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A B S T R A C T  
 

This paper analyzes the effects of structures and loads on the static bending and free vibration 

problems of bilayer beams. Based on static mechanical equilibrium and energy equilibrium, the static 

and dynamic governing equations of bilayer beam are established. It is found that the value of the 
thickness ratio has a significant effect on the static and dynamic responses of the beam, and the 

structure factors have their own critical value. When the value of the relative thickness is lower than its 

critical value or the length thickness ratio is greater than its critical value, the static and dynamic 
responses of the beam increase obviously. The results reveal that a critical value exists in bilayer beam, 

the value has noticeable influence on the mechanical properties of bilayer beams. Therefore, 

investigators should predict the critical structures accurately, when they design the bilayer beam. 

 
doi: 10.5829/ije.2020.33.08b.25 

 
 

NOMENCLATURE 

M Bending moment (N·mm) w(x,t) Amplitude (mm) 

Fs Shear force (N) La Lagrange’s function 

q Uniformly distributed load (N/mm) k The stiffness of an elastic foundation 

L Beam length (mm) ui Displacement vector 

h Thickness (mm) m=E1/E2 Ratio of elasticity modulus 

b Width (mm) Greek Symbols  

w Deflection (mm) σ Stress tensor 

E Material elastic modulus (GPa) ε Strain tensor 

I Second moment of cross-sectional area (mm4) ω Natural frequency (Hz) 

d Distance from the neutral layer to the bottom layer ξ Relative thickness 

A Cross-sectional area of the beam (mm2)   Poisson's ratio 

U Strain energy (J)   Density (kg/m3) 

V Work done by the external forces (J) Subscripts  

T Kinetic energy(J) e
 

Bilayer beam 

 
1. INTRODUCTION1 
 

Beams are one of the major structures used widely in 

mechanical systems, such as energy harvesters [1], 

sensors [2] and the construction industry [3]. 

 

*Corresponding Author Institutional Email: zzj512682701@126.com 
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Haghpanah [4] and Laminou [5] found that the structure 

size and load would have a significant impact on the 

mechanical properties of the mechanical systems. Hence, 

a lot of work has been undertaken to explore the 

mechanical properties of beams. 
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Scarpa [6] and Damanpack [7] analyzed the elastic 

mechanical properties of a single layer beam model. 

However, with the research continuing in-depth, many 

researchers have found that the power output of 

mechanical systems applied to composite beam 

structures are higher than that on monolayer beam 

structures. Kok et al. [8] found that the multilayer 

piezoelectric cantilever beam has a higher power output 

efficiency than monolayer. Chun et al. [9] observed that 

increasing the number of actuator piezoelectric layer can 

improve the actuator power output effectively. 

To predicate the beams mechanical properties 

accurately, some researchers use the business software 

[10-11]. For example, Al-Qasem et al. [12] calculated 

the shear stress in a cantilever beam by ANSYS 

software. However, theoretical basis is lacked in this 

approach. Therefore, many researchers used a 

mathematical calculation which are based on 

mechanical theory to study the mechanical properties of 

beams. For example, Lotfavar [13] and Alashti [14] 

applied Hamilton’s variational principle to establish the 

governing equations of monolayer beams. Torabi et al. 

[15] investigated free vibration of a beam in variational 

iteration method which is based on mechanical theory. 

JafarSadeghi-Pournaki [16] analyed static deflection 

problem of beams by Galerkin. 

Physical properties of the materials in each layer in 

the multilayer beam vary. Therefore, to calculate the 

location of neutral axis of the multilayer beam, an 

alternative two-variable method has been used to solve 

the bending problem of bilayer beam subjected to 

external moments and internal stresses by Zhang et al. 

[17]. Rastegarian and Sharifi [18] studied inter-story 

drifts in conventional RC multilayer moment frames. 

Based on the elastic equivalent relationship, T-J. 

Subsequently, Zhang et al. [19] analyzed the elastic 

bending deformation of bilayer beams by alternative 

two variable methods. Hsueh et al. [20] presented a new 

analytical model to obtain the mechanical properties of 

the multilayer beams. They also studied the multilayer 

problems of stress distribution [21] and elastic thermal 

stresses in two dissimilar materials [22]. Although, they 

have taken a lot of work on the mechanical properties of 

the multilayer beams, but most cases they neglected the 

effect of the structures on the mechanical properties of 

the multilayer beams. 

In summary, based on the classical elastic theory, 

the object of this research is to find out the effects of 

structures and loads on the static bending and free 

vibration problems of bilayer beams. 

The structure of the article is arranged as following; 

Based on the bilayer Euler-Bernoulli beams elasticity 

mechanical theory model including static governing 

equations and dynamic governing equations are 

established in section 2. In Section 3, the effect of loads 

and structures on the static and dynamic response of the 

beam are assessed. Finally, conclusion of this paper 

appears in Section 4. 

 

 

2. GOVERNING EQUATION 
 
The two-dimensional schematic diagram of a Euler-

Bernoulli beam is shown in Figure 1. The hypothesis of 

Euler–Bernoulli beam ignores the effect of the 

centroidal axis rotation angle of the beam. The 

displacement field is written as: 

( )
, 0, ( )x y z

dw x
u z u u w x

dx
= = =

 

(1) 

where ux, uy, uz are the displacement vector, and w(x) the 

deflection of the beam. 

The beam strain Equation (2) and stress Equation (3). 

( )2
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x
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du d w x
z
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( )2
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(3) 

The relation between bending moment, shear force and 

displacement is shown as Equation (4). 
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(4) 

 
2. 1. Static Theoretical Model       The location 

of the neutral axis can be calculated by Equation (5) 

[23], d represents the distance from the neutral layer to 

the bottom layer. 

2(1 )
= 1

1 2

hme e
d

me

+
+

+

 
    

(5) 

where m=E1/E2, e=h1/h2, E1 and E2 represent the 

material elastic moduli of layers no.1 and 2, h1 and h2 

represent the thickness of layers no. 1 and 2. Equation 

(6)   is  the  equivalent  unit  length  mass  equation  of  the 

 

 

 
Figure 1. Schematic diagram of Euler-Bernoulli beam 
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bilayer beam. Equation (7) is the equivalent bending 

stiffness equation of the bilayer beam. 

1 1 2 2( )eA A A  = +
 

(6) 

2

1
1 1 2 2 1 1 2

2

2
2 2

( )
2

2

e

h
EI E I E I E A h d

h
E A d

= + + + −

+ −

 
 
 

 
 
   

(7) 

where A is the cross-sectional area of the beam and I is 

the second moment of cross-sectional area. 

Inserting Equations (6) and (7) into Equation (4), 

yields the bilayer beam static governing equation. 

4

4

( )
( ) ( ) ( )e

d w x
EI q x kw x

dx
= − −

 

(8) 

Solving Equation (8) then gives: 

1 2( ) cos( ) cosh( ) sin( ) sinh( )

cos( )sinh( ) sin( )cosh( )3 4

w x C x x C x x
q

C x x C x x
k

   

   

= +

+ + −
 

(9) 

where 

( )

1/4

4
e

k

EI


 
 =
 
   

(10) 

As shown in Figure 2, the characterized of a 

cantilever beam is that one end is clamped, the other 

end is free. The boundary conditions are shown in 

Equation (11). 

2 3

2 3

(0) ( ) ( )
(0) 0, 0, 0, 0

dw d w L d w L
w

dx dx dx
= = = =

 

(11) 

Substituting Equation (9) into Equation (11), then the 

value of C1, C2, C3, and C4 can be obtained. 

 
2. 2. Dynamic Theoretical Model       Energy 

equilibrium is applied to solve the dynamic problem in 

this paper. The strain energy U is given by: 

U =
1

2
∫ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉V

(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧)  (12) 

Inserting Equations (2) and (3) into Equation (12), 

yields the bilayer beam strain energy U: 

 

 

 
Figure 2. Cantilever beam in static distributed load 
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(13) 

The work done by the external forces V as shown in 

Figure 1, reads: 

0
( , ) ( , )

L

q x t w x t dx= −V
 

(14) 

And the kinetic energy T can be written as: 

2

0

1 ( , )
( ) ( )

2

L w x t
x A x dx

t



=



 
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(15) 

By means of Hamiltonian principle, the dynamic 

governing equation can be determined. 

( ) 2

1

0
t

t
dt − − = T V U

 
(16) 

Substituting Equations (13), (14) and (15) into Equation 

(16), then leads to: 
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Lagrange’s function: 

2 2
2 2
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Through the calculation, Equation (17) can be written as: 
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where 

( ) ( )
3 4 2

3 4

3 4 2
, , ,

w w w w
w w w w

x x x t

   
 = = = =
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(20) 

According to Equation (19), without any external force, 

q(x,t)=0, the dynamic governing equation of the bilayer 

beam will transform as the free vibration Equation (32): 

2 4

2 4

( , ) ( , )
( ) ( ) 0e e

w x t w x t
A EI

t x


 
+ =

   

(21) 

where w(x,t) is a function of the coordinate x and time t, 

and the variable separation approach can be added to 

solve Equation (21). 
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( , ) ( ) ( )w x t W x H t= •  (22) 

Inserting Equation (22) into Equation (21), yields: 

4 2

4 2

( ) ( )

( )

( ) ( ) ( )

e

e

d W x d H t

EI dx dt

A W x H t
− • =

 

(23) 

where the function variables on both sides of the equal 

sign is different. Equation (23) can be set up only when 

both equations are equal to a constant. Suppose the 

constant equals to -ω2, the ordinary differential equation 

of W(x) can be given as: 

4
2

4

( )
( ) ( ) ( ) 0e e

d W x
EI A W x

dx
 − =

 

(24) 

Solving Equation (24) then gives amplitude equation: 
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Then yields the natural frequency ω: 

( )
( )
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2

4
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e

e
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L

A L
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The schematic diagram of the cantilever beam in free 

vibration is shown as Figure 3. Substituting amplitude 

Equation (25) into the boundary condition of cantilever 

beam Equation (11), then leads to: 

cos( ) cosh( ) 1i iL L  = −
 

(28) 

 

2. 3. Analytical Flowchart       Calculation 

program for static and dynamic responses is 

accomplished using MATLAB. The analytical flowchart 

is shown in Figure. 4. 
 

 

3. RESULTS AND DISCUSSIONS 
 
To illustrate the static and dynamic responses of bilayer 

beam,   the  PZT  film / Si  substrate  bilayer  system   is 
 

 

 
Figure 3. Schematic diagram of the cantilever beam in free 

vibration 

considered as an example. In this case, the material 

constants are: elastic modulus of layer no. 1, 

E1=101GPa, elastic modulus of layer no. 2, 

E2=168.9GPa, ρ1=7.5×103kg/m3, ρ2=2.331×103kg/m3 

[24]. The width is set as b=4h and the length is set as 

L=200h. h represents total thickness of the beam 

h=h1+h2=0.5×10-3m. The ratio of the thicknesses h1/h2 is 

set to 1/9. 

 

3. 1. Static Responses of Bilayer Beams      
Effect on the deflection with respect to different loads 

for a cantilever beam is shown as Figure 5. Under the 

material and structure dimension remain constant, the 

static deflection of the cantilever beam increases as the 

static distributed load increase. The maximum 

deflection of the cantilever beam is appeared at the free 

end of the beam (at x=L). In the process of the 

distributed load increases from 10N/m  to  50N/m, the  

 

 

 
Figure 4. Analytical flowchart of the bilayer beam 

 

 

 
Figure 5. Deflection of the cantilever bilayer beam based on 

four different distributed load 
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beam maximum deflection increases from 0.01mm to 

0.09mm. 

The thickness ratio is an important factor. With the 

distributed load q(x)=20N/m, the effect of the thickness 

ratio on cantilever beam deflection at x=L is analyzed. 

From Figure 6, it is found that the cantilever deflection 

decreases as the increases of the upper layer h1 thickness 

proportion with the total thickness remain constant. 

When the ratio of h1/h2 increases from 1 to 8, absolute 

value of deflection of the cantilever rapidly decreases 

from 0.053mm to 0.046mm. However, when the 

thickness ratio increases from 8 to 30, the absolute value 

of deflection increases only 0.002mm. It is observed 

that when the thickness ratio of the bilayer cantilever 

beam exceeds 8, the effect of the thickness ratio on 

beam deflection can be ignored. 

 

3. 2. Dynamic Responses of Bilayer Beams         
The influence of the relative thickness on natural 

frequency of the cantilever beam, ω, in free vibration is 

shown in Figure 7. The dimensionless relative thickness  
 
 

 
Figure 6. Effect of thickness ratio on cantilever bilayer beam 

deflection 
 
 

 
Figure 7. Effect of relative thickness on natural frequency of 

the cantilever bilayer beam 

equation is shown as Equation (43). With the total 

thickness remains constant, when the value of the 

relative thickness is larger than 4 (the value of the 

thickness of layer no. 1 is 17 times greater than the 

value of layer no. 1), the natural frequency of the bilayer 

beam is approximately equal to that of the single layer 

no. 2 beam 744.86 Hz. When the value of the relative 

thickness is less than -4 (the value of the thickness of 

layer no. 2 beam is 1/17 times less than the value of 

layer no. 1), the natural frequency of the bilayer beam is 

approximately equal to that of the single layer no. 1 

beam 1734.4Hz. 

( )1 2

1 2

h h

h h


−

=  (43) 

 
 
4. CONCLUSIONS 
 

This paper analyzes the static and dynamic problems of 

the Euler-Bernoulli bilayer beams on the basis of 

elasticity theory. The static and dynamic governing 

equations of bilayer beam are established by static 

mechanical equilibrium and energy equilibrium. It is 

found that the loads and beam structure have a 

significant effect on the static and dynamic responses of 

the bilayer beam. Under the static loads, the deflection 

increases with the increase of the static load. The 

thickness ratio and the length thickness ratio of the 

bilayer beam have their own critical values. When the 

thickness ratio is less than its critical value or value of 

the length thickness ratio is higher than its critical value, 

the static deflection of bilayer beam will change 

significantly. Under the free vibration, with the increase 

of the relative thickness, the natural frequency of bilayer 

beam is gradually transferred from the single layer beam 

of one material to the single layer beam of another 

material. When the relative thickness exceeds its critical 

value, the natural frequency of the bilayer beam is 

approximately equal to that of the single beam. 
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Persian Abstract 

 چکیده 
ستاتیکی( و تعادل انرژی، معادلات  در این مقاله اثر ساختارها و بارها بر روی خیز استاتیکی و مشکلات لرزش آزاد تیرهای دولایه بررسی شده است. براساس تعادل مکانیکی )ا

داری در واکنش استاتیکی و دینامیکی تیر دارد و عوامل سازه دارای  مت تأثیر معنیاشوند. مشخص شده است که مقدار نسبت ضخحاکم استاتیکی و دینامیکی تیر دولایه برقرار می

تر از مقدار بحرانی آن است، یا نسبت ضخامت به طول از مقدار بحرانی آن بیشتر است، پاسخ های استاتیکی و اهمیت بحرانی خود هستند. هنگامی که مقدار ضخامت نسبی پایین 

گران در هنگام گیری بر خصوصیات مکانیکی تیرهای دولایه دارد. بنابراین، پژوهشدهد که این مقدارهای بحرانی تأثیر چشمیابد. نتایج نشان می یش می ادینامیکی تیر به وضوح افز

 بینی کنند.طراحی تیر دولایه باید ساختارهای بحرانی را به دقت پیش
 
 


