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A B S T R A C T  
 

 

This paper introduces a meter of the root-mean-square value of deterministic and stochastic signals of 
an arbitrary shape that are generated over the set time interval. Such a meter involves only the 

minimum number of simple arithmetic operations to obtain results, and it ensures a high degree of 

measurement accuracy. For this purpose, the direct calculation of the signal root-mean-square value is 
applied while the measurement of the half-period average straightened signal value is carried out by 

means of the traditional measurement devices. Implementation of this meter requires neither the 

knowledge of what the signal period is, nor the synchronization with the processed sampling. 
Simulation is then carried out demonstrating the high efficiency of the proposed measurement 

algorithm. We analyze the characteristics of the meter operating within a wide frequency range of the 

measurable signals. The recommendations concerning the hardware implementation of such a meter by 
means of the field programmable gate arrays are considered. The meter can be used when designing 

digital high-frequency AC voltmeters and ammeters and it can provide the readings that do not depend 

upon the signal waveform. 

doi: 10.5829/ije.2020.33.11b.11 
 

 
1. INTRODUCTION1 
 
Measuring the root-mean-square (RMS) values of 

alternating signals (currents and voltages) is a common 

task in various areas of electronic engineering [1-4]. 

There are various ways to perform such measurement 

[5, 6] that can be divided into several groups. 

In the first group, the measuring principle is that the 

AC voltage is converted into the constant one using a 

rectifier, then the result is measured. On this basis,  

various high-precision measuring chips (RMS-to-DC 

converters) have been designed, for example, the ones 

provided by Analog Devices [7] and some other 

companies. In these devices, the half-period average 
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straightened value of a signal is measured and its 

scaling into the RMS value is carried out. A drawback 

of such devices is that their measurement results depend 

upon the waveform. Thus, for the common non-

harmonic signals, it is necessary to recalculate the 

readings using a pre-calculated coefficient (Crest factor) 

specified for a particular waveform. If the waveform is 

unknown or if it changes during the operation, then the 

results of such measurements are invalid. 

The second group of meters includes the devices 

with the direct reaction to the signal RMS value. First of 

all, these are thermal meters [5, 6] operable only when 

the input signal is powerful enough. Their drawback is 

their low accuracy. 

 

 

TECHNICAL 
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The third group belongs to the analog RMS signal 

meters (True RMS-to-DC Converters) [7, 8]. They 

operate via generating the analog voltage RMS value by 

multiplying, integrating and extracting the square root 

from the result. They allow for a relatively simple 

technical implementation, but their accuracy is not very 

high, because performance of mathematical operations 

for signal processing is only approximately correct as it 

is influenced by the changes in environmental 

parameters. 

A separate group is also formed by the digital meters 

of signal RMS values that use a digital signal processor 

(DSP) to process a particular sample of binary sampling 

codes by carrying out digital multiplication, integration 

(summation, accumulation) and square root operations 

[6]. Digital meters make it possible to apply the method 

of determining the signal RMS value by calculating its 

amplitude spectrum [7], but it presupposes significant 

computational costs for spectral analysis. 

If the signal period is known or can be measured, a 

relatively small sample size can be chosen within this 

interval. Such an approach is implemented, for example, 

in digital oscilloscopes 2. At the same time, under the 

unknown signal period, a big sample size is required 

and that leads to a larger number of summations, which 

results in increasing the computational costs and 

decreasing the measurement operating speed. In 

addition, in common devices [6], the signal sampling 

frequency should be significantly greater than the signal 

bandwidth. 

To implement the integration operation, a digital 

first-order low-pass infinite impulse response filter (IIR 

filter) is applied. However, in this case, the 

measurement accuracy depends on the measured signal 

frequency properties. This can only be acceptable in 

special cases, for example measuring either the voltage 

or the current in a power network. 

The RMS value of a signal can be obtained more 

accurately by directly processing the recorded samples 

of the input signal as provided by the standard 

calculation algorithm [9]. However, in this case, the 

problem of real-time measurement implementation 

takes place. In this paper, in order to overcome this 

difficulty, it is proposed to use the fast processing 

algorithm in the procedures described in [10, 11]. The 

mathematical substantiation of the measuring procedure 

and the block diagram of the meter suitable for its 

software and hardware implementation are presented. 

The results of measuring deterministic signals and noise 

are analyzed by means of simulation. The problems of 

choosing the signal sampling frequency and the 

hardware implementation of the meter are also 

considered. It is shown that application of the proposed 

approach allows us to design high-precision devices that 

 
2 www.rohde-schwarz.com 

can measure the signal RMS value that are invariant to 

the shape of the input signal. 

The structure of the paper includes the following 

parts. In Section II, we present algorithms for 

calculating the signal RMS value for the cases when 

signal period is either known or unknown. We analyze 

the maximum errors in estimation of both the harmonic 

RMS values and the rectangular pulse sequences with 

different pulse ratios. It is noted that the brute force 

computation of the arbitrary signal RMS value requires 

a large number of addition operations. Section III 

presents the fast algorithm for measuring the arbitrary 

signal RMS value together with the block diagram of 

the corresponding meter. Analysis for the accuracy of 

the harmonic RMS value measurement is carried out by 

means of simulation. The artificial network voltage 

measurement accuracy is also tested using the same 

method. In Section IV, an example for measuring the 

band Gaussian process RMS value is provided, and it 

supports the operability and the efficiency of the 

introduced algorithm that are demonstrated during 

processing random signals. In Section V, a technique is 

described for choosing the sampling frequency for the 

analog-to-digital converter (ADC) of the measurement. 

It is shown that the proposed meter ensures high 

accuracy measurements within a wide range of signal 

frequencies. Finally, in Section VI, the hardware 

components required for the measurement 

implementation are specified. 

 

 
2. CALCULATING THE ROOT-MEAN-SQUARE 
SIGNAL 
 

The RMS value of a periodic signal with an arbitrary 

shape (current or voltage) ( )ts  is determined by the 

expression [9, 12]: 

( )
+

=

00

0

d 
1 2

0

Tt

t

RMS tts
T

S , (1) 

where 0T  is the signal period, and 0t  is any arbitrary 

reference time of integration upon which the value of 

the integral (1) does not depend on. In order to calculate 

the value (1), it is necessary to know the signal period, 

but that is not always implementable, especially, when 

the signal frequency changes during measurements. 

For an arbitrary integration interval T, firstly, one 

defines the value 

( )
+

=

Tt

t

RMS tts
T
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0

0

d 
1 2 . (2) 

It coincides with (1) when T is a multiple of 0T  and, in 

the general case, depends upon T and 0t . The value 
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RMSS
~

 can be considered as an estimation of the signal 

RMS value and its calculation does not require the 

knowledge of 0T . 

If the harmonic signal 

( ) ( )+= tSts cos  (3) 

is processed, then, from (2), one gets 

( ) ( )TTt
T

SS RMSRMS ++


+= sin22cos
1

1
~

0
, (4) 

where 2SSRMS =  is the exact RMS value of the 

periodic signal [5]. In (3), the notations are: S is the 

amplitude, 02 T=  is the frequency, φ is the initial 

phase of the signal. As the product of trigonometric 

functions in (4) is not greater than unity in absolute 

value, the relative error of estimating (4) from the 

integral (2) is determined by the inequality 

KS

SS

RMS

RMSRMS


=

−
=

4

1
~

max
, (5) 

where  0int TTK =  is the number of signal periods 

within the integration interval, int  is an integer part. 

Figure 1 shows the dependence of max  (5) upon the 

normalized integration time 0TT . As it can be seen, 

this error is less than 0.8% under 10=K  . 

One of the most common models of inharmonic 

signals is the rectangular pulse. If, under the period 0T  

and the duration τ (pulse ratio = 0TQ ), the RMS 

value of positive rectangular pulses with the amplitude S 

is measured, then the maximum relative measurement 

error can be represented as [5], [6] 

( )
1

1

1
max −

+

+
=

KQ

KQ
. (6) 

The vakues of max  (6) with 2=Q  and 4=Q , are 

shown in Figure 2a and Figure 2b, respectively. It 

follows that, in these cases, the measurement error is 

high, but it becomes acceptable under 20100 TT . 

Thus, the RMS estimation using (2) does not require 

knowledge of the signal period and provides a 

sufficiently high accuracy when 2010K . 

If N samples are available from signal is , then the 

integral in (2) can be calculated by the method of 

rectangles  as follows [13]: 


−

=

−=
1

0

21~ N

k

kiRMS s
N

S
i

. (7) 

 

 
Figure 1. The maximum error of estimating the harmonic 

root-mean-square value 

 

 

 
(a) 

 
(b) 

Figure 2. The maximum error of estimating the root-mean-

square value of the rectangular pulse sequence with the 

different pulse ratios: a) Q = 2; b) Q = 4  

 

 

It should be noted that numerical integration methods 

[19] require the generation of 200500 =K samples 

over the signal period. Thus, when measuring the signal 

RMS value, it is necessary to take 10000 = KKN  

samples from the ADC output, and the measurement 

accuracy will increase with N. Therefore, in order to 

effectively implement the estimation using (7), a fast 

computational procedure should be used with a 

minimum number of arithmetic operations. It is 

proposed to apply such a procedure that is based on the 

general approach of fast digital signal processing 

described in [10, 11]. 

 

 
3. THE ALGORITHM FOR MEASURING THE 
SIGNAL RMS VALUE 
 

In Figure 3, the block diagram of measuring the signal 

RMS value is presented. 
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Figure 3. The block diagram of the meter of the signal RMS 

value 
 

 

The input signal ( )ts  arrives at the ADC input that 

generates the sequential samples is , where i is the 

number of the current sample, with the sampling 

frequency Sf . The samples is  are passed to the square-

law converter that can be implemented, for example, by 

means of the digital multiplier (U). In the first summator 

1SUM , the square of the sample 2
is  produced at the 

output of the square-law converter is added to the 

preceding value 2
1−is  that has been previously stored in 

the multi-bit one cell shifter 1MR . Thus, at the output 

of the summator 1SUM  the value 2
1

2
−+ ii ss  appears. In 

the summator 2SUM , this result is added to the value 

2
3

2
2 −− + ii ss  that has been stored in the multi-bit two cell 

shifter 2MR . After that, at the output of the summator 

2SUM , the sum 2
3

2
2

2
1

2
−−− +++ iiii ssss  is formed. 

Further, similar calculations are carried out and at the 

output of the last summator nSUM  one gets: 


−

=

−=
1

0

2
N

k

kii sG , (8) 

where Nn 2log=  is the number of summation stages 

and 
nN 2=  is the sample size by which the signal RMS 

value is determined. It should be noted that the 

summation algorithm presented in Figure 3 requires a 

minimum number of operations. Therefore, the 

minimum hardware resources are used for its 

implementation by means of the field programmable 

gate arrays, for example. 

The values iG  are moved to the non-linear converter 

(NC) that generates the value 
iG  at its output. The 

easiest way to calculate the square root is to use the 

storage device (SD), that is a hardware implementation. 

In this case, at the SD address input, the iG  binary code 

is received while the 
iG  binary code has been pre-

recorded in the specified SD memory cell. For example, 

if the bus-widths of address and data are the same– 

16=D , then the SD capacity is 1 Mbit, and even when 

24=D , the SD capacity of only 384 Mbit is required 

and that is technically feasible. Software 

implementation, on the other hand, requires that the 

square root should be calculated using the standard 

algorithms, i.e., the Heron formula [13] or the power 

series, for example. 

The analysis of the accuracy of the harmonic RMS 

value measurement using Equation (7) is carried out by 

means of simulation. In Figure 4a, the dependence is 

plotted for the normalized RMS value SS
iRMS

~
 upon 

the current normalized time = ti  (where Sf1=  is 

the sampling interval). It is assumed that the signal 

frequency is 1020 ==f  kHz (the signal period is 

1001 00 == fT  μs), the sampling frequency is 1=Sf  

MHz ( 1=  μs), the sample size is 4096=N , the 

number of samples within the period is 1000 =K , and 

the number of periods within the averaging interval is 

41K . At the initial stage, the shifters are filled during 

4.096 ms, and then the current measurements are 

performed, and they are, as one can see, fairly accurate. 

The right normalized result is equal to 21 , and it is 

drawn by dashed line. 

Figure 4b shows the precision errors of the 

measurements (hundredths of a percent). Their 

fluctuations are caused by sample shifting during the 

realization of the harmonic signal. 

Of particular interest is the measurement of an 

artificial network with the voltage of 220 V and the 

frequency of 50 Hz. In Figure 5, the normalized 

response of the RMS value meter is presented for the 

case when the sample size is 8192213 ==N  and the 

sampling frequency is 10=Sf  kHz (
410−=  s). 

 

 

 
(a) 

 
(b) 

Figure 4. The results of measuring the normalized harmonic 

RMS value  
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However, the shape of the artificial network voltage 

and current may often differ from the sinusoidal one. 

Figures 6 and 7 show examples of distorted normalized 

signal and the result of its measurement by the 

introduced device. In the process, 40 periods are 

averaged approximately and 100 samples are generated 

within each period. 

If the signal presented in Figure 6 is processed by a 

device that produces the half-period average voltage at 

its output while its scale is calibrated by the harmonic 

RMS values (such a measurement procedure is typical), 

then, as one can see from Figure 7, the measurement 

result is 793.0
~

=SSRMS  (dashed line) while the 

theoretical RMS value is 894.0
~

=SSRMS  (solid line 

after 0.82 s). 

The analysis of the effect of m that is ADC bit-width 

indicates that the precision error in measuring the signal 

RMS value decreases significantly as m increases from 

 

 

 
Figure 5. The results of measuring the normalized RMS value 

of an artificial network voltage 

 

 

 
Figure 6. A distorted artificial network voltage 

 

 

 
Figure 7. The results of measuring the normalized RMS value 

of a distorted artificial network voltage 

3 to 6. However, if ADC bit-width increases further 

( 8m ), its precision error decreases only slightly. A 

significantly greater effect on decreasing  the 

measurement precision error is produced by the 

increasing the sample size. 

 

 

4. MEASURING THE NOISE RMS VALUE 
 

The device presented in Figure 3 allows us to measure 

the RMS value of a random signal (noise). 

Figure 8 shows the realization of the samples is  of 

the band Gaussian random process with zero 

mathematical expectation and dispersion (mean power) 
2S . 

Figure 9a draw dependence of the measured 

normalized value SS
iRMS

~
 upon the number i of the 

processed sample, and in Figure 9b one can see the 

same dependence but for Ni  . Under 4096=N  and 

ADC bit-width 12=m , the RMS relative measurement 

 

 

 
Figure 8. The realization of the centered band Gaussian 

random process 

 

 

 

(a) 

 

(b) 

Figure 9. The results of measuring the normalized RMS value 

of the band Gaussian random process  
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error is equal to 1.4%. And if 1024=N , then it 

increases up to 2.4%, while if 65536=N , then it 

decreases down to 0.44%. 

It can be noted that in order to determine the mean 

value and the dispersion of a random process [1], the 

fast-operation meter introduced in [14] can be used. 

 

 

5. CHOOSING THE SAMPLING FREQUENCY 
 

One should choose the sampling frequency Sf  

(sampling interval Δ) from the range ( ) 020050 ffS =  

depending on the signal frequency 0f . If the signal 

frequency varies within a wide limit, then it can be 

chosen so that, at the minimum frequency 0f , a 

sufficiently large number of samples N occupies several 

periods min0max0 1 fT = . This corresponds to the 

condition ( )53min0max0 ==TfTT . As 

SfNNT == , for the sampling frequency one gets: 

( )53min0 NfTNfS == . (9) 

For example, if 50min0 =f  Hz and 1024210 ==N , 

then, by applying (9), one can get 10=Sf  kHz while 

with N increasing to 65536216 =  one gets 655=Sf  

kHz. 

If, according to the rules of numerical integration 

[19], it is assumed that at least 20 samples are required 

to be generated within the signal period, then, for the 

maximum signal frequency, one would get the relation 

20max0 Sff = . (10) 

For example, if 655=Sf  kHz and 
162=N , then one 

gets 50min0 =f  Hz and 32max0 =f  kHz. When 

implementing the meter, estimation of the signal 

frequency can be automatically generated and, in 

accordance with it, the desired sampling frequency can 

be chosen. 

It should be noted that the measurement accuracy of 

the algorithm presented in Figure 3 significantly 

decreases, if the ratio 0ffS  lies in the ( )12.0   % 

vicinity of the values 2n , ,2,1=n . Figure 10 shows 

the results of simulating the meter operation when 

measuring the RMS value of the harmonic signals with 

the amplitude of 5 V and the different frequencies 

max0f . It is assumed that 4096=N , 10=Sf  kHz and 

the ADC is applied with the spread of 5  V and the bit-

width 8=m , while the sampling frequency differs for 

different signal frequencies. If the signal frequency is 

520 == Sff  kHz and the initial phase φ in (3) is 

equal to 2  (the samples at the ADC output 

correspond to zero signal values), then the measured 

value of 
iRMSS

~
 is equal to zero. From Figures 10b, 10c, 

it follows that the precision error of measurement 

dramatically increases in ( ) 1020 = Sff  Hz vicinity. 

In order to eliminate this effect, 1% random 

fluctuations can be introduced into the sampling 

frequency, for example. 

In Figures 11, one can see the results of simulating 

the meter operation under the signal frequency 

520 == Sff  kHz and when the random Gaussian 

oscillations of the sampling frequency of 10=Sf  kHz 

are introduced with a standard deviation of 1 Hz. 

From Figure 11, it follows that the measurement 

results become acceptable, and the precision error of 

measurement can be reduced as N increases. 

The measurements of the signal RMS value can be 

carried out with a high accuracy at the signal 

frequencies that are much higher than the sampling 

frequency: Sff 0 . Thus, one sample takes place 

during several signal periods. Figure 12 shows the 

dependences similar to those drawn in Figure 11, if 

10=Sf  kHz and 530 =f  kHz (Figure 12a) or 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 10. The influence of the ratio fS /f0 on the accuracy of 

measuring the harmonic RMS value  
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(a) 

 
(b) 

Figure 11. The results of measuring the harmonic RMS value 

when f0 = fS /2 

 

 

 
(a) 

 
(b) 

Figure 12. The results of measuring the harmonic RMS value 

when f0 > fS 

 

 

5050 == Sff  kHz, while random oscillations of the 

sampling frequency are applied (Figure 12b). It is 

obvious that in the latter case the precision error of 

measurement will be greater. 

Thus, the results demonstrate that the introduced 

signal RMS value meter provides high accuracy within 

a wide range of signal frequencies. 

 

 

6. THE METER IMPLEMENTATION 
 

It is recommended to implement the proposed signal  

RMS value meter by means of the FPGA [15]. As ADC, 

for example, the integrated chips AD9211 or ADC1175 

can be used. If the sample sizes 1410 22 =N  are 

required to be processed, then relatively simple FPGA 

Cyclone III (produced by Altera) or Spartan-6  families 

(i.e., XC6SL25 produced by Xilinx, for example) can be 

applied. 

 

 

7. CONCLUSION 
 

The digital meter of the harmonic RMS value has been 

considered. It is shown that it provides the minimum 

number of arithmetic operations together with the high 

accuracy of direct measurement of the RMS value of 

both deterministic (harmonic and non-harmonic) signals 

and random processes. The precision error of 

measurement decreases significantly as the processed 

sample size increases. Based on the introduced meter, 

the digital high-frequency AC voltmeters and ammeters 

can be designed providing the readings that do not 

depend on the waveform and that can be implemented 

by means of field programmable gate arrays while 

utilizing minimal FPGA resources. 

 

 
8. ACKNOWLEDGEMENT 
 

This work was financially supported by the Ministry of 

Education and Science of the Russian Federation 

(research project No. FSWF-2020-0022).  

 

 
9. REFERENCES 

 

1. Maleki, M.R., Ghashghaei, R. and Amiri, A., "Simultaneous 

monitoring of multivariate process mean and variability in the 

presence of measurement error with linearly increasing variance 
under additive covariate model (research note)", International 

Journal of Engineering, Transactions A: Basics, Vol. 29, No. 

4, (2016), 471-480, doi: 10.5829/idosi.ije.2016.29.04a.10. 

2. Goudarzian, A. and Khosravi, A., "Voltage regulation of a 

negative output luo converter using a pd-pi type sliding mode 

current controller", International Journal of Engineering, 

Transactions B: Applications, Vol. 32, No. 2, (2019), 184-191, 

doi: 10.5829/ije.2019.32.02b.13. 

3. Gupta, P. and Pandey, R., "Voltage differencing buffered 

amplifier based voltage mode four quadrant analog multiplier 

and its applications", International Journal of Engineering, 

Transactions A: Basics, Vol. 32, No. 4, (2019), 528-535, doi: 

10.5829/ije.2019.32.04a.10. 

4. Aghabagheri, R., Miar-Naimi, H. and Javadi, M., "A phase noise 

reduction technique in lc cross-coupled oscillators with adjusting 
transistors operating regions", International Journal of 

Engineering, Transactions A: Basics, Vol. 33, No. 4, (2020), 

560-566, doi: 10.5829/IJE.2020.33.04A.07. 

5. Mazda, F.F., "Electronic instruments and measurement 

techniques, Cambridge University Press,  (1987). 

6. Webster, J.G., "Electrical measurement, signal processing, and 

displays, CRC Press,  (2003). 



2208                             O. V. Chernoyarov et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 11, (November 2020)   2201-2208 

 

7. AD, L.C., Low power, true rms-to-dc converter, analog devices. 

2016. 

8. Taha, S.M. And Abdul-Karim, M.A., "Direct digital rms 

measuring device", International Journal of Electronics 

Theoretical and Experimental,  Vol. 59, No. 2, (1985), 199-

210. doi: 10.1080/00207218508920693 

9. Northrop, R.B., "Introduction to instrumentation and 

measurements, CRC press,  (2005). 

10. Chernoyarov, O., Faulgaber, A., Salnikova, A., Glushkov, A. 

and Litvinenko, V., "The hardware implementation of the multi-
position signal digital demodulators", in 31st European 

Modeling and Simulation Symposium, EMSS 2019. Vol., No., 

(Year), 54-58. 

11. Chernoyarov, O.V., Golpaiegani, L.A., Glushkov, A.N., 

Lintvinenko, V. and Matveev, B.V., "Digital binary phase-shift 

keyed signal detector", International Journal of Engineering, 
Transactions A: Basics, Vol. 32, No. 4, (2019), 510-518, doi: 

10.5829/ije.2019.32.04a.08. 

12. Bird, J., "Engineering mathematics, Routledge,  (2003). 

13. Korn, G.A. and Korn, T.M., "Mathematical handbook for 

scientists and engineers: Definitions, theorems, and formulas for 

reference and review, Courier Corporation,  (2000). 

14. Salnikova, A.V., Litvinenko, V.P., Matveev, B.V., Glushkov, 

A.N., Litvinenko, Y.V. and Makarov, A.A., "The fast digital 

algorithm for measuring the parameters of the random 
processes", in 2019 International Seminar on Electron Devices 

Design and Production (SED), IEEE. (2019), 1-5. 

15. Maxfield, C., "The design warrior's guide to fpgas: Devices, 

tools and flows, Elsevier,  (2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Persian Abstract 

تعیین شده تولید می شوند ، معرفی می شود. برای    در این مقاله یک مترینگ از مقدار میانگین مربع ریشه سیگنال های قطعی و تصادفی یک شکل دلخواه که در بازه زمانی

را تضمین می کند. برای این منظور ، محاسبه مستقیم  دستیابی به نتیجه چنین سنجی فقط شامل حداقل تعداد عملیات ساده محاسباتی است و درجه بالایی از دقت اندازه گیری

اندازه گیری سنتی انجام می شود. مقدار میانگین مربع ریشه سیگنال اعمال می شود در حالی که اندازه گیری میانگین سیگنال صاف شده نیمه دوره با استفاده از دستگاه های  

ن کارایی بالای الگوریتم اندازه گیری  ازی با نمونه گیری پردازش شده احتیاج دارد. سپس شبیه سازی برای نشان داداجرای این کنتور نه به دانش دوره سیگنال و نه همگام س

اجرای سخت افزاری چنین    پیشنهادی انجام می شود. ما مشخصات متر را در محدوده فرکانسی وسیعی از سیگنالهای قابل اندازه گیری کار می کنیم. توصیه های مربوط به

با فرکانس بالا استفاده کرد و   ACه شده است. از متر می توان هنگام طراحی ولت متر و آمپرمتر  ور با استفاده از آرایه های دروازه قابل برنامه ریزی میدانی در نظر گرفتکنت

 تواند قرائت هایی را که به شکل موج سیگنال بستگی ندارند فراهم کند.می
 


