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A B S T R A C T  

 

The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging 

problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has 
significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the 

optimization time. Conventional methods in recursive LTI systems suffer from inaccurate range estimations 

due to dependency to symmetry or non-symmetry of the input range over zero, and involvement with 
parameter adjustments. The under estimations endanger the range safety, and generate a great error due to 

overflows. On the other hand, the over estimations increase the hardware costs, as well as weaken the signal, 

if the over estimated ranges are utilized in down-scaling. Therefore, in this paper, we propose an efficient, 
safe and more precise RA method to measure the range of both recursive and non-recursive fixed-point LTI 

systems through analytical formulation. Our main idea is to obtain the input sequences for which variables in 

the LTI system would be maximum and minimum. By applying these sequences to the system, the upper and 
lower bounds of the intended variables are obtained as the range. The proposed method enhances the bit-

widths accuracy more than 34% in average in comparison with the state-of-the-arts. The results also show 

about 37% and 6% savings in the area and delay, respectively. 

 doi: 10.5829/ije.2020.33.07a.08
 

 
1. INTRODUCTION1 
 
The increasing complexity of modern embedded 

applications in recent decades has forced design 

methodologies and tools to move to higher abstraction 

levels. Raising the abstraction levels, and accelerating 

automation of the synthesis, optimization and verification 

processes in addition to reducing the time-to-market, help 

to reduce the verification time as well as facilitate other 

flows such as accuracy analysis. In high level 

optimization, a crucial decision to be made is the datapath 

word length, including the word length of different 

registers and functional units. In this work, we concentrate 

on fixed-point representation due to the preference for 

fixed-point implementations of digital signal processing 
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(DSP) algorithms over floating-point because of  

hardware cost reduction. Deciding on factors such as 

integer width and fractional parts of the circuit has 

significant effects on the resource consumption, accuracy 

and efficiency of the final implementation. To have finite-

precision fixed-point implementations of such systems, 

range analysis (RA) is an essential and fundamental 

design step. The analysis characterizes the integer bit-

widths (IB) for all the fixed-point variables such that no 

overflow and underflow occur [1–10].  

In this paper, an analytical integer word-length 

optimization for recursive LTI systems is proposed. LTI 

systems are the most important category of DSP 

applications since they include finite-impulse response 

(FIR), infinite-impulse response (IIR) digital filters, and 
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signal transformations such as Fast Fourier Transform, 

Discrete Cosine Transform, and Wavelet Transforms [9, 

10]. The method not only minimizes the hardware 

implementation cost, but also reduces the optimization 

time significantly. In the method, the safe and more 

precise range is obtained through analytical formulation 

without any involvement of the parameter adjustments, 

and without additional iterative operations. The 

estimations in the method are independent of symmetry or 

non-symmetry of input range over zero. To do so, the 

method directly extracts the two input sequences, for 

which the variables would be maximum and minimum, 

from the impulse response using the theorem explained in 

Section 4. The sequences are then applied to the system to 

obtain the upper and lower bounds of the intended 

variables. Note that the theorem in this work is also 

applicable to the feed-forward systems. 

The remainder of this paper is organized as follows. 

Section 2 reviews previous works. Section 3 states our 

contributions. Section 4 details the proposed range 

analysis flow through a simple example. Section 5 

investigates the experimental results and finally, Section 6 

concludes the paper. 

 

 

2. RELATED WORKS 
 
Several approaches have been introduced to tackle range 

analysis problems of fixed-point designs which, in 

general, can be categorized into dynamic and static 

analyses. Dynamic analysis methods evaluate the system 

by using input stimulus. This analysis suffers from unsafe, 

data dependent, and time-consuming estimations, which 

confine its applicability [8]. Static analysis, however, uses 

static characteristics of the inputs which are propagated 

through the system. So, it has recently gained much 

interest due to safety, no data dependency, and higher 

efficiency [1–8]. In static analysis, one of the most 

significant categories is self-validated numerical (SVN) 

methods. The two most popular SVN methods are interval 

arithmetic (IA) and affine-arithmetic (AA) [2]. Due to the 

efficiency of these methods in terms of analysis time, 

many literatures use them or their extensions to account 

for RA. The other category of static methods uses more 

sophisticated approaches such as SMT-based range 

analysis [7], and hybrid [8] as a combination of IA, AA 

and AT. These tighter results in the recent addressing 

methods are obtained at the cost of more analysis time 

consumption. 

Such solutions, however, may not always be adequate, 

due to being unable to handle recursive circuits, such as 

IIR filters. Since several fixed-point DSP circuits are 

based on arithmetic expressions with possible feedbacks, 

the RA of such circuits, in general, remains still 

challenging. The main challenge of such systems is to 

determine final amount of a value when it falls into an 

infinite loop. In this regard, the methods in [4, 5], utilize 

L1-norm and L2-norm of impulse responses to compute 

an inaccurate measurement of the exact range. The L1-

norm-based methods in [5] also use the maximum absolute 

value of the input to obtain the output range. This leads to 

an over-estimation when the input range is non-symmetric 

over zero. The over-estimations increase the hardware 

costs, as well as weaken the signal, if the over-estimated 

ranges are utilized in down-scaling. The L2-norm-based 

method in [4] multiplies the maximum absolute value by 

the L2-norm of the impulse response. The L2-norm-based 

method under-estimates the ranges when the input is 

symmetric over zero. The under-estimations endanger the 

range safety, and generate a great error due to overflows. 

In order to obtain a tighter range than L1-norm, the method 

in [3] computes the range by iterative operations of 

flattening the system, 𝑦[𝑛]. The analysis will face the 

problem of adjusting the two parameters to determine the 

required number of iterations. The parameters are the 

convergence window size, i.e. 𝑤, and the resolution of 

convergence, i.e. ε. Since the convergence of the 

algorithm depends on the position of poles and the stability 

conditions, there is no guarantee to precisely adjust the 

parameters. So, there is always a probability for an under-

estimation in this method which is unacceptable in RA. 

For comparing our RA method in terms of the precision 

and hardware cost saving, three methods with the over- 

and under- estimations are chosen. They include the L1-

norm and L2-norm methods due to their prestige and 

popularity in the scope of analytical range determination 

of LTI systems. Also, we compare our method with the 

flattening-based method as an iterative method. 
 

 

3. OUR CONTRIBUTION 
 

In order to clarify our main contributions, in this section 

we explain our ideas for efficient RA, obtaining more 

precise integer bit-widths in a bounded-input, bounded-

output (BIBO) stable LTI. Our basic idea in this paper is 

to analyze the range from the system impulse response 

without any involvement in any parameter adjustments 

issues, and iterative operations.  

In order to find the output range, we aim to find the 

input sequences for which the output will be maximum 
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and minimum. To extract the input sequences, we use the 

impulse response of a system and the input bounds as will 

be explained in the following. The maximum and 

minimum input sequences, as well as the input upper and 

lower bounds are called 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] and 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛], as well as 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛 , respectively. 

In the following, we only consider 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛], and 

the primary output variable of y which has the impulse 

response, i.e. ℎ[𝑛], according to Figure 1(a). Similar 

arguments exist for intermediate variables with different 

impulse responses. 

The output of a system is obtained by convolving an 

input sequence and its impulse response. In order to obtain 

the maximum output, we consider a sequence in a state 

that has the most overlapping with the impulse response as 

illustrated in Figure 1(b). In the state, the output maximum 

is obtained when the input would be in the upper bound, 

where the impulse response is positive, as well as the input 

would be in the lower bound, where the impulse response 

is negative as illustrated in Figure 1(b). This input 

sequence, which we are looking for to maximize the 

output, i.e. 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥, follows the impulse response 

form such that places in its input upper, i.e. 𝑥𝑚𝑎𝑥 , or lower 

bounds, i.e. 𝑥𝑚𝑖𝑛, where the impulse response is positive 

or negative, respectively. Since in the other states with less 

overlapping, the input sequences generate lower output 

values, they are not investigated. The 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛 is also 

obtained in a similar way in which the input sequence 

would be 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥 , when the impulse response is 

positive or negative, respectively. 

The sequences are then getting backward in time and 

applied to the system, to account for the output upper and 

lower bounds.  These operations will be repeated for each 
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Figure 1. Idea illustration for range analysis of LTI systems: 

a) impulse response of a system plotted in time domain; b) the 

input sequence for obtaining upper bound of y when the input 

is between 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 

variable. Since there are variables with the same impulse 

responses, these variables are grouped together in order to 

reduce the number of repetitive computations. In fact, the 

variables, with the same impulse response, constitute a 

group. Hence, our main contribution is a new method for 

static RA of LTI systems with or without feedbacks, to 

achieve safe, more efficient, and more accurate range than 

the state-of-the-art methods. 

 

 
4. PRPOSED RANGE ANALYSIS 
 
In this section, we propose the RA method, called 

Analytical Integer Word-length Optimization based on 

System Characteristics (AIOSC). As mentioned before, 

RA is crucial for the discrete system design in the 

implementation of a BIBO stable LTI system. The ranges 

are used to assign suitable integer bit-widths for all 

variables such that it is guaranteed that no underflow and 

overflow happen. Our method finds an input sequence that 

maximizes the output of a system when it is convolved by 

the impulse response. The sequence is obtained by 

following the impulse response form according to 

Theorem 1. Before introducing the algorithm; we first 

prove the theorem, which is needed in the rest of this 

section. 

Theorem 1: Two input sequences, in which the BIBO 

stable LTI system, i.e. 𝑦[𝑛], would be maximum and 

minimum, are 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛], and 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛], 
respectively. They are obtained as follows, where 𝑢[𝑛] is 
the unit step function. 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] = 𝑥𝑚𝑎𝑥 × 𝑢[ℎ[𝑛]] + 𝑥𝑚𝑖𝑛 × 𝑢[−ℎ[𝑛]]  (1) 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛] = 𝑥𝑚𝑖𝑛 × 𝑢[ℎ[𝑛]] + 𝑥𝑚𝑎𝑥 × 𝑢[−ℎ[𝑛]]  (2) 

Proof: As discussed in Section 3, the input sequences 

include only the maximum and minimum of the system 

input, i.e. 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛 . Choosing between 𝑥𝑚𝑎𝑥  and 

𝑥𝑚𝑖𝑛 depends on the values of ℎ[𝑘], 𝑘 ∈ {0,1, … , 𝑛},  as 

follows: 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] =

{
𝑥𝑚𝑎𝑥      𝑖𝑓 ℎ[𝑘] × 𝑥𝑚𝑎𝑥 ≥ ℎ[𝑘] × 𝑥𝑚𝑖𝑛

𝑥𝑚𝑖𝑛         𝑖𝑓 ℎ[𝑘] × 𝑥𝑚𝑎𝑥 < ℎ[𝑘] × 𝑥𝑚𝑖𝑛
  

(3) 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛] =

{
𝑥𝑚𝑎𝑥      𝑖𝑓 ℎ[𝑘] × 𝑥𝑚𝑎𝑥 ≤ ℎ[𝑘] × 𝑥𝑚𝑖𝑛

𝑥𝑚𝑖𝑛         𝑖𝑓 ℎ[𝑘] × 𝑥𝑚𝑎𝑥 > ℎ[𝑘] × 𝑥𝑚𝑖𝑛
  

(4) 

Since 𝑥𝑚𝑎𝑥 ≥ 𝑥𝑚𝑖𝑛, the above relations can be simplified 

as follows: 
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𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] = {
𝑥𝑚𝑎𝑥      𝑖𝑓 ℎ[𝑘] ≥ 0

𝑥𝑚𝑖𝑛         𝑖𝑓 ℎ[𝑘] < 0
  (5) 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛] = {
𝑥𝑚𝑎𝑥      𝑖𝑓 ℎ[𝑘] ≤ 0

𝑥𝑚𝑖𝑛         𝑖𝑓 ℎ[𝑘] > 0
  (6) 

These relations are equivalent to 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] =

𝑥𝑚𝑎𝑥 × 𝑢[ℎ[𝑛]] + 𝑥𝑚𝑖𝑛 × 𝑢[−ℎ[𝑛]] and 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛] =

𝑥𝑚𝑖𝑛 × 𝑢[ℎ[𝑛]] + 𝑥𝑚𝑎𝑥 × 𝑢[−ℎ[𝑛]]. The sequences can also 

be obtained through the Equations of (5) and (6). 

 
4. 1. Range Analysis Flow                The proposed flow 

for RA is shown in Figure 2. It takes the input bounds, i.e. 

[𝑥𝑚𝑖𝑛  , 𝑥𝑚𝑎𝑥], as inputs, and returns the variable integer bit-

widths as outputs. This flow is repeated for each group of 

the variables. In fact, the variables, with the same impulse 

response, constitute a group in order to reduce the number 

of repetitive computations. In Step 1, the impulse response 

for each group is obtained from its linear constant-

coefficient difference equation (LCCDE), if it currently 

does not exist.  In Step 2, the input sequences, i.e. 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] and 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛], are found based on 

Theorem 1. In this step, the function 𝑈𝑛𝑖𝑡𝑆𝑡𝑒𝑝() from 

Mathematica is invoked to apply the unit step function to 

the impulse response. In Step 3, these sequences are 

getting backward in time, and applied to the system. This 

response can be obtained by direct evaluation of the 

convolution sum of the sequences and the impulse 

response, as indicated in the figure where “∗” denotes 

convolution. However, since the convolution in the time 

domain corresponds to multiplication in the z-domain, 

 

 

Step 1. Obtain impulse response: h[n]

 Input ranges

Step 2. Calculate maximum and minimum input sequences (Theorem 1):

in-seqmax=xmax*u[h[n]]+xmin*u[-h[n]]

in-seqmin=xmin*u[h[n]]+xmax*u[-h[n]]

Step 3.  Apply the sequence to the system:

        

         

Step 4.  Extract the range

Integer bit-widths

2-1. InputSeqmax[n]=xmax×u[h[n]]+xmin×u[-h[n]]

2-2. InputSeqmin[n]=xmin×u[h[n]]+xmax×u[-h[n]]

3-1. UpperBound[n]=InputSeqmax[-n]*h[n]

3-2. LowerBound[n]=InputSeqmin[-n]*h[n]

 
Figure 2. Proposed range analysis flow 

another simple alternative is obtaining the response in the 

z-domain. So, the z-transform of the sequences, and the 

impulse response can be created by the function 

𝑍𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚() from Mathematica [11]. Then the z-

transform of the impulse response is multiplied by the z-

transforms of the sequences. Finally, the function 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑍𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚() is invoked to obtain the 

corresponding results in the time domain, i.e. the 

𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 [𝑛] and 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 [𝑛]. In Step 4, the 

minimum and maximum of the mentioned functions 

(called 𝑎 and 𝑏) will constitute the final range, i.e. [𝑎, 𝑏]. 
To obtain the bit-width including sign bit from the range, 

the following relation is employed. 

𝑖 = ⌈𝑙𝑜𝑔2(𝑚𝑎𝑥 (|𝑎|, |𝑏|))⌉ + 𝛼,     

𝛼 = {
1       𝑖𝑓   𝑚𝑜𝑑(𝑙𝑜𝑔2(𝑏)) ≠ 0

2       𝑖𝑓   𝑚𝑜𝑑(𝑙𝑜𝑔2(𝑏)) = 0
  

(7) 

 
4. 2. Example                 In order to clarify the flow, let us 

consider the example of 𝑦[𝑛] = 𝛼𝑦[𝑛 − 1] + 𝛽𝑥[𝑛], with 

𝛼 = 0.8 and 𝛽 = 0.5. The example is a low pass filter, 

which enjoys wide applications in control systems, 

Kalman filtering, communication processing to reduce 

noise, and image averaging. The filter with all the input 

and intermediate variables, as some vertical rectangles, is 

shown in Figure 3(a). In this example, the variables 𝑥2 to 

𝑥4 offer the same impulse response, which differs from the 

impulse response of 𝑥1. So the variables are broken down 

into two groups: 𝑥1 in G1, and 𝑥2 to 𝑥4 in G2. For G1, first 

(according to Step 1) the impulse response ℎ[𝑛] is 

obtained by using direct and inverse z-transform. In order  
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Figure 3. a) one-pole digital filter with intermediate 

variables; b) the impulse response and input sequences, 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥 and 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛, of the filter 
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to obtain ℎ[𝑛], the other way is to solve the difference 

equation of 𝑦[𝑛], when 𝑥[𝑛] is replaced by 𝛿[𝑛], and 𝑦[𝑛] 
is replaced by ℎ[𝑛]. The impulse response for the variables 

in G1 would be ℎ[𝑛] = 0.5 (0.8)𝑛𝑢[𝑛]. Second, based on 

Theorem 1, the input sequences for 𝑥𝑚𝑎𝑥 = 1 and 𝑥𝑚𝑖𝑛 =
−1 would be 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] = 𝑢[𝑛] and 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛] = −𝑢[𝑛]. The impulse response of ℎ[𝑛] 
and the input sequences of 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] and 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛] are depicted in Figure 3(b). As shown in 

this figure, 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] gets the maximum input 

when ℎ[𝑛] is positive, and the minimum input when ℎ[𝑛] 
is negative. Since in this case, ℎ[𝑛] is always positive, 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑎𝑥[𝑛] would be 𝑢[𝑛], and vice versa for 

𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑚𝑖𝑛[𝑛]. Third, since the backward of the 

sequences in time domain are also unit step functions, 

these sequences are applied to the system as follows: 

𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑[𝑛] = 𝒵−1 {
0.5𝑧

𝑧−0.8
× 𝒵{𝑢[𝑛]}} =

𝒵−1 {
0.5𝑧

𝑧−0.8
×

𝑧

𝑧−1
} = 2.5 − 2 × 𝑒−0.223144𝑛   

(8) 

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑[𝑛] = 𝒵−1 {
0.5𝑧

𝑧−0.8
× 𝒵{−𝑢[𝑛]}} =

𝒵−1 {
0.5𝑧

𝑧−0.8
×

−𝑧

𝑧−1
} = −2.5 + 2 × 𝑒−0.223144𝑛   

(9) 

Finally, when 𝑛 approaches infinity, the range 𝑥3 is 

obtained which is [−2.5,2.5]. These values for  𝑥1, 𝑥2, and 

𝑥4 are [−1,1], [−0.5,0.5] and [−2,2], respectively. The 

integer bit-widths for 𝑥1 to 𝑥4 are 𝐼𝐵𝑥1
= 2, 𝐼𝐵𝑥2

= 1, 

𝐼𝐵𝑥3
= 3 and 𝐼𝐵𝑥4

= 3. The obtained output range and 

integer bit-width by L2-norm for 𝑥3 are [−0.83,0.83] and 

𝐼𝐵𝑥3
= 1, respectively. It is obvious that these 

measurements under-estimate the exact ones.  
 

 

5. EXPERIMENTAL RESULTS 
 

In order to demonstrate the applicability of our proposed 

method in different types and forms of the recursive LTI 

systems, as well as the superiority of the method over the 

state-of-the-arts, we have provided several benchmarks 

with various forms and types. The forms are direct (DR), 

parallel (PRL), and cascade (CS), as well as the types are 

high-pass (HPF), low-pass (LPF), and band-pass (BPF) 

filters. Bench #3 is a bi-quad eighth-order cascaded 

structure of four 2nd-order direct-form IIR filters. The last 

benchmark is also a National Television Systems 

Committee (NTSC) channel cascaded eighth-order LPF 

IIR filter with the cutoff frequency of 4.74MHz. The 

details of the benchmarks such as type, order, numerator, 

and denominator coefficients are given in Table 1. Our 

algorithm has been implemented with Mathematica, and 

run on an Intel 4702MQ core i7 with 8 GBs of main 

memory, running Linux operating system. For the 

synthesis process, the tool Xilinx ISE V14.1 on the Virtex-

7 FPGAs target has been chosen. The device contains 

user-programmable elements known as slices, dedicated 

multiply-and-add units, DSP blocks and embedded 

RAMs. In order to make fair comparisons, the designs are 

implemented by using slices and combinatorial elements 

without any pipelining. The variable indexes in the 

feedback parts have been numbered in a clockwise 

direction. In the first experiment, we compare AIOSC with 

L2-norm-based method (L2-norm) in [4] and flattening-

based methods in [3] to show the precision of our method. 

It is assumed that the primary inputs are symmetric over 

zero, and lie within the normalized range of [−1,1]. The 

estimated range, bit-widths, and their under-estimation 

ratio have been reported in Table 2. In the table, the first 

major column has listed the benchmarks. The second and 

third major columns include the estimated ranges and bit-

widths by the RA methods. Finally, the last column shows 

the under-estimation ratio of the AIOSC than the state-of-

the-art methods. As shown in the table, L2-norm when the

 

 
TABLE 1. Range and bit-width evaluation results of AIOSC and L2-norm for the primary output variable 

Bench # 

Estimated Range  Estimated bit-width  Underestimation Ratio % 

AIOSC L2-norm Flattening-based 

 

AIOSC 
L2-

norm 

Flattening-

based 

 L2-

norm/AIOSC 

Flattening-based 

/AIOSC 

  Range Bit Range Bit 

1 [-270.89,270.89] [-103.33,103.33] [-232.15,232.15]  10 8 9  162 25 17 12 

2 [-4.58,4.58] [-2.18,2.18] [-4.47,4.47]  4 3 4  109 33 3 0 

3 Quad [-76.23,76.23] [-25.40,25.40] [-75.25,75.25]  8 6 8  200 33 2 0 

4 NTSC [-275.12,275.12] [-73.26,73.26] [-273.92,273.92]  10 8 10  275 25 5 0 

Average underestimation ratio %  186.5 29 6.75 3 
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TABLE 2. Benchmark features 

Bench# Type Form Order Numerator Full-precision Coefficient Denominator Full-precision Coefficient 

1 HPF DR 2 101.8, -203.4, 101.6 1, -1.967, 0.968 

2 LPF PRL 3 2,0.1,-0.4 1,0.1,-0.46,0.08 

3 Quad BPF CS 8 1, 2, 1 1, -2, 1 1, 2, 1 1, -2, 1 
1, a, b 1, -a, b 1, c, d 1, -c, d 

         a=0.47583613785934908, b=0.63399428536347535,  

      c=1.0921588046377746, d=0.87447915380668007 

4 NTSC LPF CS 8 1,2,1 1,2,1 1,2,1 1,2,1 

1, a, b 1, c, d 1, e, f 1, g, h 

         a=-0.7093449002973562, b=0.19225253081578914, 
           c=-0.22413592126247239, d=0.41113157239125847, 

         e=0.27362911645488941, f=0.66517393946636161, 

         g=0.57030039990570558, h=0.88861236005184185 

 

 
input is symmetric over zero under-estimates ranges and 

bit-widths, in all benchmarks. The under-estimations are 

more in the higher order benchmarks of Quad and NTSC. 

The ranges and bit-widths under-estimations are about 

186% and 29% on average, respectively. Hence the 

estimations generate a great error due to overflows. 

Obtaining the exact output range requires the exhaustive 

simulations by feeding all possible sequences into inputs. 

The sequences are infinite for recursive filters. So, 

generating all possible infinite sequences is time 

consuming and even impossible in high order filters. 

In the flattening-based method, the window size and 

the resolution are considered (𝑤, ε) = (10,1). As 

illustrated in the table, the ranges are under-estimated in 

all benchmarks. The under-estimations in the first 

benchmark lead to the under-estimated bit-width. In the 

other benchmarks, if the under-estimated ranges are used 

in the signal down-scaling, it can cause the overflow in the 

variables, which encompass the larger numbers. Let us 

consider the second benchmark. The flattening-based 

method estimates the maximum absolute range of 4.47 

while the output variable can accept the number ±4.58. In 

this case, all signals are divided by 4.47 and the output 

encompasses the number 1.02. The number is more than 

one which led to the output overflow. So, the flattening-

based method under-estimates range and generates a great 

error.  

In the next experiment, we concentrate on the safe 

methods, i.e. L1-norm-based method (L1-norm) [5], in 

comparison to AIOSC. In the experiment, it is assumed 

that the primary inputs are non-symmetric over zero and 

lie within the range of [9,10]. The bit-widths estimations 

for primary outputs are depicted in Figure 4. In this figure, 

the other estimations include the ranges plus the 

improvements are also shown as some entries of the small 

tables beside the bit-width bars. As seen in this figure, the 

L1-norm-based method constitutes over-estimations when 

the input bound is not symmetric over zero. The range 

over-estimations in some benchmarks are more than 20 

times than the estimated range by AIOSC. If the over-

estimated ranges are utilized in down-scaling, the range 

can strongly weaken the signal. Moreover, the range over-

estimations result in an additional integer bit for the all 

benchmarks. As seen, by increasing the range over-

estimations, the excess bits are also growing. The excess 

bits growing have significant impact on hardware cost. 

The amount of the impact is investigated in the next 

experiment. In the experiment, the AIOSC method shows 

the bit-width improvement of about 34.75% on average. 

As mentioned, the effect of inaccuracy in the opposite 

direction, i.e., over-estimations instead of under-

estimations, is on the hardware cost. Whatever the ranges 

of all intermediate and output variables are more exact, we 

expect to achieve the smallest bit-widths, leading to a  

 

 

 
Figure 4. The estimation results of different RA methods 
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reduction in the circuit area and delay. In order to complete 

the experiment, the effect of the over-estimations on the 

area and delay are investigated in Figure 5. This figure 

indicates the area costs of the benchmarks for the assigned 

bit-widths obtained by AIOSC and L1-norm when using 

Xilinx ISE for the synthesis process. In this figure, other 

results of delay plus area and delay savings are also shown 

as some entries of the small tables beside the area bars. As 

illustrated in Figure 5, area and delay almost follow the 

estimated bit-widths. It means, in the positions that one 

method has estimated lower bit-widths; the delay and area 

are pursuing this flow and become less. The area (slice) 

and delay saving of AIOSC is 37.25% and 5.6% in 

comparison with L1-norm, respectively. 

 

 

 
Figure 5. Area and delay comparison of RA methods 

 

 

6. CONCLUSIONS AND FUTURE WORK 
 

The range analysis plays an important role in high-level 

synthesis  of arithmetic circuits, as it can directly impact 

the overall design cost  and performance. Most of existing 

analyses on the recursive LTI systems estimate the bounds 

inaccurately. It leads to produce some great errors or 

increase the hardware cost. Therefore, in this paper, a new, 

more accurate and efficient RA method for fixed-point 

recursive LTI systems was proposed. The method 

obtained a safe and more precise range and bit-width 

estimations from the impulse response, without any 

involvement of the parameter adjustments, and without 

any additional iterative operations. The proposed method 

brought advantages of 29% bit-width improvement. It led 

to 37.25% and 5.6% area and delay saving in comparison 

with the previous state-of-the-art methods.  

As our future work, we are going to extend our method 

to support the error analysis in LTI systems with feedback 

for the maximum mismatch (MM), mean square error 

(MSE) and signal to quantization noise ratio (SQRT) 

metrics.  
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Persian Abstract 

 چکیده 

گردد. این تحلیل، تاثیر بازگشتی محسوب میهای خطی نامتغیر با زمان  سازی و سنتز سطح بالای سیستمبرانگیز در بهینهسازی طول کلمه صحیح یا تحلیل دامنه، یک مساله چالشبهینه

برند. های پیشین، از معایبی چون تخمین نادقیق دامنه شامل تخمین مازاد یا تخمین زیر مقدار واقعی رنج می گذارد. روشسازی می بسزایی بر مصرف منابع، دقت، کارایی و زمان بهینه

های زیر مقدار واقعی، سبب ایجاد سرریز و تولید باشد. تخمینت به صفر و همچنین وابستگی به برخی از پارامترها می ها به تقارن ورودی نسباین عدم دقت بدلیل وابستگی روش

گردد. ل می دهد. همچنین اگر این تخمین مازاد در مقیاس کردن استفاده شود، سبب تضعیف سیگناشود. از طرف دیگر، تخمین مازاد، هزینه سخت افزار را افزایش میخطاهای بزرگ می

های های خطی نامتغیر با زمان بازگشتی و غیربازگشتی برای طراحی گیری دامنه در سیستم های تحلیلی برای اندازهبنابراین در این مقاله یک روش تحلیل دامنه دقیق، کارا و ایمن با روش 

ها به سیستم، محدوده بالا و ه ازای آن خروجی سیستم ماکسیسمم و مینیمم گردد. با اعمال این دنباله شود. ایده اصلی یافتن دنباله ورودی برای هر متغیر است که به می ئممیز ثابت، ارا

بهبود  %۳7بخشد. نتایج همچنین های قبلی بهبود میدر مقایسه با روش %۳4ه شده، دقت طول کلمه را بطور متوسط تا بیش از ئآید. روش اراپایین هر متغیر به عنوان دامنه بدست می

 دهد. بهبود تاخیر را نشان می  %6در مساحت و 

 


