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Investigating the behavior of the box-shaped column panel zone has been one of the major concerns of
scientists in the field. In the American Institute of Steel Construction the shear capacity of I-shaped
cross- sections with low column thickness is calculated. This paper determines the shear capacity of
panel zone in steel columns with box-shaped cross-sections by using artificial neural network (ANN)
and genetic algorithm (GA). It also compares ABAQUS finite element software outputs and AISC
relations. Therefore, neural networks were trained using parametric information obtained from 510
connection models in ABAQUS software. The results show that the predicted shear capacity of the NN
and the GA in comparison with the AISC relations use a wide range of all effective parameters in the
calculation of the shear capacity of panel zone. Therefore, the use of artificial intelligence can be a good
choice. Finally, the GA, along with optimization of a mathematical relation, has been able to minimize
the error in determining the shear capacity of panel zones of steel-based columns, even at high column

thicknesses.
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1. INTRODUCTION

In recent decades, connections have been one of the most
important concerns of scientists in the field. The major
differences of recent approaches are paying more
attention to the beam-to-column load transfer path and
ensuring that this load transfer path is safe to the extent
of the lateral load system behavior. Therefore, this study
focuses on research and predicts the shear capacity of
panel zones in steel boxes using NN method. Seismic
behavior of panel zones has been the focus of numerous
researchers for a long time. Research has begun in the
late 1960s and early 1970s. In the last four decades,
significant changes have been observed in the seismic
design criteria of panel zones. Over the years, there have
been many changes to panel zone by laws and guidelines.
The 2002 AISC seismic criterion stated that the shear
resistance required by panel zone must be determined by
testing. In other words, it does not provide a quantitative
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relationship. However, as a minimum, the shear
resistance required of panel zone must be determined
from the sum of bending moments in the column
resulting from the formation of expected bending
moments at the points of formation of plastic hinge [1].
The 2010 AISC Seismic Code is the latest and the most
up-to-date version of the seismic design criteria for steel
structures. In the section on panel zones sections of the
special bending reinforced frames, no changes were
considered compared to the 2002 AISC criteria [2].
Mansouri et al. [3] proved that the AISC relations
overestimate in I-shaped columns with relatively thick
flanges. What seems to be necessary is that the shear
capacity of panel zone depends primarily on the various
geometrical parameters of the coupling components and,
secondly, the AISC relations have acceptable errors for
I-shaped cross-sections with low thicknesses. However,
these errors became more pronounced at higher
thicknesses and box-shaped cross-sections [3]. Today,
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NNs are used in almost all engineering sciences. NNs,
also known as ANNs, are one of the learning algorithms
in "machine learning" that are based on the biological
concept of NNs. ANNs are the building blocks or
neurons, very  simple  computing devices.
Communication between neurons determines network
function. The purpose of ANN training is to determine
the appropriate relationship for solving different
problems [4]. Many researchers have used ANN to study
structures, for instance Hartman et al. [5] have
investigated the use of ANN in assessing different levels
of structures safety. Elhewy et al. [6] have investigated
the ability of NNs to predict the failure of structures.

Optimization techniques include the recently
developed random search methods. Among the new
optimization techniques used today to solve many
different problems are GA (GA), Simulated Annealing
(SA), Ant Colony and more. Regardless of the type of
calculation, these methods can be applied at different
levels of engineering. In these methods, simple
algorithms are used for complex calculations [7]. Jenkins'
research [8] is one of the first studies in optimizing
structures. Adeli [9] also explored the use of NNs to
improve the responses of GAs to optimization problems.
Sahoo and Maity [10] used a combination of NN and GA
to predict structural damage .

Khalkhali et al [11] proved that neural networks are
useful tools to predict the buckling capacity of vertically
stiffened cylindrical shells.

Mallela et al [12] dealt with the development of an
analytical and computationally efficient analysis tool
using artificial neural networks (ANN) for predicting the
buckling load of laminated composite stiffened panels
subjected to in-plane shear loading. The results show that
the trained neural network can predict the shear buckling
load of laminated composite stiffened panels accurately
and will be very useful in optimization applications [12].

Abmbres et al. [13] proposed an artificial neural
network (ANN)-based formula to come up with estimates
of the shear capacity of one-way reinforced concrete
slabs under a concentrated load. A step-by-step
assessment scheme for reinforced concrete slab bridges
by means of the ANN-based model is also proposed,
which results in an improvement of the current
assessment procedures [13].

Hoang [14] relied on a piecewise multiple linear
regression (PMLR) and artificial neural network (ANN)
approaches to construct a prediction model that can
approximate the mapping function between the punching
shear capacity of SFRC flat slabs and its influencing
factors. The algorithms of gradient descent and
Levenberg-Marquardt backpropagation were employed
to train the ANN based prediction models. Experimental
results showed that SPMLR can deliver prediction
outcome which was better than those of ANN as well as
empirical design equations [14].

Jang et al. [15] reported the magnitudes of fiber optic
sensor signals were used for estimating the distances
between each sensor and impact location. Then, through
the neural network training, the accuracy of estimating
the distances from the signal magnitudes could be
enhanced. Triangulation method showed the acceptable
localization results about the non-trained impact points
[15].

Hedayat et al. [16] were aimed to propose an
integrated formula developed based on artificial neural
network to predict the minimum resistance requirement
of steel moment frames at any performance level and
desired level of probabilistic response. In addition to the
simple form of the proposed model, results generally
indicated that this model was more accurate than the
other available models [16].

In recent decades, due to the widespread use of these
cross-sections in  moment-resisting frame systems,
investigating the behavior of the box-shaped column
panel zone has been one of the major concerns of
scientists in the field. As a rectangular area of column
web, panel zone is enclosed between continuity plates
and column flanges and plays an important role in the
bonding behavior. The shear capacity of this region
depends on various parameters, such as the geometrical
dimensions of the beam cross-section, the geometrical
dimensions of the column cross-section and the thickness
of continuity plates. In the American Institute of Steel
Construction (AISC), based on these parameters, the
shear capacity of I-shaped cross-sections with low
column thickness is calculated. However, no separate
relations have been provided to determine the shear
capacity of panel zone in metal columns with box-shaped
cross-sections. The error of the AISC relations is
particularly evident at high thicknesses. This paper
determines the shear capacity of panel zone in metal
columns with box-shaped cross-sections with artificial
neural network (ANN) and genetic algorithm (GA). It
also compares ABAQUS finite element software outputs
and AISC relations. The parameters used to determine
this shear capacity are height, flange thickness, beam and
column thickness, thickness of continuity plates and axial
force of the column.

In this study, an ANN and GA are designed to
calculate the shear capacity of panel zone-loaded steel
columns for the purpose of a separate relationship and
reducing the errors mentioned in the AISC. To achieve
this goal, first, an extensive parametric study is
performed on the parameters affecting the performance
of the connection source by ABAQUS software. These
parameters include column flange thickness, column web
thickness, beam flange thickness, column width, height
of beam and thickness of continuity plates. Then, an
ANN is designed and trained based on ABAQUS
software outputs. This network is examined to predict the
shear capacity of square columns or boxes with low to
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high thickness ranges. The results are compared with the
ABAQUS output and the AISC. Then, using the GA, an
optimal function is determined to predict and calculate
the shear capacity of the bending steel columns. After
that, the performance of artificial intelligence in relation
to the AISC relations is investigated in terms of shear
capacity of the box-shaped columns with different
column thicknesses.

2. CALCULATING THE SHEAR CAPACITY OF PANEL
ZONE

2. 1. Calculating the Shear Capacity of Panel Zones
in American Institute of Steel Construction (AISC)
The AISC Relations, based on the Crawinker Relations,
yielded an acceptable result for relatively thin columns.
However, for high column flange thicknesses, these
relations need to be modified. It is important to note that
the difference in shear capacity of panel zone is due to
the high thickness and shape of the cross-section, so that
the column with the box-shaped cross-section is not
specified in the AISC as separate relation [17]. In recent
AISC seismic design standards based on the LRFD
design, the design resistance of panel zones is classified
as follows, with or without the deformation of panel
zones depending on the axial force applied to the column
[2]:

A) When the deformation effect of panel zones is not
considered in the frame, Rn is the capacity of panel zones
as follows:

Ry, = 0.6F,.d,.t, P < 0.4P. 1)

Ry = 0.6F,.d,.t,, (1.4 —i—z P. > 0.4P, @)
B) When considering the deformation effect of panel
zone in the frame, the capacity of panel zone is as
follows:

In Equations (1) to (4), the first part deals with the
yield point and the second part concerns the final
capacity of panel zone. In the above equations, Fy is the
yield stress of column cross-section, dc is column cross
depth, tw is column web thickness, ber is column flange
width, t¢r is column flange thickness, dy is column depth,
Py is column design resistance and Pc is column axial
yield resistance.

It can be stated that the AISC uses five physical
parameters of panel zone to calculate the shear capacity.
These parameters are: 1) Depth of column, 2) Thickness
of column, 3) Width of column, 4) Thickness of column,
5) Depth of beam.

Figure 1 shows the calculated values of Vpz, shear
capacity based on the AISC relations for 510 specimens.
Vpz is the shear capacity of panel zone named Ry in the
AISC.

2000

8000

0 100 200 300 400 500 600
Num. Model

Figure 1. Shear capacity based on the AISC relations for 510
samples

2. 2. Finite Elements Modeling

2. 2. 1. Modeling Verification In this part, in
order to ensure the accuracy of the numerical results of
the performed analysis, a steel beam to column
connection performed by Stojadinovi¢ et al. [18] is
modeled in ABAQUS. In the following, the mentioned
model is analyzed and the results of this analysis are
compared to laboratory results [18].

2. 2. 2. Geometrical Properties and Materials of
the Laboratory Specimens The laboratory
specimen was built from a column with the W14 x 120
section; and for the beam, a W24 x 68 section was used.
The model geometry and loading details are shown in
Figure 2. The used materials in this experiment are steel
plates for the stiffeners, beams, and columns with the
yield resistance of 358 MPa and ultimate tensile
resistance of 475 MPa as shown in Table 1.

3beptes?

Ry = 0.6 Fy.de.t,, (1 + 20—

) P.<0.75P. (3)

Ry = 0.6F,.dc. t,, (1 +—LL)(1.9
) pdetw P.>075P, (4)

1.2P,
PC

2. 2. 3. Meshing In order to model the beam,
column and the stiffener plates, the shell and solid
elements were used. Also, the modeled geometry was
partitioned for regular meshing with the partitioning
command.

2.2.4.Boundary Condition and Loading The
boundary condition of the laboratory specimen requires
that the displacement of all the nodes in the above and
below the column were tightly restrained. Also, for the
out-of-plane buckling, the beam was restrained. All the
boundary and support conditions are applied in
modeling. The loading was in the form of displacement
application to the beam end with the amount of 195 mm.
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Figure 2. Specimen geometry specifications

TABLE 1. The specifications of the materials used in the
experiment

Young's Poisson's Ultimate Tensile Yield

modulus Ratio Resistance Resistance Material
(GPa) (MPa) (MPa)

210 0.3 475 358 Steel

2. 2. 5. The Results of the Load-Displacement
Analysis The answers of load-final displacement
resulted from the analysis results for the numerical
sample with the answers of the load-displacement of the
laboratory specimen are illustrated in Figure 3. As it can
be observed in this figure, the load-displacement curves
are almost coincident. In fact, from the beginning, the
aim of the sample calibration was to accommodate the
load-displacement curve of the numerical model with the
laboratory sample.

2. 2. 6. Parametric Studies with ABAQUS Software
and Calculation of Shear Capacity of Panel Zones
ABAQUS software version 2017 was used for parametric
modeling and calculation of shear capacity of panel zone.
In this part of the research, the details of modeling using
finite element method are presented. In this section, the
model made in the previous section is used for modeling,
with the exception of the box-shaped column instead of
the H-shaped column. In the models, it is assumed that
the steel beam-column connections are rigid and welded.
Variable parameters are used in modeling 510 models,
namely change in beam flange thickness, beam web,
continuity plate, column web thickness and column
flange thickness. The boundary conditions are similar to
the model boundary conditions made in the previous
section. Four thicknesses of 8, 10, 15 and 20 mm were

used for the beam flange, beam web and continuity plate
thickness parameters. In addition, 6 thicknesses of 8, 10,
15, 20, 30 and 40 mm were used for column web and
column flange thickness (Table 2).

The beam and column dimensions used in parametric
studies are 1500X250 and BOX400X400, respectively.
For the used material in this study, the yield resistance of
345 MPa and ultimate tensile resistance of 510 MPa are
assumed.

Load (kip)
o

= = =FEM (Shell)
= == FEM (Solid)

-8 -6 -4 -2 0 2 4 6 8
Displacement (in)

1200
900
600
300

-300
-600
-900
-1200

Moment (kN.m)
o

-8 -6 -4 -2 0 2 4 6 8
Rotation (rad)
Figure 3. Comparison of load-displacement results for the
numerical model and the experimental specimen
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TABLE 2. Dimensions of parametric study models

Model t(mm)
Beam flange
Beam web 8,10,15,20

Continuity Plate

Column flange

8,10,15,20,30,40
Column web

The boundary conditions of the parametric models
were such that the displacement of all the nodes located
at the top and bottom of the column which was
constrained to be clamped. In addition, it was bound for
the buckling off the beam plate. The loading was applied
to the end of the beam by a displacement of 150 mm. The
steel beam connections are rigid and welded. Therefore,
the 9 cross-sectional geometrical parameters for
calculating the shear capacity of panel zones are
effective: 1) column length, 2) column width, 3) column
flange thickness, 4) column web thickness, 5) beam
flange width, 6) beam height (x to X beam flange), 7)
beam flange thickness, 8) beam web thickness, and 9)
thickness of panel zone stiffeners. To accelerate the
modeling process, the S4R quadruple shell element was
used to construct the cross-sections. To improve the
accuracy, in the areas close to the connection and panel
zones, a fine mesh was selected. In all cases, 3500 mm
beam length and 3000 mm column length were
considered. Figure 4 shows an overview of the model
built into ABAQUS software.

In the modeling performed, the proposed equations in
literature [19] are used to calculate panel zone cut. In
addition, the equations proposed in literature [20] are
used to calculate the shear strain of panel zone.

PL h
sz = h_t (1 - ;t (5)
a*t4n= |Gpztbpz (6)
V= o)
pzbpz

Figure 4. An overview of the model built into ABAQUS
software

In Equations (5) and (6), p is the force applied to the end
of the beam, L is the distance from the beam to the
column, hyis the distance to the center of the beam flange,
H is the height of the column, A is the diameter of panel
zones, d,,, b,, are the vertical and horizontal spacing of
panel zones, respectively. Figure 5 shows the parameters
in the connection source.

Figure 6 shows the calculated values of shear capacity
in ABAQUS software and Equations (5) and (6) for 510
samples.

4. NN DESIGN AND GA TO PREDICT SHEAR
CAPACITY OF THE CONNECTION SOURCE

4. 1. NN Design
In general, there are several types of NNs. The study will
use a "Feedforward NN" or "Perception NNs". This ANN
relays data directly from front to back. Feedforward
neuron training often requires back-propagation, which is
a network of corresponding sets of inputs and outputs.
When the input data is transferred to the neuron, it is
processed and an output is generated. Basically, a NN is
a combination of the following components:

¢ An input layer that receives the data

o Several hidden layers

dpz

- -
-+ L

bez
Figure 5. Details of the parameters in the connection source
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Figure 6. Shear capacity values in ABAQUS software for 510
samples
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e An output layer

o Weights and bias between layers

e A deliberate activation function for each hidden
layer. In this paper, the function of "tangent sigmoid"

(tansig) will be used. This function maps each value

to a value from 0 to 1 and helps to normalize the sum

of the input weights [21].

In this step, the NN is trained to make accurate
predictions. Each input will have a weight (positive or
negative). This implies that an input with a large number
of positive weights or a large number of negative weights
will further influence the output result. It should also be
remembered that initializing the weights by assigning a
random number to any weight will happen. At each step,
9 geometric variables were assigned to 9 input layer
neurons for training. Output data from ABAQUS
software, we will have one number for every 9 inputs,
introduced for training on NN. It should be noted that 510
samples are available as databases in this section. In other
words, we will have 510 data outputs from ABAQUS as
target and 510 * 9 data as input. 70% of this data was
used for training, 10% for validating or averaging, and
20% for NN testing. For this problem, after trial and
error, 6 hidden layers were considered. The next step was
to determine the number of neurons in each layer. Each
sample has 9 inputs and 1 output. As a result, we will
have 9 neurons in the input layer and 1 neuron in the
output layer. The number of neurons for secretory layers
1-6 was considered equal to 20, 30, 45, 35, 25 and 10.
After several trials and errors, these neurons were
selected to specify the number of layers. In the next step,
it was necessary to specify the activation functions of
each layer. By selecting the appropriate activation
function for a layer, this activation function applied to all
neurons in the same layer. Table 3 shows the used
functions.

For the data of this paper, the tansig function
(Sigmoid tangent) was used for individual layers and the
purelin activation function (pair) for even layers, which
showed relatively good convergence in outputs. Figure 7
shows the NN training process for training, test and
intermediate data.

The four categories of data examined in this form are
training data, test data, midterm data, and finally total
data. Figure 8 shows the normal distribution of the error
as a histogram during the training process.

4. 2. GA Design and Optimization As a
computational optimization algorithm, by considering a

TABLE 3. Activation functions for each NN layer

First Second Third Fourth Fifth  Sixth

No.

layer layer layer layer layer layer
Activation tansi urelin  tansi urelin  tansi urelin
function 9 P g P 9 P

1E+16 ¢ ,
E Bast Validation Performance is 2163209164104.775 at
- epoch 1428
L —nn | |
q,«lEHS ——Validon| |
& i —Tet | |
EIE+14 L -
B [
S1E413 |
z E
g [
kY
< 1E+12 3
1E+11 b L L L L L L '. L
0 200 400 600 800 1000 1200 1400 1600

1688 Epochs

Figure 7. NN training diagram for training, test and
intermediate data
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Figure 8. Histogram of error rate during training process for
NN in the first case

set of answer space points in each computational
iteration, the GA searches the different regions of the
answer space efficiently. In the search mechanism,
although the target function value of the whole answer
space is not calculated, the calculated value of the target
function for each point is involved in the statistical
averaging of the objective function for each point, in the
statistical averaging of the target function in all subfields
to which the point depends Is. These subfields are
statistically averaged in terms of the objective function.
This process leads the space search to areas where the
statistical mean of the objective function is high and the
possibility of an absolute optimal point is greater.
Because, unlike single-path methods, this method
searches for an all-encompassing answer space, there is
less chance of convergence to a local optimal point. This
article uses the AISC Equation to derive shear capacity
for system identification. In addition to the AISC
equation, the combination of polynomial functions was
also used to better identify different states. Equation (7)
is the equation that the GA seeks to optimize by applying
changes in the values of the a;coefficients. In this
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equation, the x;represents the inputs. It should be noted
that by deriving a common denominator of Equation (7)
and simplification, we arrive at a linear equation.
However, this practice is not defined for the GA. In other
words, the response of the algorithm to the linear function
obtained from the simplification of Equation (7) will be
different from the answer to Equation (7) itself. Table 4
shows coefficients 1-9 of the three optimized algorithms.
In general, the outputs of the GA are expressed in three
different states, namely the output of the project for one,
two and three GAs that will work concurrently.

(7

3
y~E e +23)
13

5. VALIDATION AND COMPARISON OF RESULTS

A series of graphs are plotted as colored contours, each
of which determines the percentage error of the data part.
In Figures 9-12, the percentage of NN output error and
the GA are shown with the actual value. Taking a look at
these color contours and the calculated error rate in each
house from this checkerboard, we find that the GA
worked well. Only one error point represents about 80%
and most points below 10%.

To evaluate the performance of the networks, the
mean squared error (MSE) method with an ideal value of
zero was used. Mean Square Error (MSE) is one of the
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TABLE 4. Coefficients 1-9 of the three optimized algorithms

6 17

GA Output Error Percentage

B 19 2 A0 2

with Real Value

ag ag a, ag as a, as a, a,
Algorithm 1 49.21 49.22 49.08 2.52x 1075 0.0019 678.38 532.64 2.68x 1075 3.85x 1075
Algorithm 2 90.35 90.71 88.26 0.0013 0.0012 42.61 238.70 0.0014 0.0005
Algorithm 3 98.55 97.67 90.012 0.0042 0.0316 38.54 40.65 0.0074 0.0033
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statistical tools for finding prediction accuracy in
modeling [21].

bs—calc)?
MSE = yyet=ca 8)

N is Total number of training and test data pairs, obs is
Training data, and Calc is Test data corresponding to
training data. In this comparison, the data are divided into
two categories. The first category relates to training data.
This input data together with their response is provided
to the smart method. Then, try to test the prediction
performance using the second set of data, namely X data.
Therefore, it is generally expected that the error of the
training data is less than the test data. This is well seen in
both Figures 13 and 14. In Figure 15, the error rate
between the output of the NN and the output of the GA
for ABAQUS data is calculated and shown.

The first point to note is the low error of prediction of
the results by the GA compared to the NN in all different
modes. This suggests that the choice of GA would be
more appropriate in this particular case.

6. SENSITIVITY ANALYSIS

For sensitivity analysis, all input data were normalized to
the range of 0 to 1. These parameters include column
flange thickness, column web thickness, beam flange
thickness, column width, height of beam and thickness of
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Figure 15. The error rate between the output of the NN and
the output of the GA

continuity plates. The NN and GA are designed based on
these parameters. If the output function is f = R,,, for the
variations in the variable input, the input x; is considered
as follows:

R, _F O +Ax)-f (x; —Ax;)

n

OX; 2AX; ©)

n

Considering Ax; = 0.05, % values were calculated as
L
reported in Figure 16.
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Figure 16. Sensitivity analysis for 9 parameters influencing the
shear capacity of panel zone
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In this figure, the x-axis represents 510 data and the
y-axis represents Zix’;. The number shown at the top of
each figure represents the input variable input. According
to Figure 16, compared to other parameters, the three
counters, namely 1, 3 and 4, are more effective in
calculating the shear capacity. These parameters are
column width, column thickness, flange and column web,
respectively. This proves that the AISC relations are not
efficient for calculating the shear capacity of panel zones
at high thicknesses.

7. DISCUSSION AND CONCLUSION

In this comparison, the data are divided into two
categories. The first category relates to training data. This
input data is provided along with their response to the
smart method. Then, we try to test the prediction
performance using the second set of data, the X data.
When ABAQUS data is selected as training and test data,
smart methods perform best. However, in another case, if
the test data are selected from the AISC data, the error
rate will increase sharply. The present study presents a
model using multilayer perceptron ANN and regression
analysis method. This model is capable of measuring the
shear capacity of a steel-shaped box-shaped column
panel zone using 9 effective parameters (i.e., column
length, column width, column flange thickness, column
web thickness, beam width, beam height (X to X beam
flange), beam flange thickness, beam web thickness,
stiffener thickness). The results of the designed NN and
GA refer to the following.

1) What is evident is the error of the AISC relations to
determine the shear capacity of the box-shaped column
panel zone. The AISC relations calculates shear capacity
based on four parameters. However, the artificial
intelligence networks in this study are trained on 9
parameters and predict the shear capacity of the coupling
source, which reduces the error rate.

2) Sensitivity analysis based on a large parametric study
of low to high thicknesses. In the AISC, the unstructured
relations have shown that at high thicknesses, both the
column thickness and the thickness of the bond plates
affect the shear capacity. Therefore, by using the
optimized equation of GA, a wide range of shear capacity
of box-shaped columns with different column
thicknesses can be obtained.

3) Artificial Intelligence Networks This study is based on
9 training parameters and predicts the shear capacity of
the coupling source. Each of these Als has errors with
respect to ABAQUS output, which calculates the actual
amount of shear capacity. Based on their performance
evaluation, it can be concluded that the GA reduces the
error to below 10% by using optimization.
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