal of Engineering, Transactions B: Applications, Vol. 35, No. 2, (2021) 433-450

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

An Efficient Task Scheduling Based on Seagull Optimization Algorithm for
Heterogeneous Cloud Computing Platforms

R. Ghafari, N. Mansouri*

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

P A P E R I N F O

Paper history:
Received 18 August 2021
Received in revised form 19 November 2021
Accepted 29 November 2021

Keywords:
Cloud Computing
Task Scheduling
Meta-heuristic
Seagull Optimization

A B S T R A C T

Cloud computing provides computing resources like software and hardware as a service by the network
for several users. Task scheduling is one of the main problems to attain cost-effective execution. The

main purpose of task scheduling is to allocate tasks to resources so that it can optimize one or more
criteria. Since the problem of task scheduling is one of the Nondeterministic Polynomial-time (NP)-hard
problems, meta-heuristic algorithms have been widely employed for solving task scheduling problems.
One of the new bio-inspired meta-algorithms is Seagull Optimization Algorithm (SOA). In this paper,

we proposed an energy-aware and cost-efficient SOA-based Task Scheduling (SOATS) algorithm. The
aims of proposed algorithm to make a trade-off between five objectives (i.e., energy consumption,
makespan, cost, waiting time, and load balancing) using a fewer number of iterations. The experiment
results by comparing with several meta-heuristic algorithms (i.e., Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Whale Optimization Algorithm
(WOA)) prove that the proposed technique performs better in solving task scheduling problem.
Moreover, we compared the proposed algorithm with well-known scheduling methods: Cost -based Job

Scheduling (CJS), Moth Search Algorithm based Differential Evolution (MSDE), and Fuzzy -GA
(FUGE). In the heavily loaded environment, the SOATS algorithm improved energy consumption and
cost saving by 10 and 25%, respectively.

doi: 10.5829/ije.2022.35.02b.20

1. INTRODUCTION1

In the era of technology, cloud computing is developing

as a technology that dynamically provides the

infrastructure to end users [1]. One of the most extensive

areas of research in cloud computing is task scheduling.

The main challenge in task scheduling is finding the

optimal resource for input tasks. In single task

scheduling, solely one parameter is taken into account,

while in multi-objective task scheduling, two or more

criteria are taken into account as one objective [2].

Researchers have used various kinds of task scheduling

strategies. However, meta-heuristic scheduling has better

results than traditional heuristic scheduling. Most

existing task scheduling algorithms are more concerned

with achieving better task execution time. In the cloud

environment, not only we should consider the completion

time, but also pay attention to the other Quality of Service

*Corresponding Author Insitiutional Email: n.mansouri@uk.ac.ir

(N. Mansouri)

(QoS(factors (e.g., costs and energy consumption).

Among the existing meta-heuristic algorithms, Seagull

Optimization Algorithm (SOA) [3] is one of the meta-

heuristic algorithms used to solve optimization problems.

In this paper, we present a task scheduling algorithm

based on SOA, which takes into account several

important parameters, namely energy consumption, cost,

waiting time, load balancing, and makespan at the same

time.

1. 1. Cloud Computing Cloud computing is known

as a popular paradigm of business computing. Cloud

computing can suggest to users the different computing

services such as applications, servers, storage, and

networks using the Virtual Machine (VM) over the

internet [4]. Cloud computing can speed up the prediction

process by utilization of high-speed computing. In the

case of the COVID-19 epidemic, a prediction scheme

mailto:n.mansouri@uk.ac.ir

434 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

based on the machine learning model could be used in

remote cloud nodes for real-time prediction permitting

governments and citizens to reply proactively [5].
As shown in Figure 1, cloud computing has five basic

characteristics: on-demand self-service, resource

pooling, rapid elasticity, broad network access, and

measured services. The cloud has three service models:

Software as a Service (SaaS) is cloud-based construction

software that can be purchased for use on a pay-as-you-

go basis; therefore, decreasing the cost of ownership,

Infrastructure as a Service (IaaS) which presents

infrastructure services such as storage systems, and

computing resources, and Platform as a Service (PaaS)

which can be procured to integrate databases from

various project data generated by the various

professionals on-site and those in the back office. Cloud

services can be deployed as a private service, a public

service, a community service, or a hybrid service

depending on the access method as well as the

classification of eligible users to access the service.

Cloud service providers sell resources to users as

virtual resources. Users use these resources and execute

tasks. Task scheduling is one of the most important

applications used by end-users and cloud service

providers [7]. One of the most challenging problems in

task scheduling is finding the optimal resource for input

tasks [8].

1. 2. Task Scheduling The problem of task

planning is to schedule a set of specific tasks in a specific

set of resources in the form of VMs that have limitations

for optimizing some objective functions [9]. Figure 2

shows a model of task scheduling in the cloud

environment. The Datacenter Broker (DB) is responsible

for identifying and collecting all information about

available resources (VMs) and any residual resource that

may be available in the future, which collects this

information with the aid of the Cloud Information

Services (CIS). The interface between the host operating

system and the VMs is a hypervisor. Tasks are sent to the

task queue to be scheduled for VMs according to the

scheduling algorithm defined in the DB.

Figure 1. Cloud computing definition [6]

Figure 2. Task scheduling model in the cloud [10]

Task scheduling is an NP-hard optimization problem

because the number of tasks increases and the length of

the task varies rapidly [11]. In cloud computing, task

scheduling efficiency is measured by different system

performance criteria. In general, these cloud-based

optimization metrics can be categorized into the goals of

cloud users and the goals of cloud service providers. On

the one hand, some metrics such as makespan and

waiting time are user metrics. On the other hand, metrics

such as the cost of the provider and energy consumption

are the metrics of the provider [12, 13]. The popularity of

cloud computing is growing day by day, so with an

increasing demand for high-performance computing

resources, energy consumption in the cloud data center is

greatly increased [14]. Energy consumed by computing

resources and connected cooling facilities is the main

component of energy costs and high carbon emissions.

According to research conducted by Uchechukwu and

Shen [15], it is estimated that energy consumption by

data centers around the world is about 1.4% of electricity

consumption worldwide and is growing at a rate of 12%

annually. The energy consumption of processing units is

approximately 42%, cooling facilities about 15.4%, and

storage facilities nearly 14.3% [16]. As a result, one of

the main concerns in cloud computing is how to decrease

energy consumption and related costs while keeping

execution performance. Minimizing energy consumption

improves overall efficiency and also increases system

reliability and availability [17]. In other words,

minimizing energy consumption while ensuring the

user's QoS preferences is critical to achieving maximu m

profit for service providers and ensuring the user's service

level agreement (SLA). Moreover, minimizing energy

consumption decreases energy costs as well as aiding to

protect our natural environment because it decreases

carbon emissions [18]. In addition to energy

consumption, the cost of a cloud provider can be reduced

by assigning the task to a suitable VM that executes the

task at minimal cost and without violating QoS

restrictions [19], which have not been addressed in most

papers. Thus, efficient resource management is the key to

balancing performance and cloud costs while keeping

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 435

service availability. We need a suitable task scheduling

algorithm to find a trade-off between user goals (such as

reducing makespan) and service provider goals (such as

reducing energy consumption and cost). To solve such a

problem, a large number of researchers focused their

research work on heuristic, meta-heuristic, and hybrid

scheduling algorithms [20, 21]. Currently, swarm

intelligence algorithms are widely used to solve these

types of problems.

1. 3. Meta-heuristic Algorithm The task

scheduling problem in cloud computing is known as an

NP-hard problem because of the large space of solutions.

Therefore, we need a long time to discover an optimal

solution [22]. It is possible to reach a near-optimal

solution in a short time for such problems by using meta-

heuristic strategies [23]. One of the advantages of meta-

heuristic algorithms is that they are problem-independent

and have a good approach to solve problems in different

domains [24]. There are a variety of meta-heuristic

algorithms. As shown in Figure 3, the bio-inspired meta-

heuristic algorithms can generally be divided into three

main categories [25]: evolution-based methods (are

inspired by the laws of natural evolution), swarm-based

methods (imitate the social behavior of groups of

animals), and bacterial foraging methods (inherit the

characteristics of bacterial foraging patterns).
Swarm intelligence is one of the attractive branches

of population-based meta-heuristic algorithms. Concepts

of swarm intelligence were first introduced in 1993 [26].

Swarm intelligence strategies mimic the social behaviors

of organisms living in colonies, flocks, or herds [27].

Among the most popular swarm intelligence strategies

are Particle Swarm Optimization (PSO) [28] and Ant

Colony Optimization (ACO) [29]. One of the meta-

heuristic algorithms that have been introduced in recent

years is the SOA [3] to solve expensive computational

problems. The principal inspiration of the SOA is the

migration and attacking behavior of seagulls in nature.

The SOA starts by generating a random initial

population. Search agents update their positions

according to the best search agent during different

iterations. Seagulls explore various promising areas of

Figure 3. Taxonomy of bio-inspired techniques [25]

the search space. At the beginning of the optimization

process, the search agents vary quickly. The

experimental results are obtained by comparing SOA

with other popular meta-heuristic algorithms (e.g.,

Spotted Hyena Optimizer (SHO), Grey Wolf Optimizer

(GWO), Particle Swarm Optimization (PSO), Moth-

Flame Optimization (MFO), Multi-Verse Optimizer

(MVO), Sine Cosine Algorithm (SCA), Gravitational

Search Algorithm (GSA), Genetic Algorithm (GA), and

Differential Evolution (DE)) showed that SOA represents

three various convergence behaviors while optimizing

test functions [3]. In the early stages of iterations, SOA

converges more quickly to the promising areas due to its

adaptive mechanism. Also, SOA performs better in terms

of average running time compared to other meta-

algorithms. This is because SOA does not require

crossover and mutation operators . As a result, SOA's

computational efficiency is much better than other

methods.

The main contributions are shown as follows:

1) The multi-objective optimized task scheduling

algorithm is proposed considering multiple factors (i.e.,

energy consumption, makespan, cost, waiting time, and

load balancing).

2) The Dynamic Voltage Frequency Scale (DVFS) model

is included in the optimization method to reduce energy

consumption.

3) The SOA is considered a global optimizer because it

has good exploration and exploitation capability.

4) To show the applicability of the proposed algorithm in

different scenarios, extensive experiments have been

performed.

The rest of the paper is arranged as follows: Section

2 discusses the related papers which deal with existing

strategies for scheduling in the cloud. Section 3 describes

the SOA. Section 4 introduces the proposed algorithm.

Section 5 deals with performance evaluation and

experimental results . Section 6 contains the conclusion

and future works.

2. RELATED WORKS

Task scheduling techniques that can effectively assign

tasks to resources are still one of the challenges in the

cloud environment. This is because requirements such as

storage, response time, bandwidth, and resource cost may

be different for each task, which greatly complicates the

optimization problem, and also the heterogeneity and

dynamics of the cloud environment make the issue more

complex. Various techniques have been proposed to

make good use of cloud resources.

Sreenu and Sreelatha [30] introduced a task

scheduling algorithm for assigning tasks to suitable VMs

in the cloud based on a multi-objective model and a

Whale Optimization Algorithm (WOA) [31] and named

436 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

it W-Scheduler. To calculate the fitness value, the authors

first obtained the fitness value by calculating the cost

function of CPU and memory, and then makespan, as

well as the budget cost function, are added to calculate

the fitness value. They used the WOA to optimally assign

tasks to VMs. The WOA for finding the optimal solution

supposes that the current solution is the best and tries to

find the best optimal solution based on the best search

agent. Experimental results showed that W-Scheduler

can optimize task scheduling and perform better in terms

of makespan and average cost compared to PBACO [32],

SLPSO-SA [33], and SPSO-SA [33]. Nevertheless,

energy consumption is not considered.

Sreenivasulu and Paramasivam [34] presented a

hybrid algorithm to efficiently assign tasks to VMs. The

proposed algorithm first uses a hierarchical process to

prioritize tasks. Then, it applies the Bandwidth-aware

divisible task (BAT) model [35] and BAR model [36] to

consider task properties and VM attributes for task

scheduling. The authors used the minimum overload and

minimum lease policy to apply pre-emption in the data

center and decrease the overload of the VMs. The

experimental results showed that the proposed algorithm

has better performance in terms of resource utilization ,

bandwidth utilization, and memory utilization compared

to other algorithms. The main weakness of the presented

algorithm is that it does not take into account key QoS

parameters such as cost and energy consumption.

Mansouri and Javidi [37] suggested a new job

scheduling based on the cost and called it CJS. The

proposed algorithm, in addition to simultaneously using

the data-intensive and computation-intensive of the job,

also takes into account the similar factors of the available

distributed environment. To assign jobs, CJS considers

processing power, data, and network features. The

proposed algorithm calculates three important costs,

namely network cost, computation cost, and data trans fer

cost. The results of simulations using CloudSim [38]

showed that CJS performs better in terms of makespan

and resource utilization compared to FUGE [39], Berger

[40], MQS [41], and HPSO [42] algorithms. However,

the CJS algorithm does not consider energy consumption.

Kumar and Kalra [43] suggested a hybrid task

scheduling algorithm that combines Genetic Algorithm

(GA) [44] and Artificial Bee Colony (ABC) [45]

algorithms. GA is a bio-inspired algorithm and consists

of two distinct operations (i.e., crossover and mutation).

The goal of the proposed algorithm is to decrease

makespan and energy consumption. The authors used the

DVFS [46] power model to compute the total energy

consumed by resources. The experimental results

demonstrated that the proposed hybrid algorithm

performs better in terms of makespan and total energy

consumption compared to the modified GA [47]. But,

conflicting objectives such as time and cost have not been

discussed.

Jacob and Pradeep [48] offered a multi-objective task

scheduling algorithm based on a combination of Cuckoo

Search (CS) [49] and PSO [28] algorithms and called it

CPSO. The authors considered cost, makespan, and

deadline violation rate as a multi-objective function, and

based on the multi-objective function, they reached the

near-optimal task scheduling. To evaluate CPSO's

performance, the authors used the CloudSim [38]

simulator. Experimental results showed that the CPSO

algorithm has better performance in terms of cost,

makespan, and deadline violation rate than PBACO,

ACO, MIN-MIN, and FCFS. However, CPSO also has

weaknesses. One of CPSO's principal weaknesses is that

there is a high probability that resources will be

overloaded.

Wu [50] proposed a novel task scheduling algorithm

based on improved PSO. The author improved the PSO

algorithm by adding iterative selection inhibition

operators and used the improved PSO to assign tasks to

VMs. The advantages of the improved PSO algorithm

include high convergence speed that helps to reduce task

scheduling time costs, keep away from falling into local

optimum through effective search and proper distribution

of computational resources, improved optimization

capability, and consideration of usability and scalability

in resource allocation. Simulation results demonstrated

that the improved PSO has a better performance

compared to PSO in terms of average execution time.

However, the authors did not consider the cost and

energy consumption during the scheduling process.

Elaziz et al. [51] suggested a task scheduling

algorithm in the cloud environment based on a

combination of Moth Search Algorithm (MSA) [52] and

Differential Evolution (DE) [53] named it MSDE. The

purpose of the MSDE algorithm is to assign tasks to VMs

in a way that minimizes makespan. The authors

considered the DE algorithm as a local search strategy to

improve MSA exploitation capability. Experimental

results demonstrated that the MSDE algorithm performs

better in terms of makespan for both synthetical and real

trace data than Shortest Job First (SJF), Round Robin

(RR), PSO, WOA, and MSA. But, MSDE focuses only

on makespan and does not consider other QoS parameters

such as energy consumption or cost.

Shojafar et al. [39] introduced a hybrid job scheduling

based on fuzzy theory and a GA and name it FUGE.

FUGE's goal is to create the optimal load balance by

considering run time and cost. The authors applied fuzzy

theory to improve the standard GA to devise a fuzzy-

based steady-state GA to improve standard GA

performance in terms of makespan. The proposed

algorithm for assigning jobs to resources takes into

account VM processing speed, VM memory, VM

bandwidth, and job length. The experimental results

showed that the FUGE performs better in terms of

execution time, execution cost, and average degree of

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 437

imbalance compared to other algorithms. Nevertheless,

the proposed algorithm does not include energy

consumption.

Table 1 compares the discussed scheduling

algorithms. As shown in Table 1, although most

algorithms take into account makespan, cost, or energy,

they did not simultaneously consider energy, cost, and

makespan despite their important impact in the cloud

environment. Considering all these objectives at the same

time is a complex issue. To solve complex optimization

problems in a reasonable time, using meta-heuristic

techniques to find a near-optimal solution can be

effective. Meta-heuristic algorithms are non-

deterministic strategies that have been proposed to

significantly solve the problem of task scheduling in a

polynomial time. In this paper, we present an SOA-based

task scheduling algorithm that simultaneously considers

five objectives: waiting time, cost, energy consumption,

makespan, and load balancing.

3. SEAGULL OPTIMIZATION ALGORITHM(SOA)

The Seagull Optimization Algorithm (SOA) [3] is a new

meta-heuristic optimization algorithm inspired by the

natural behavior of seagulls. Several types of seagulls

vary in size and length. Seagulls are omnivorous and feed

insects, fish, earthworms, reptiles, and amphibians. The

Seagulls, that scientific name is Laridae, are smart birds.

They use breadcrumbs to absorb fish and also absorb

earthworms by making the rain-like sound with their feet.

Seagulls generally live in colonies. They frequently

migrate from one place to another place to find plenty of

food. Seagulls attack prey when they reach a new place.

TABLE 1. Comparison of task scheduling algorithms

Y
e
a

r

M
a

k
e
sp

a
n

M
o

n
e
ta

r
y

 c
o

st

R
e
so

u
r
c
e
 u

ti
li

z
a

ti
o

n

R
e
li

a
b

il
it

y

E
n

e
r
g

y
 c

o
n

su
m

p
ti

o
n

L
o

a
d

 b
a

la
n

c
in

g

T
e
c
h

n
iq

u
e

D
is

a
d

v
a

n
ta

g
e

Sreenu and

Sreelatha [30]
2017      

Using multi-

objective model and
WOA

- Does not include objectives such as

energy consumption and guarantee QoS.

Sreenivasulu and

Paramasivam [34]
2020      

Using BAT and

Bar models

- The energy efficiency of the algorithm is
very low,

- Does not discuss a trade-off solution
between conflict QoS parameters such as

time and cost.

Mansouri and
Javidi [37]

2019      

Using data,

processing power,
and network

characteristics to
assign jobs to

resources

- Does not take into account significant
criteria such as energy consumption.
- Resources may be overloaded or

underutilization.

Kumar and Kalra

[43]
2019      

Using GA and ABC

along with DVFS

- Does not consider the deadline and
priority constraint as well as SLA

violations,
- Cost, reliability, and other QoS

parameters do not consider.

Jacob and Pradeep

[48]
2019       Using CS and PSO

- Cannot distribute the load uniformly,

- Does not optimize QoS parameters such
as energy consumption.

Wu [50] 2018      
Using Improved

PSO

- The load balance on resources is not
monitored during runtime,

- The proposed algorithm is a single
objective and does consider other QoS

parameters such as cost, energy
consumption, etc.

Elaziz et al. [51] 2019      
Using a

combination of
MSA and DE

- Does not take into account the usage of
memory, the peak of the demand, and

overloads,

- High-time complexity.

Shojafar et al. [39] 2014      
Using GA and
fuzzy theory

- Does not take into account VM energy
consumption,

- High monitoring overhead.

438 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

The most significant thing about seagulls is their

migratory and attacking behavior. Therefore, SOA

focuses on these two natural behaviors and provides a

mathematical model. Figure 4 shows a conceptual model

of these behaviors.

Initially, seagulls perform migratory behavior

(indicating the exploration ability of SOA). When

migrating, members of a group of seagulls should avoid

colliding with each other. To obtain this, an additional

variable A is used to compute the position of the new

search agent.

()s sC A P x  (1)

where
sC indicates the position of the search agent

which does not collide with other search agents,
sP

indicates the current position of the search agent, x shows

the current iteration, and A represents the movement

behavior of the search agent.

(2)

where cf is presented to manage the frequency of

employing variable A which is linearly decreased from

the initial value of cf to 0. After avoiding collisions

among neighbors, search agents move toward the best

search agent.

(() ())s bs sM B P x P x   (3)

where
sM indicates the position of the search agent

sP

towards the best search agent bsP (i.e., the most suitable

seagull). The coefficient B is a random value that can be

used to make a trade-off between exploitation and

exploration. B is computed as follows:

22B A rd   (4)

where rd indicates a random number in the range [0, 1].

Since search agents move toward the most appropriate

search agent, they may stay close to each other.

Figure 4. Migration and attacking behaviors of seagulls [3]

Therefore, search agents can update their position

according to the best search agent based on the following

equation:

| |s s sD C M  (5)

where
sD indicates the distance between the search agent

and the best search agent.

Secondly, seagulls attack prey in a spiral movement

after reaching a new place (indicating the exploitation

ability of SOA). This behavior in x, y, and z planes is

defined below:

cos()x r k  (6)

sin()y r k  (7)

z r k  (8)

kvr u e  (9)

where r indicates the radius of each urn of the spiral, k

represents a random number in the range [0 ≤ k ≤ 2π]. u

and v are constants, and e is the base of the natural

logarithm. The updated position of the search agent is

computed as follows:

 (10)

Figure 5 represents the pseudocode of SOA.

4. SOA-BASED TASK SCHEDULING ALGORITHM

This section consists of three subsections. In subsection

4.1, the basic concepts related to the problem of task

scheduling are explained. In subsection 4.2, the objective

function and mathematical model are described. In

subsection 4.3, the proposed algorithm is introduced.

4. 1. Task Scheduling Model Assigning all tasks

among available VMs and discovering the optimal

solution in the cloud environment is not simple work. For

this reason, we need an effective task scheduling

algorithm to balance the VM load and assign all user's

tasks to the appropriate resources.
Suppose a cloud datacenter contains n tasks such as:

1 2{ , ,..., }nT T T T , where Ti represents the i-th task in the

task queue, m VMs such as:
1 2{ , ,..., }mV V V V , where Vj

represents the j-th VM in the cloud environment, but the

condition for execution of such tasks is: n> m.

4. 2. Objective Functions The primary goal of the

SOATS is to optimally schedule all the input tasks to the

available VMs to minimize cost, makespan, load, energy

() () ()s s bsP x D x y z P x    

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 439

Figure 5. The pseudocode of SOA [3]

consumption, and waiting time to keep both the user

satisfied and the provider profit. The objective function

is computed as follows. The final output of the

scheduling algorithm is an n m assignment matrix that

specifies by which VM each task should be executed. We

define the assignment matrix as follows:

11 1

1

m

n nm

x x

X

x x

 
 

  
 
 

 (11)

where
ijx is a decision variable and calculated by

Equation (12):

1

0

i j

ij

i j

 if T is assigned to V
x

 if T is not assigned to V


 


 (12)

With the condition:

0

1
m

ij

j

x for 1 i n


   (13)

Cost: Task scheduling in a cloud system (as a

business service) in addition to being an efficient

scheduler, must also decrease costs. Scheduling that

decreases costs without violating QoS leads to both user

and service provider satisfaction. To estimate the

assignment cost, each use of resources such as processing

element, memory, etc. must be computed. The following

equation is used to calculate the cost of task completion

[54]:

1

C () ()
j j j j

m

V j cpu ram bw

j

sum VM V V V


    (14)

440 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

where sum(VMj) indicates the total number of tasks

assigned to Vj. Equation (14) shows the processing cost

in a Vj, which is closely related to CPU (
jcpuV), memory

(
jramV), and bandwidth performance (

jbwV) of VMs.

Makespan: Makespan shows the completion time of

the last task. One of the most popular scheduling criteria

that researchers use to measure the performance of

scheduling algorithms is makespan. This is because

researchers believe that the performance of the

scheduling algorithm is highly makespan-dependent. In

addition, minimizing the makespan makes the user

application execute faster; thus, reducing the makespan

increases user satisfaction. Makespan can be described

mathematically by Equation (15) [55]:

{ }jMS Max VET for 1 j m   (15)

where VETj represents the j-th VM execution time and it

is computed based on the decision variable xij by

Equation (16):

1

n

j ij ij

i

VET x ET for 1 j m


    (16)

where ETij is the approximation calculation time for

executing Ti on Vj and computed based on Equation (17):

i

ij

j

TL
ET

PS
 (17)

where TLi indicates the i-th task length in Million

Instructions (MI) and PSj indicates the j-th VM execution

speed in Million Instructions Per Second (MIPS).

Load balancing: VMs are mostly processing elements

in cloud environments. In scheduling, there is a situation

where more than one task is assigned to each VM. Load

balance distributes loads evenly between different cloud

resources. The scheduler must be able to distribute the

workload among available resources in a way that

prevents resources from being overloaded or

underloaded. Load balancing increases resource

utilization and thus improves overall scheduling

performance. The equation for calculating the degree of

resource load balance in a VM is as follows [54]:

2

1

()
m

j j

j

VET VET

m

n










(18)

where VETj represents the total execution time of the Vj;

jVET represents the mean execution time of the Vj.

Energy consumption: One of the most important

issues for individuals, organizations, and governments is

energy consumption. There is a global concern about

minimizing carbon emissions because it affects our

environment in a way that endangers a healthy life and

human health. CPU utilization and resource utilization

directly affect the energy consumed by a task. Energy

consumption will be high when CPUs are not properly

utilized. This is because idle power is not effectively

used. Sometimes energy consumption increases due to

high requests for resources, and this may reduce

efficiency. Proper scheduling algorithms are very

significant to find the optimal assignment of tasks so that

energy consumption is reduced. The total energy

consumption of a DVFS-enable resource (DVFS lets

resources operate at various voltage and frequency sets)

contains static energy because of leakage current and

dynamic energy because of switching activities. As

shown in Equation (23), in this paper we consider only

dynamic energy consumption [56]:

sta dynE E E  (19)

where Esta represents static energy and Edyn represents

dynamic energy consumption.

2

,dyn j s sE v f   (20)

where  is a constant value,
2

,j sv is Vj voltage, and fs is

the corresponding frequency of vj,s.

1

m

active dyn ij

j

E E ET


  (21)

where ETij is the execution time of the Ti executed on Vj.

2

0 0 ,

1

m

idle idle j

j

E v f t


    (22)

where  indicates a constant value, v0 and f0 is the

resource minimum voltage and resource minimum

frequency, respectively, and tidle,j represents the idle time

of the Vj.

total active idleE E E  (23)

Waiting time: It is the difference between the start

time of execution and the submission time of the task.

Reducing waiting time increases user satisfaction

because the user has to wait less time. User waiting time

can be defined mathematically as follows [54]:

()

1
1

jsum VM
m

i ij
j

i

WT Max ET




  (24)

where ETij refers to the execution time Ti on Vj.

The main goal is to minimize the values of the above

five functions, which is a multi-objective optimization

problem; because each of the functions has various

purposes that can conflict with each other. With a

powerful CPU, we can increase the processing speed of

a task, but the cost also increases. Also, for the situation

that a VM with a large memory will be able to load a lot

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 441

of tasks, but the makespan could be long if the computing

power of the CPU is low. Because the task scheduling

function is not determined by a single objective function,

the presented algorithm creates a task scheduling

satisfaction function based on a priori preferences.

Therefore, we turn the multi-objective problem of task

scheduling into a single-objective problem. Assume that

the cost range of task completion is [Cmin, Cmax], the range

of makespan is [MSmin, MSmax], the satisfaction range of

VM load balancing degree is [min max, ], the suitable

range of energy consumption is [Emin, Emax], and the range

of the user’s shortest waiting time is [WTmin, WTmax]. By

introducing the minimum amount of  [57], the five

objectives are computed as follows:

min

max

min max

max min

max

1

() (,)

j

j

j j

j

j

v

v

v v

v

v

 C C

C C
O C C C C

C C

 C C
C




 

 

 







(25)

min

max

min max

max min

max

1

() (,)

 MS MS

MS MS
O MS MS MS MS

MS MS

 MS MS
MS




 



 







(26)

min

max

min max

max min

max

1

() (,)

O

 

 
   

 


 








 

 







 (27)

min

max

min max

max min

max

1

() (,)

total

total

total

total

total

 E E

E E
O E E E E

E E

 E E
E







 

 







 (28)

(29)

We used the geometric average method to convert

five objectives into one objective. Therefore, the final

optimization function which will be minimized through

the proposed algorithm is as follows:

 5 () () () () ()
jopt v iF Min O C O MS O O E O WT     (30)

4. 3. The SOATS Algorithm Based on all the

above, Figure 6 represents the pseudocode of task

scheduling based on SOA technique.

In addition, the flowchart of SOATS algorithm for

task scheduling is shown in Figure 7. The principal steps

of the SOATS algorithm can be described as follows:

Step 1) At first, initialization is performed, which

usually contains mapping among cloud tasks and seagulls

and initialization of seagulls positions. Also, some

execution factors such as the number of search agents, the

maximum number of iterations, and search space

dimensions are initialized.

Step 2) The process of finding the optimal solution

starts based on SOA. In this step, based on position

information, the amount of cost, makespan, load, energy

consumption, and waiting time are calculated according

to Equations (14), (15), (18), (23), and (24), respectively.

Then, according to Equation (30), the objective function

value of each seagull is calculated. The position of the

seagull with the smallest fitness value (i.e., fittest seagull)

Figure 6. The pseudocode of SOATS

min

max

min max

max min

max

1

() (,)

i

i

i i

i

i

 WT WT

WT WT
O WT WT WT WT

WT WT

 WT WT
WT







 

 







442 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

Figure 7. Flowchart of SOATS

will be recorded (which indicates the optimal solution so

far).

Step 3) In this step, the positions of seagulls will be

updated according to Equation (10).

Step 4) When the positions of all the seagulls are

updated, an iteration is performed. If the maximu m

number of iterations is done, the search process is

terminated and the position of the best search agent is

transferred to the xij decision variables and finally

returned as the best scheduling solution, otherwise, it

goes to step 2 for the new search.

5. PERFORMANCE ANALYSIS

In this section, to evaluate the performance of the SOATS

algorithm, we use MATLAB software that is installed on

a PC with Intel(R) Core(TM) i5-7200U CPU with 2.50

GHz, and RAM of 8 GB running on 64-bit Windows 10

Pro operating system platform. The SOA-based task

scheduling algorithm is compared with other well-known

meta-heuristic algorithms, namely GA, PSO, ACO, and

WOA for validation. In addition, we compare the

performance of the SOATS algorithm in a heavily loaded

environment with three scheduling algorithms, namely

CJS, FUGE, and MSDE.

Table 2 shows the specific parameter settings for the

comparative meta-heuristic algorithms [3, 58, 59].

Also, for each different scenario, the table of

simulation parameters is presented. Most of the

TABLE 2. Parameters settings of caparisoned meta-heuristic

algorithms

Algorithms Parameters Values

GA
Crossover 0.9

Mutation 0.05

PSO

C1 1.8

C2 2

Inertia factor 0.75

ACO


0.7

P 0.3

WOA a [2, 0]

simulation parameters have been selected to conform to

existing studies for the real representation of a typical

cloud environment [60]. In addition, the parameters

related to the SOA algorithm are also set [3]. According

to each different scenario that is proposed, one of the

parameters in each scenario is variable and the results are

analyzed based on this parameter.

5. 1. Number of Tasks In this experiment, the

number of tasks is changed among 100 and 500 tasks

with a step of 100. The parameters of the cloud system

and the SOA are described in Table 3.

In many works, makespan is used as one of the most

popular performance criteria. Reducing the makespan

value demonstrates the ability of scheduling to

effectively choose resources for the appropriate

allocation of tasks. Figure 8 shows a graphical

comparison of the makespan between SOATS and the

task scheduling based on GA, PSO, ACO, and WOA

using various numbers of tasks. Makespan is drawn on

the vertical axis and the number of tasks on the horizontal

TABLE 3. Parameters setting (different number of tasks)

Parameters Values

Number of tasks 100-500

Tasks size (MI) 100-2000

Number of VMs 40

VMs execution speed (MIPS) 500-4500

Storage cost $0.1 per GB

Processing cost $1 per 106 MI

Data transfer cost $0.05 per GB

Maximum iteration 100

Population size 50

Fc 1

Constant u and v 1

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 443

axis. According to the results, it is clear that SOATS has

a better makespan compared to other algorithms by

increasing the number of tasks. The makespan

minimizat ion by SOA is 5-10% less than that of PSO for

100 through 500 number of tasks, respectively. This is

because the SOA has good exploration and exploitation

ability because variable B in the SOA is responsible for

the smooth transfer between exploration and

exploitation.

As shown in Figure 9, the proposed SOA-based task

scheduling algorithm has obvious benefits in obtaining

load balancing compared to other meta-heuristic

algorithms. Load balancing must be done in such a way

that all VMs must be balanced to achieve optimal use of

their capabilities and improve system performance. The

SOATS obtains the best balance between VMs in all

numbers of tasks. Conversely, ACO-based task

scheduling has the worst workload for all cases.

A comparison of the costs of using the VM for the

SOATS and other meta-heuristic algorithms is shown in

Figure 10. The cost increases as the number of tasks

increases. Proper estimation of VM cost in a cloud

computing environment is very important because as the

cost decreases, the service provider's profit increases.

The cost minimization by SOA is 12-3% less than that of

Figure 8. Makespan time with different numbers of tasks

Figure 9. Degree of load balancing with different numbers

of tasks

Figure 10. Cost with the different number of tasks

WOA for 100 through 500 instances of tasks,

respectively. Also, the cost minimization by SOA is 10-

2% less than that of ACO for 100 through 500 tasks,

respectively. The main reason is that ACO does not

search the search space well and falls into the trap of local

optimum.

Energy consumption is also one of the main metrics

in maximizing the overall performance of the cloud

system. There is a direct linear relationship between

energy consumption and VMs utilization because the

optimal VMs utilization reduces the energy consumption

of a server. The X-axis represents the number of tasks

and the Y-axis indicates the energy consumption. In

Figure 11, SOATS is more efficient and has a lower

energy consumption in comparison to other algorithms.

The energy consumption in the proposed algorithm is

31% better than that of GA, 22% that of PSO, 28% that

of ACO, and 20% that of WOA in the case of 500 tasks

assigned.

Waiting time is the total time a task spends in the task

queue waiting for a VM to execute. Figure 12 shows the

experimental results for the waiting time. As shown in

Figure 12, SOATS waiting time is better than other

algorithms for all cases. The GA provides the worst

waiting time when the number of tasks is 500. The

Figure 11. Energy consumption with the different number

of tasks

444 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

Figure 12. Waiting time with the different number of tasks

waiting time in the proposed approach is 15-3%, 13-4%,

and 13-2% less than PSO, ACO, and WOA for 100

through 500 tasks, respectively. Since fc decreases from

the initial value of fc to 0, this allows the SOA to search

well at the beginning and converges to the optimal

solution by increasing the number of iterations.

5. 2. Number of VMs This experiment is performed

with a variable number of VMs (between 10 and 50)

while the number of tasks is considered fixed (500 tasks).

Table 4 represents the parameters of the cloud system and

the SOA.
Comparison of performance in terms of makespan,

load, cost, energy consumption, and waiting time is

shown in Figures 13-17 for different numbers of VMs

with bar charts between different algorithms. It is clear

that as the number of VMs increases, scheduling

algorithms can process tasks in a shorter time, so

parameters such as makespan and waiting time decrease

with the increasing number of VMs (Figures 13 and 17,

respectively). However, an increase in VMs number is

increasing energy consumption. In Figure 16, as

TABLE 4. Parameters setting (different number of VMs)

Parameters Values

Number of tasks 500

Tasks size (MI) 100-2000

Number of VMs 10-50

VMs execution speed (MIPS) 500-4500

Storage cost $0.1 per GB

Processing cost $1 per 106 MI

Data transfer cost $0.05 per GB

Maximum iteration 1-100

Population size 60

Fc 1

Constant u and v 1

Figure 13. Makespan time with different numbers of VMs

Figure 14. Degree of load balancing with different numbers

of VMs

Figure 15. Cost with the different number of VMs

Figure 16. Energy consumption with the different number

of VMs

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 445

Figure 17. Waiting time with the different number of VMs

expected, the energy consumption increases as the

number of VMs increases. SOATS algorithm has the

lowest energy consumption for different numbers of

VMs and also GA in most cases has the maximum energy

consumption due to poor exploitation capability. The

difference between scheduling algorithms is evident in

difficult situations such as when the number of VMs is

low. As shown in Figures 13-17, the SOATS algorithm

in most cases performs better than other algorithms for a

different number of VMs with a certain number of tasks.

This is because the SOA algorithm makes a balance

between exploration and exploitation.

5. 3. Number of Iterations In the second scenario,

we examine the performance of the SOATS compared to

other algorithms by increasing the number of iterations.

Table 5 presents the simulation parameters used in this

scenario.

Figure 18 shows the convergence speed comparison

of five meta-heuristic algorithms to solve the scheduling

problem. Figure 18 shows that the fitness of the PSO,

WOA, and SOA algorithms decreases with an increase in

TABLE 5. Parameters setting (different number of iterations)

Parameters Values

Number of tasks 400

Tasks size (MI) 100-2000

Number of VMs 20

VMs execution speed (MIPS) 500-4500

Storage cost $0.1 per GB

Processing cost $1 per 10
6
 MI

Data transfer cost $0.05 per GB

Maximum iteration 1-100

Population size 40

Fc 1

Constant u and v 1

Figure 18. Convergence plot based on the number of

iterations

number of iterations, which indicates the efficiency of

these algorithms in scheduling in the cloud environment.

As shown in Figure 18, WOA and PSO perform better

than GA and ACO algorithms. This is because PSO and

WOA have better search capability and exploitation

capability than GA and ACO. However, it can be

observed that SOA has the best performance and, an

increase in the number of iterations, SOA can achieve its

optimal solution faster than PSO and WOA. SOA has

better performance than the other four algorithms in

terms of convergence speed and accuracy. This is

because there is a trade-off between the local optimal

value and the global optimal value in the search process.

In other words, SOA has good exploration and

exploitation capabilities. Initially, it searches the search

space well and does not fall into the local optimal and

then converges to the global optimal solution. Therefore,

SOA has a good ability to solve complex optimization

problems.

The convergence analysis of meta-heuristic

algorithms is used for a better understanding of

exploration and exploitation capabilities. Figure 19

shows the average convergence time of SOA and other

metaheuristic algorithms. It can be seen that SOA takes

less convergence time than other methods. The SOA

Figure 19. Average convergence time of meta-heuristic

algorithms

446 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

converges after about 2.62 seconds, PSO 3.64 seconds,

WOA about 3.91 seconds, GA 6.76 seconds, and ACO

14.54 seconds.

5. 4. Number of Search Agents In this subsection,

we compare the performance of SOATS with other

algorithms according to different population sizes. The

cloud parameters and SOA parameters are presented in

Table 6.
The number of seagulls in the SOA algorithm is

known as the population size. Increasing the size of the

population creates more parts of the search space that

must be covered in each iteration. By increasing the

population size, the number of iterations required to

achieve the optimal solution can be reduced. However,

increasing the population size increases the

computational complexity in each iteration; therefore, it

is time-consuming. In this experiment, we examine the

performance of all five meta-heuristic algorithms in

terms of task scheduling by considering the number of

100 iterations and different population sizes. We started

the simulation with 40 search agents and increased it to

80 agents. The results in Figure 20, show that the ACO

in most cases has the worst fitness and SOA has the best

fitness value in all population sizes compared to other

algorithms.

5. 5. Fc Parameter In this scenario, we run the SOA

with different fc values and compare the results. Table 7

proposed the simulation parameters used in this scenario.

fc is one of the most important parameters in the SOA

algorithm, which is introduced to control the frequency

of variable A and reduces linearly from the initial value

of fc to 0. We implemented the SOA algorithm for various

values of the fc parameter by keeping the number of

iterations and the number of search agents constant.

TABLE 6. Parameters setting (different number of agents)

Parameters Values

Number of tasks 400

Tasks size (MI) 100-2000

Number of VMs 10

VMs execution speed (MIPS) 500-4500

Storage cost $0.1 per GB

Processing cost $1 per 106 MI

Data transfer cost $0.05 per GB

Maximum iteration 100

Population size 40-80

Fc 1

Constant u and v 1

Figure 20. Convergence plot based on population size

TABLE 7. Parameters setting (different values of fc)

Parameters Values

Number of tasks 400

Tasks size (MI) 100-2000

Number of VMs 20

VMs execution speed (MIPS) 500-4500

Storage cost $0.1 per GB

Processing cost $1 per 106 MI

Data transfer cost $0.05 per GB

Maximum iteration 100

Population size 40

Fc 1-5

Constant u and v 1

Figure 21. Effect of parameter fc in our task scheduling

algorithm

The fc values used in experiments are 1, 2, 3, 4, and 5.

As shown in Figure 21, the scheduling algorithm

presented in this paper obtains the best optimal solution

when the value of fc is set to 1.

5. 6. Other Scheduling Algorithms In the last

scenario, we compare SOATS performance with other

scheduling algorithms, namely CJS [37], FUGE [39], and

MSDE [51]. Table 8 shows the parameters settings. The

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 447

results obtained by comparing SOATS with other

scheduling algorithms in terms of makespan, cost, degree

of load, energy consumption, and waiting time are shown

in Table 9.

Reducing makespan and waiting time is one of the

most important requests of users because it makes their

tasks execute faster. It is clear from Table 9 that SOATS

has a shorter makespan and waiting time than other

scheduling algorithms. Because the SOATS algorithm

tries to distribute the tasks optimally between resources

by considering the makespan and waiting time in the

objective function and evaluating the value of the

objective function in each iteration, which helps to

reduce the execution time.

As Table 9 shows, the costs in SOA are 7, 10, and 12%

lower than CJS, FUGE, and MSDE, respectively. MSDE

has the worst performance in terms of cost compared to

the rest, because MSDE only focused on reducing

makespan and did not consider the cost. Also, the

proposed algorithm performs better in terms of load

balance as well as reducing energy consumption. SOA

decreases energy consumption up to 27% in comparison

with CJS, up to 24% in comparison with FUGE, and up

to 23% in comparison with MSDE. Since SOATS uses

the DVFS model and so consumes less energy because

TABLE 8. Parameters setting (different scheduling algorithms)

Parameters Values

Number of tasks 500

Tasks size (MI) 100-2000

Number of VMs 40

VMs execution speed (MIPS) 500-4500

Storage cost $0.1 per GB

Processing cost $1 per 10
6
 MI

Data transfer cost $0.05 per GB

Maximum iteration 100

Population size 50

Fc 1

Constant u and v 1

TABLE 9. The comparison between the different scheduling

algorithms

O bjectives/
Methods

Makespan Cost
Degree
of load

Energy
Waiting

time

CJS 460 193 457 200 462

FUGE 463 201 453 191 460

MSDE 459 205 459 190 463

SO ATS 455 180 445 146 457

the resources operate with the minimum voltage and

frequency required.

6. CONCLUSION AND FUTURE WORKS

The problem of scheduling in cloud computing is an NP-

hard problem due to the many parameters that exist (such

as task priority, the dependency among tasks, and

communication costs). One of the solutions to solve these

problems is to use meta-heuristic algorithms. Although in

the cloud system, finding a suitable task scheduling

algorithm is very important for users and providers, most

papers fail to offer an effective trade-off between

makespan, energy consumption, and cost. In this paper,

we present a new SOA-based task scheduling algorithm

that simultaneously considers makespan, energy

consumption, cost, load, and waiting time and named it

SOATS. The experimental results show that the proposed

tasks scheduling algorithm can improve the performance

of the cloud computing system in terms of system load,

makespan, cost, energy consumption, and waiting time

compared to other well-known meta-heuristic algorithms

such as GA, PSO, ACO, and WOA. In addition, SOATS

has a better convergence speed and can find the optimal

solution with more accuracy and speed compared to other

meta-heuristic algorithms. This is because SOA has a

good ability to explore and exploit. In the heavily loaded

cloud environment. The proposed algorithm reduces

energy consumption, cost saving and degree of load

balancing by 10 and 25 and 3%, respectively. As part of

our future work, we intend to combine the proposed

algorithm with other meta-heuristic algorithms. In

addition, we will consider other computational criteria

such as security and availability. We also want to

improve the proposed algorithm using fuzzy theory.

7. REFERENCES

1. Mohammad Hasani Zade. B, Mansouri. N, and Javidi. M. M,
“Multi-objective scheduling technique based on hybrid hitchcock
bird algorithm and fuzzy signature in cloud computing”,
Engineering Applications of Artificial Intelligence, Vol. 104,

(2021), DOI: 10.1016/j.engappai.2021.104372.

2. Kumar. M, Sharma. S. C, Goel. A, and Singh. S. P, “A
comprehensive survey for scheduling techniques in cloud
computing”, Journal of Network and Computer Applications,

Vol. 143, (2019), 1-33, DOI: 10.1016/j.jnca.2019.06.006.

3. Dhiman. G, and Kumar. V, “Seagull optimization algorithm:
Theory and its applications for large-scale industrial engineering
problems”, Knowledge-Based Systems, Vol. 165, (2019), 169-

196, DOI: 10.1016/j.knosys.2018.11.024.

4. Mansouri. N, Mohammad Hasani Zade. B, Javidi. M. M, ”SAEA:
A security-aware and energy-aware task scheduling strategy by

Parallel Squirrel Search Algorithm in cloud environment”, Expert
Systems with Applications, Vol. 176, (2021), DOI:
10.1016/j.eswa.2021.114915.

https://www.researchgate.net/profile/Behnam-Mohammad-Hasani-Zade
https://www.researchgate.net/profile/Behnam-Mohammad-Hasani-Zade
https://www.researchgate.net/profile/Behnam-Mohammad-Hasani-Zade
https://www.researchgate.net/profile/Najme-Mansouri
https://www.researchgate.net/journal/Engineering-Applications-of-Artificial-Intelligence-0952-1976
https://www.researchgate.net/profile/Najme-Mansouri
https://www.researchgate.net/profile/Najme-Mansouri
https://www.sciencedirect.com/science/article/abs/pii/S0957417421003560#!
https://www.sciencedirect.com/science/journal/09574174
https://www.sciencedirect.com/science/journal/09574174

448 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

5. Pradhan. A, Bisoy. S. K, and Das. A, “A survey on PSO based

meta-heuristic scheduling mechanism in cloud computing
environment”, Journal of King Saud University - Computer and
Information Sciences, (2021), DOI:

10.1016/j.jksuci.2021.01.003.

6. Shafiq. D. A, Jhanjhi. N. Z, and Abdullah. A, “Load balancing
techniques in cloud computing environment: A review”, Journal
of King Saud University - Computer and Information Sciences,

(2021), DOI: 10.1016/j.jksuci.2021.02.007.

7. Velliangiri. S, Karthikeyan. P, Arul Xavier. V. M, and Baswaraj.
D, “Hybrid electro search with genetic algorithm for task
scheduling in cloud computing”, Ain Shams Engineering

Journal, Vol. 12, No. 1, (2021), 631-639, DOI:
10.1016/j.asej.2020.07.003.

8. Wilczyński. A, and Kołodziej. J, “Modelling and simulation of
security-aware task scheduling in cloud computing based on

Blockchain technology”, Simulation Modelling Practice and
Theory, Vol. 99, (2020), DOI: 10.1016/j.simpat .2019.102038.

9. NoorianTalouki. R, Hosseini Shirvani. M, and Motameni. H, “A

heuristic-based task scheduling algorithm for scientific
workflows in heterogeneous cloud computing platforms”,
Journal of King Saud University - Computer and Information
Sciences, (2021), DOI: 10.1016/j.jksuci.2021.05.011.

10. Alsaidy. S. A, Abbood. A. D, and Sahib. M. A, “Heuristic
initialization of PSO task scheduling algorithm in cloud
computing”, Journal of King Saud University - Computer and
Information Sciences, (2020), DOI:

10.1016/j.jksuci.2020.11.002.

11. Pradhan. A, and Bisoy. S. K, “A novel load balancing technique
for cloud computing platform based on PSO”, Journal of King
Saud University-Computer and Information Sciences, (2020),

DOI: 10.1016/j.jksuci.2020.10.016.

12. Kaur. R, Laxmi. V, and Balkrishan, “Performance evaluation of
task scheduling algorithms in virtual cloud environment to
minimize makespan”, International Journal of Information

Technology, (2021), DOI: 10.1007/s41870-021-00753-4.

13. Sreenivasulu. G, and Paramasivam. I, “Hybrid optimization
algorithm for task scheduling and virtual machine allocation in

cloud computing”, Evolutionary Intelligence, Vol. 14, No. 2,
(2021), 1015-1022, DOI: 10.1007/s12065-020-00517-2.

14. Zandvakili. A, Mansouri. N, and Javidi. M. M, “Energy-aware
task scheduling in cloud compting based on discrete pathfinder

algorithm”, International Journal of Engineering, Transactions
C: Aspects, Vol. 34, No. 9, (2021), 2124-2136, doi:
10.5829/ije.2021.34.09c.10.

15. Uchechukwu. A, Li. K, and Shen. Y, “Energy consumption in

cloud computing data centers”, International Journal of Cloud
Computing and Services Science, Vol. 3, No. 3, (2014), 31-48,
doi: 10.11591/closer.v3i3.6346.

16. Barroso. L. A, Clidaras. J, and Hölzle. U, “The datacenter as a

computer: An introduction to the design of warehouse-scale
machines”, Synthesis Lectures on Computer Architecture, Vol.
8, No. 3, (2013), 1-154, DOI:

10.2200/S00193ED1V01Y200905CAC006.

17. Sharma. M, and Garg. R, “HIGA: Harmony-inspired genetic
algorithm for rack-aware energy-efficient task scheduling in
cloud data centers”, Engineering Science and Technology, an

International Journal, Vol. 23, No. 1, (2020), 211-224, DOI:
10.1016/j.jestch.2019.03.009.

18. Hussain. M, Wei. L.-F, Lakhan. A, Wali. S, Ali. S, and Hussain.
A, “Energy and performance-efficient task scheduling in

heterogeneous virtualized cloud computing”, Sustainable
Computing: Informatics and Systems, Vol. 30, (2021), DOI:
10.1016/j.suscom.2021.100517.

19. Dong. M, Fan. L, and Jing. C, “ECOS: An efficient task-

clustering based cost-effective aware scheduling algorithm for

scientific workflows execution on heterogeneous cloud systems”,

Journal of Systems and Software, Vol. 158, (2019), DOI:
10.1016/j.jss.2019.110405.

20. Singh. H, Tyagi. S, Kumar. P, Gill. S. S, and Buyya. R,

“Metaheuristics for scheduling of heterogeneous tasks in cloud
computing environments: Analysis, performance evaluation, and
future directions”, Simulation Modelling Practice and Theory,
Vol. 111, (2021), DOI: 10.1016/j.simpat.2021.102353.

21. Meshkati. J, and Safi-Esfahani. F, “Energy-aware resource
utilization based on particle swarm optimization and artificial bee
colony algorithms in cloud computing”, The Journal of
Supercomputing, Vol. 75, No. 5, (2019), 2455-2496, DOI:

10.1007/s11227-018-2626-9.

22. Sanaj. M. S, and Joe Prathap. P. M, “An efficient approach to the
map-reduce framework and genetic algorithm based whale
optimization algorithm for task scheduling in cloud computing

environment”, Materials Today: Proceedings, Vol. 37, (2021),
3199-3208, DOI: 10.1016/j.matpr.2020.09.064.

23. Alboaneen. D, T ianfield. H, Zhang. Y, and Pranggono. B, “A

metaheuristic method for joint task scheduling and virtual
machine placement in cloud data centers”, Future Generation
Computer Systems, Vol. 115, (2021), 201-212, DOI:
10.1016/j.future.2020.08.036.

24. Houssein. E. H, Gad. A. G, Wazery. Y. M, and Suganthan. P. N,
“Task Scheduling in Cloud Computing based on Meta-heuristics:
Review, Taxonomy, Open Challenges, and Future Trends”,
Swarm and Evolutionary Computation, Vol. 62, (2021), DOI:

10.1016/j.swevo.2021.100841.

25. Rai. D, and Tyagi. K, “Bio-inspired optimization techniques: a
critical comparative study”, ACM SIGSOFT Software
Engineering Notes, Vol. 38, No. 4, (2013), 1-7, DOI:

10.1145/2492248.2492271.

26. Beni. G, and Wang. J, “Swarm intelligence in cellular robotic
systems”, Robots and Biological Systems: Towards a New
Bionics?, Springer, (1993), 703-712, DOI: 10.1007/978-3-642-

58069-7_38.

27. Shaheen. A. M, Spea. S. R, Farrag. S. M, and Abido. M. A, “A
review of meta-heuristic algorithms for reactive power planning

problem”, Ain Shams Engineering Journal, Vol. 9, No. 2,
(2018), 215-231, DOI: 10.1016/j.asej.2015.12.003.

28. Kennedy. J, and Eberhart . R, “Particle swarm optimization”,
IEEE Proceedings of ICNN’95-International Conference on

Neural Networks, Perth, WA, Australia, (1995), DOI:
10.1109/ICNN.1995.488968.

29. Dorigo. M, Maniezzo. V, and Colorni. A, “Ant system:
optimization by a colony of cooperating agents”, IEEE

Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), (1996), 1996, DOI: 10.1109/3477.484436.

30. Sreenu. K, and Sreelatha. M, “W-Scheduler: whale optimization
for task scheduling in cloud computing”, Cluster Computing,

Vol. 22, (2019), 1087-1098, DOI: 10.1007/s10586-017-1055-5.

31. Mirjalili. S, and Lewis. A, “The whale optimization algorithm”,
Advances in Engineering Software, Vol. 95, (2016), 51-67, DOI:

10.1016/j.advengsoft.2016.01.008.

32. Zuo. L, Shu. L, Dong. S, Zhu. C, and Hara. T , “A multi-objective
optimization scheduling method based on the ant colony
algorithm in cloud computing”, IEEE Access, Vol. 3, (2015),

2687-2699, DOI: 10.1109/ACCESS.2015.2508940.

33. Zuo. X, Zhang. G, and Tan. W, “Self-adaptive learning PSO-
based deadline constrained task scheduling for hybrid IaaS
cloud”, IEEE Transactions on Automation Science and

Engineering, Vol. 11, No. 2, (2013), 564-573, DOI:
10.1109/TASE.2013.2272758.

34. Sreenivasulu. G, and Paramasivam. I, “Hybrid optimization
algorithm for task scheduling and virtual machine allocation in

R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450 449

cloud computing”, Evolutionary Intelligence, Vol. 14, (2021),

DOI: 10.1007/s12065-020-00517-2.

35. Lin. W, Liang. C, Wang. J. Z, and Buyya. R, “Bandwidth-aware
divisible task scheduling for cloud computing”, Software:

Practice and Experience, Vol. 44, No. 2, (2014), 163-174, DOI:
10.1002/spe.2163.

36. Del Acebo. E, and de-la Rosa. J. L, “Introducing bar systems: a
class of swarm intelligence optimization algorithms”, In AISB

2008 Convention Communication, Interaction and Social
Intelligence, Vol. 1, (2008), 1-18.

37. Mansouri. N, and Javidi. M. M, “Cost-based job scheduling
strategy in cloud computing environments”, Distributed and

Parallel Databases, Vol. 38, No. 2, (2020), 365-400, DOI:
10.1007/s10619-019-07273-y.

38. Calheiros. R. N, Ranjan. R, Beloglazov. A, De Rose. C. A. F, and
Buyya. R, “CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource
provisioning algorithms”, Software: Practice and Experience,
Vol. 41, No. 1, (2011), 23-50, DOI: 10.1002/spe.995.

39. Shojafar. M, Javanmardi. S, Abolfazli. S, and Cordeschi. N,
“FUGE: A joint meta-heuristic approach to cloud job scheduling
algorithm using fuzzy theory and a genetic method”, Cluster
Computing, Vol. 18, No. 2, (2015), 829-844, DOI:

10.1007/s10586-014-0420-x.

40. Xu. B, Zhao. C, Hu. E, and Hu. B, “Job scheduling algorithm
based on Berger model in cloud environment”, Advances in
Engineering Software, Vol. 42, (2011), No. 7, 419-425, DOI:

10.1016/j.advengsoft.2011.03.007.

41. Karthick. A. V, Ramaraj. E, and Subramanian. R. G, “An efficient
multi queue job scheduling for cloud computing”, 2014 World
Congress on Computing and Communication Technologies,

Trichirappalli, India, (2014), DOI: 10.1109/WCCCT.2014.8.

42. Babu. G, and Krishnasamy. K, “Task scheduling algorithm based
on Hybrid Particle Swarm Optimization in cloud computing
environment”, Journal of Theoretical and Applied Information

Technology, Vol. 55, (2013), 33-38.

43. Kumar. S, and Kalra. M. A, “ Hybrid Approach for Energy-
Efficient Task Scheduling in Cloud ”, Proceedings of 2nd

International Conference on Communication, Computing and
Networking, Singapore, (2018), DOI: 10.1007/978-981-13-1217-
5_99.

44. Holland. J. H, “Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence”, MIT press, (1992).

45. Karaboga. D, “ An idea based on honey bee swarm for numerical
optimization ” Technical report -tr06, Erciyes university,

Engineering faculty, Computer engineering department, (2005).

46. Cotes-Ruiz. I. T , Prado. R. P, García-Galán. S, Muñoz-Expósito.
J. E, and Ruiz-Reyes. N, “Dynamic voltage frequency scaling
simulator for real workflows energy-aware management in green

cloud computing”, PloS One, Vol. 12, No. 1, (2017), DOI:
10.1371/journal.pone.0169803.

47. Singh. S, and Kalra. M, “Scheduling of independent tasks in cloud

computing using modified genetic algorithm”, 2014 International
Conference on Computational Intelligence and Communication
Networks, Bhopal, India, (2014), DOI: 10.1109/CICN.2014.128.

48. Prem Jacob. T, and Pradeep. K, “A Multi-objective Optimal Task

Scheduling in Cloud Environment Using Cuckoo Particle Swarm
Optimization”, Wireless Personal Communications, Vol. 109,
No. 1, (2019), 315-331, DOI: 10.1007/s11277-019-06566-w.

49. Yang. X.-S, and Deb. S, “Cuckoo search via Lévy flights”, World
Congress on Nature & Biologically Inspired Computing (NaBIC),
Coimbatore, India, (2009), doi: 10.1109/NABIC.2009.5393690.

50. Wu. D, “Cloud computing task scheduling policy based on

improved particle swarm optimization”, Proceedings - 2018
International Conference on Virtual Reality and Intelligent
Systems, ICVRIS 2018, Hunan, China, (2018), DOI:
10.1109/ICVRIS.2018.00032.

51. Elaziz. M. A, Xiong. S, Jayasena. K. P. N, and Li. L, “Task
scheduling in cloud computing based on hybrid moth search
algorithm and differential evolution”, Knowledge-Based
Systems, Vol. 169, (2019), 39-52, DOI:

10.1016/j.knosys.2019.01.023.

52. Wang. G.-G, “Moth search algorithm: a bio-inspired
metaheuristic algorithm for global optimization problems”,

Memetic Computing, Vol. 10, (2018), No. 2, 151-164, DOI:
10.1007/s12293-016-0212-3.

53. Storn. R, and Price. K, “Differential evolution-a simple and
efficient heuristic for global optimization over continuous

spaces”, Journal of Global Optimization, Vol. 11, No. 4, (1997),
341-359, DOI: 10.1023/A:1008202821328.

54. Guo. X, “Multi-objective task scheduling optimization in cloud
computing based on fuzzy self-defense algorithm”, Alexandria

Engineering Journal, Vol. 60, No. 6, (2021), 5603-5609, DOI:
10.1016/j.aej.2021.04.051.

55. Sharma. M, and Garg. R, “An artificial neural network based
approach for energy efficient task scheduling in cloud data

centers”, Sustainable Computing: Informatics and Systems,
Vol. 26, (2020), DOI: 10.1016/j.suscom.2020.100373.

56. Paknejad. P, Khorsand. R, and Ramezanpour. M, “Chaotic
improved PICEA-g-based multi-objective optimization for

workflow scheduling in cloud environment”, Future Generation
Computer Systems, Vol. 117, (2021), 12-28, DOI:
10.1016/j.future.2020.11.002.

57. Wei. X, “Task scheduling optimization strategy using improved
ant colony optimization algorithm in cloud computing”, Journal
of Ambient Intelligence and Humanized Computing, (2020),
DOI: 10.1007/s12652-020-02614-7.

58. Chen. X, Cheng. L, Liu. C, Liu. Q, Liu. J, Mao. Y, and Murphy.
J, “A WOA-based optimization approach for task scheduling in
cloud computing systems”, IEEE Systems Journal, Vol. 14, No.
3, (2020), 3117-3128, DOI: 10.1109/JSYST.2019.2960088.

59. Tubishat. M, Abushariah. M. A. M, Idris. N, and Aljarah. I,
“Improved whale optimization algorithm for feature selection in
Arabic sentiment analysis”, Applied Intelligence, Vol. 49, No. 5,
(2019), 1688-1707, DOI: 10.1007/s10489-018-1334-8.

60. Tos. U, Mokadem. R, Hameurlain. A, Ayav. T, and Bora. S, “A
performance and profit oriented data replication strategy for cloud
systems”, 2016 Intl IEEE Conferences on Ubiquitous Intelligence

& Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse,

France, (2016), DOI: 10.1109/UIC-ATC-ScalCom-CBDCom-
IoP-SmartWorld.2016.0125.

450 R. Ghafari and N. Mansouri/ IJE TRANSACTIONS B: Applications Vol. 35, No. 02, (February 2022) 433-450

Persian Abstract

 چکیده

کند. زمانبندی کارها یکی از مسائل اصلی برای افزار را به عنوان خدمات از طریق شبکه برای کاربران فراهم میافزار و نرمسخت مانند منابع محاسباتیرایانش ابری

ه زمانبندی ینه کند. از آنجا که مسئلدستیابی به اجرای مقرون به صرفه است. هدف اصلی زمانبندی کارها اختصاص کارها به منابع است تا بتواند یک یا چند معیار را به

ای برای حل مسئله زمانبندی کار به کارگرفته های فراابتکاری به طور گسترده، الگوریتماست (NP-hard) سخت یقطعریغ یازمان چندجملهکارها یکی از مسائل

و آگاه از انرژی تمیالگور یک مااست. در این مقاله، (SOA) سازی مرغ دریایی های فراابتکاری جدید الهام گرفته از زیست الگوریتم بهینهاند. یکی از الگوریتمشده

الگوریتم پیشنهادی قصد دارد با استفاده از تعداد تکرارهای کمتر، بین پنج هدف)یعنی مصرف .میکنیم ارائه SOA (SOATS) بریمقرون به صرفه زمانبندی کار مبتن

، (GA) ها با مقایسه با چندین الگوریتم فراابتکاری)یعنی، الگوریتم ژنتیکانتظار، و تعادل بار(تعادل ایجاد کند. نتایج آزمایشانرژی، زمان اتمام کار، هزینه، زمان

هتری در دهد که روش پیشنهادی عملکرد بنشان می(WOA)) ها سازی نهنگ͏و الگوریتم بهینه(ACO) ها سازی کلونی مورچه͏، بهینه(PSO)سازی ازدحام ذرات ͏بهینه

، الگوریتم (CJS)کنیم: زمانبندی کار مبتنی بر هزینه͏های زمانبندی کار مقایسه میی زمانبندی کارها دارد. علاوه بر این، ما الگوریتم پیشنهادی را با روشحل مسئله

بهبود %25و هزینه را %10مصرف انرژی را SOATS. در محیط با بار زیاد، الگوریتم Fuzzy-GA (FUGE)و (MSDE) جستجوی پروانه مبتنی بر تکامل تفاضلی

 بخشد.͏می

