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This paper introduces a meter of the root-mean-square value of deterministic and stochastic signals of
an arbitrary shape that are generated over the set time interval. Such a meter involves only the
minimum number of simple arithmetic operations to obtain results, and it ensures a high degree of
measurement accuracy. For this purpose, the direct calculation of the signal root-mean-square value is
applied while the measurement of the half-period average straightened signal value is carried out by
means of the traditional measurement devices. Implementation of this meter requires neither the
knowledge of what the signal period is, nor the synchronization with the processed sampling.
Simulation is then carried out demonstrating the high efficiency of the proposed measurement
algorithm. We analyze the characteristics of the meter operating within a wide frequency range of the
measurable signals. The recommendations concerning the hardware implementation of such a meter by
means of the field programmable gate arrays are considered. The meter can be used when designing
digital high-frequency AC voltmeters and ammeters and it can provide the readings that do not depend
upon the signal waveform.
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1. INTRODUCTION

straightened value of a signal is measured and its
scaling into the RMS value is carried out. A drawback
of such devices is that their measurement results depend

Measuring the root-mean-square (RMS) values of
alternating signals (currents and voltages) is a common
task in various areas of electronic engineering [1-4].
There are various ways to perform such measurement
[5, 6] that can be divided into several groups.

In the first group, the measuring principle is that the
AC voltage is converted into the constant one using a
rectifier, then the result is measured. On this basis,
various high-precision measuring chips (RMS-to-DC
converters) have been designed, for example, the ones
provided by Analog Devices [7] and some other
companies. In these devices, the half-period average
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upon the waveform. Thus, for the common non-
harmonic signals, it is necessary to recalculate the
readings using a pre-calculated coefficient (Crest factor)
specified for a particular waveform. If the waveform is
unknown or if it changes during the operation, then the
results of such measurements are invalid.

The second group of meters includes the devices
with the direct reaction to the signal RMS value. First of
all, these are thermal meters [5, 6] operable only when
the input signal is powerful enough. Their drawback is
their low accuracy.
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The third group belongs to the analog RMS signal
meters (True RMS-to-DC Converters) [7, 8]. They
operate via generating the analog voltage RMS value by
multiplying, integrating and extracting the square root
from the result. They allow for a relatively simple
technical implementation, but their accuracy is not very
high, because performance of mathematical operations
for signal processing is only approximately correct as it
is influenced by the changes in environmental
parameters.

A separate group is also formed by the digital meters
of signal RMS values that use a digital signal processor
(DSP) to process a particular sample of binary sampling
codes by carrying out digital multiplication, integration
(summation, accumulation) and square root operations
[6]. Digital meters make it possible to apply the method
of determining the signal RMS value by calculating its
amplitude spectrum [7], but it presupposes significant
computational costs for spectral analysis.

If the signal period is known or can be measured, a
relatively small sample size can be chosen within this
interval. Such an approach is implemented, for example,
in digital oscilloscopes 2. At the same time, under the
unknown signal period, a big sample size is required
and that leads to a larger number of summations, which
results in increasing the computational costs and
decreasing the measurement operating speed. In
addition, in common devices [6], the signal sampling
frequency should be significantly greater than the signal
bandwidth.

To implement the integration operation, a digital
first-order low-pass infinite impulse response filter (1IR
filter) is applied. However, in this case, the
measurement accuracy depends on the measured signal
frequency properties. This can only be acceptable in
special cases, for example measuring either the voltage
or the current in a power network.

The RMS value of a signal can be obtained more
accurately by directly processing the recorded samples
of the input signal as provided by the standard
calculation algorithm [9]. However, in this case, the
problem of real-time measurement implementation
takes place. In this paper, in order to overcome this
difficulty, it is proposed to use the fast processing
algorithm in the procedures described in [10, 11]. The
mathematical substantiation of the measuring procedure
and the block diagram of the meter suitable for its
software and hardware implementation are presented.
The results of measuring deterministic signals and noise
are analyzed by means of simulation. The problems of
choosing the signal sampling frequency and the
hardware implementation of the meter are also
considered. It is shown that application of the proposed
approach allows us to design high-precision devices that

2 www.rohde-schwarz.com

can measure the signal RMS value that are invariant to
the shape of the input signal.

The structure of the paper includes the following
parts. In Section IlI, we present algorithms for
calculating the signal RMS value for the cases when
signal period is either known or unknown. We analyze
the maximum errors in estimation of both the harmonic
RMS values and the rectangular pulse sequences with
different pulse ratios. It is noted that the brute force
computation of the arbitrary signal RMS value requires
a large number of addition operations. Section Il
presents the fast algorithm for measuring the arbitrary
signal RMS value together with the block diagram of
the corresponding meter. Analysis for the accuracy of
the harmonic RMS value measurement is carried out by
means of simulation. The artificial network voltage
measurement accuracy is also tested using the same
method. In Section 1V, an example for measuring the
band Gaussian process RMS value is provided, and it
supports the operability and the efficiency of the
introduced algorithm that are demonstrated during
processing random signals. In Section V, a technique is
described for choosing the sampling frequency for the
analog-to-digital converter (ADC) of the measurement.
It is shown that the proposed meter ensures high
accuracy measurements within a wide range of signal
frequencies. Finally, in Section VI, the hardware
components  required  for  the  measurement
implementation are specified.

2. CALCULATING THE ROOT-MEAN-SQUARE
SIGNAL

The RMS value of a periodic signal with an arbitrary
shape (current or voltage) s(t) is determined by the

expression [9, 12]:

to+Tg
1
Srms = T J.Sz(t)dt’ (1)
\ 0 g

where T, is the signal period, and t, is any arbitrary

reference time of integration upon which the value of
the integral (1) does not depend on. In order to calculate
the value (1), it is necessary to know the signal period,
but that is not always implementable, especially, when
the signal frequency changes during measurements.

For an arbitrary integration interval T, firstly, one
defines the value

to+T
1
Srwms :‘ T Isz(t)dt : 2
to

It coincides with (1) when T is a multiple of T, and, in
the general case, depends upon T and t,. The value
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§RMS can be considered as an estimation of the signal
RMS value and its calculation does not require the
knowledge of T,.

If the harmonic signal
s(t)= S cos(ot + @) @)

is processed, then, from (2), one gets

Sews = Srus ‘/1+iTcos(2mt0 +2¢+0T)sin(oT) @)
(]

where Sgys =S/\/§ is the exact RMS value of the
periodic signal [5]. In (3), the notations are: S is the
amplitude, ®=2x/T, is the frequency, ¢ is the initial
phase of the signal. As the product of trigonometric
functions in (4) is not greater than unity in absolute
value, the relative error of estimating (4) from the
integral (2) is determined by the inequality

1

SSmaX =m ’ (5)

= SRMS _SRMS

SRMS

where K =int{T/Ty} is the number of signal periods

within the integration interval, int{} is an integer part.
Figure 1 shows the dependence of §,,, (5) upon the

normalized integration time T/T,. As it can be seen,

this error is less than 0.8% under K =10 .
One of the most common models of inharmonic

signals is the rectangular pulse. If, under the period T,

and the duration t (pulse ratio Q=T,/t), the RMS

value of positive rectangular pulses with the amplitude S
is measured, then the maximum relative measurement
error can be represented as [5], [6]

_ [Qlk+1)
B max = KQ 11 1. (6)

The vakues of 8., (6) with Q=2 and Q =4, are

shown in Figure 2a and Figure 2b, respectively. It
follows that, in these cases, the measurement error is

high, but it becomes acceptable under T/T, >10...20.

Thus, the RMS estimation using (2) does not require
knowledge of the signal period and provides a
sufficiently high accuracy when K >10...20.

If N samples are available from signal s;, then the

integral in (2) can be calculated by the method of
rectangles as follows [13]:

1
Srms;, = Wzsiz—k . (7
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Figure 1. The maximum error of estimating the harmonic
root-mean-square value
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Figure 2. The maximum error of estimating the root-mean-
square value of the rectangular pulse sequence with the
different pulse ratios: a) Q =2; b) Q =4

It should be noted that numerical integration methods
[19] require the generation of K, =50...200 samples
over the signal period. Thus, when measuring the signal
RMS value, it is necessary to take N =KyK >>1000

samples from the ADC output, and the measurement
accuracy will increase with N. Therefore, in order to
effectively implement the estimation using (7), a fast
computational procedure should be used with a
minimum number of arithmetic operations. It is
proposed to apply such a procedure that is based on the
general approach of fast digital signal processing
described in [10, 11].

3. THE ALGORITHM FOR MEASURING THE
SIGNAL RMS VALUE

In Figure 3, the block diagram of measuring the signal
RMS value is presented.
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Figure 3. The block diagram of the meter of the signal RMS
value

The input signal s(t) arrives at the ADC input that
generates the sequential samples s;, where i is the
number of the current sample, with the sampling
frequency fg . The samples s; are passed to the square-

law converter that can be implemented, for example, by
means of the digital multiplier (U). In the first summator

SUM;,, the square of the sample si2 produced at the
output of the square-law converter is added to the
preceding value siz,1 that has been previously stored in
the multi-bit one cell shifter MR, . Thus, at the output

of the summator SUM, the value s?+s?, appears. In
the summator SUM, , this result is added to the value

s?, +s’, that has been stored in the multi-bit two cell
shifter MR, . After that, at the output of the summator

SUM,, the sum s?+s?,+s?,+s?; is formed.
Further, similar calculations are carried out and at the
output of the last summator SUM,, one gets:

N-1 )
G =Y st ®)
k=0

where n=log, N is the number of summation stages

and N =2" is the sample size by which the signal RMS
value is determined. It should be noted that the
summation algorithm presented in Figure 3 requires a
minimum number of operations. Therefore, the
minimum hardware resources are used for its
implementation by means of the field programmable
gate arrays, for example.

The values G; are moved to the non-linear converter

(NC) that generates the value /G, at its output. The
easiest way to calculate the square root is to use the
storage device (SD), that is a hardware implementation.
In this case, at the SD address input, the G; binary code
is received while the /G, binary code has been pre-

recorded in the specified SD memory cell. For example,
if the bus-widths of address and data are the same-
D =16, then the SD capacity is 1 Mbit, and even when
D =24, the SD capacity of only 384 Mbit is required

and that is technically feasible.  Software
implementation, on the other hand, requires that the
square root should be calculated using the standard
algorithms, i.e., the Heron formula [13] or the power
series, for example.

The analysis of the accuracy of the harmonic RMS
value measurement using Equation (7) is carried out by
means of simulation. In Figure 4a, the dependence is

plotted for the normalized RMS value Sgys /S upon

the current normalized time i=t/A (where A=1/fg is

the sampling interval). It is assumed that the signal
frequency is f, =w/2r=10 kHz (the signal period is
To=1/f, =100 ps), the sampling frequency is fq =1
MHz (A=1 ps), the sample size is N =4096, the
number of samples within the period is K, =100, and

the number of periods within the averaging interval is
K = 41. At the initial stage, the shifters are filled during
4.096 ms, and then the current measurements are
performed, and they are, as one can see, fairly accurate.

The right normalized result is equal to 1/\/5 and it is

drawn by dashed line.

Figure 4b shows the precision errors of the
measurements  (hundredths of a percent). Their
fluctuations are caused by sample shifting during the
realization of the harmonic signal.

Of particular interest is the measurement of an
artificial network with the voltage of 220 V and the
frequency of 50 Hz. In Figure 5, the normalized
response of the RMS value meter is presented for the

case when the sample size is N =21 =8192 and the
sampling frequency is fg =10 kHz (A=107*5s).

IEMEJ_,,{S
.:I-:' 2 4 & E(a)l-:' 12 14 16 18 #,ms
0.7075 EMEI fs
RESUITAERRDRE R
e O

#1812 184 186 108 f,ms
(b)
Figure 4. The results of measuring the normalized harmonic
RMS value
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However, the shape of the artificial network voltage
and current may often differ from the sinusoidal one.
Figures 6 and 7 show examples of distorted normalized
signal and the result of its measurement by the
introduced device. In the process, 40 periods are
averaged approximately and 100 samples are generated
within each period.

If the signal presented in Figure 6 is processed by a
device that produces the half-period average voltage at
its output while its scale is calibrated by the harmonic
RMS values (such a measurement procedure is typical),
then, as one can see from Figure 7, the measurement

result is §RMS/S=0.793 (dashed line) while the

theoretical RMS value is §RMS /S =0.894 (solid line

after 0.82 s).

The analysis of the effect of m that is ADC bit-width
indicates that the precision error in measuring the signal
RMS value decreases significantly as m increases from
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Figure 5. The results of measuring the normalized RMS value
of an artificial network voltage
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Figure 7. The results of measuring the normalized RMS value
of a distorted artificial network voltage

3 to 6. However, if ADC bit-width increases further
(m>8), its precision error decreases only slightly. A
significantly greater effect on decreasing the
measurement precision error is produced by the
increasing the sample size.

4. MEASURING THE NOISE RMS VALUE

The device presented in Figure 3 allows us to measure
the RMS value of a random signal (noise).

Figure 8 shows the realization of the samples s; of
the band Gaussian random process with zero
mathematical expectation and dispersion (mean power)
SZ

Figure 9a draw dependence of the measured
normalized value Sgyg, /S upon the number i of the
processed sample, and in Figure 9b one can see the

same dependence but for i>N. Under N =4096 and
ADC bit-width m=12, the RMS relative measurement

5:./8

0 200 400 600 800 i
Figure 8. The realization of the centered band Gaussian
random process

§R.u.9r-,-’f 5

@)

§R.u.?r-,l"5 i
102 HH

0.9%

0.26 |

0.23

(b)
Figure 9. The results of measuring the normalized RMS value
of the band Gaussian random process
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error is equal to 1.4%. And if N =1024, then it
increases up to 2.4%, while if N =65536, then it
decreases down to 0.44%.

It can be noted that in order to determine the mean
value and the dispersion of a random process [1], the
fast-operation meter introduced in [14] can be used.

5. CHOOSING THE SAMPLING FREQUENCY

One should choose the sampling frequency fg
(sampling interval A) from the range fg=(50...200)f,
depending on the signal frequency f,. If the signal
frequency varies within a wide limit, then it can be
chosen so that, at the minimum frequency f,, a

sufficiently large number of samples N occupies several
periods  Touex =1/ fomin - THiS corresponds to the

condition T/Tonex = Tfomin =(3...5) - As
T = NA =N/ fg , for the sampling frequency one gets:
f :N/T:Nmein/(3"'5)' 9)

For example, if f,... =50 Hzand N =2" =1024 ,
then, by applying (9), one can get fq =10 kHz while

with N increasing to 2% =65536 one gets fg =655

kHz.

If, according to the rules of numerical integration
[19], it is assumed that at least 20 samples are required
to be generated within the signal period, then, for the
maximum signal frequency, one would get the relation

meax = fs /20 : (10)

For example, if f; =655 kHz and N =2, then one
gets fymn, =50 Hz and fyu =32 kHz. When
implementing the meter, estimation of the signal
frequency can be automatically generated and, in
accordance with it, the desired sampling frequency can
be chosen.

It should be noted that the measurement accuracy of
the algorithm presented in Figure 3 significantly
decreases, if the ratio fs/f, lies in the +(0.2...1) %

vicinity of the values n/2, n=12,.... Figure 10 shows

the results of simulating the meter operation when
measuring the RMS value of the harmonic signals with
the amplitude of 5 V and the different frequencies
fomax - It is assumed that N =4096, fg =10 kHz and

the ADC is applied with the spread of +5 V and the bit-
width m =8, while the sampling frequency differs for
different signal frequencies. If the signal frequency is
fo = fs/2=5 kHz and the initial phase ¢ in (3) is
equal to m/2 (the samples at the ADC output

correspond to zero signal values), then the measured
value of Sgys. is equal to zero. From Figures 10b, 10c,

it follows that the precision error of measurement
dramatically increases in f, = (fs/2)+10 Hz vicinity.

In order to eliminate this effect, 1% random
fluctuations can be introduced into the sampling
frequency, for example.

In Figures 11, one can see the results of simulating
the meter operation under the signal frequency
fo=fs/2=5 kHz and when the random Gaussian

oscillations of the sampling frequency of fq =10 kHz

are introduced with a standard deviation of 1 Hz.

From Figure 11, it follows that the measurement
results become acceptable, and the precision error of
measurement can be reduced as N increases.

The measurements of the signal RMS value can be
carried out with a high accuracy at the signal
frequencies that are much higher than the sampling
frequency: fq > fg. Thus, one sample takes place
during several signal periods. Figure 12 shows the
dependences similar to those drawn in Figure 11, if
fs =10 kHz and f;=53 kHz (Figure 12a) or
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/ 5=087%
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N I —
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SR PREEY PR

[ o]

° 0 1 2 3 4 ifN
) ©
'SR.U;- ........ ’\J/\/\f
/ fo=14999 Hz
2 | |

(=70
Il
[ ]
—

(=]
&

0 1 2 3 4 i‘N
(©)
Figure 10. The influence of the ratio fs /fo on the accuracy of
measuring the harmonic RMS value
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Figure 11. The results of measuring the harmonic RMS value
when fo = fs /2
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Figure 12. The results of measuring the harmonic RMS value
when fo > fs

f, =5fs =50 kHz, while random oscillations of the

sampling frequency are applied (Figure 12b). It is
obvious that in the latter case the precision error of
measurement will be greater.

Thus, the results demonstrate that the introduced
signal RMS value meter provides high accuracy within
a wide range of signal frequencies.

6. THE METER IMPLEMENTATION

It is recommended to implement the proposed signal
RMS value meter by means of the FPGA [15]. As ADC,

for example, the integrated chips AD9211 or ADC1175

can be used. If the sample sizes N =21..2" are
required to be processed, then relatively simple FPGA
Cyclone 111 (produced by Altera) or Spartan-6 families
(i.e., XC6SL25 produced by Xilinx, for example) can be
applied.

7. CONCLUSION

The digital meter of the harmonic RMS value has been
considered. It is shown that it provides the minimum
number of arithmetic operations together with the high
accuracy of direct measurement of the RMS value of
both deterministic (harmonic and non-harmonic) signals
and random processes. The precision error of
measurement decreases significantly as the processed
sample size increases. Based on the introduced meter,
the digital high-frequency AC voltmeters and ammeters
can be designed providing the readings that do not
depend on the waveform and that can be implemented
by means of field programmable gate arrays while
utilizing minimal FPGA resources.
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