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A B S T R A C T  
 

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market 

price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio 

optimization. In addition, one of the main concerns with most portfolio optimization is associated with the 
type of constraints considered in different models. In many cases, the resulted problem formulations do not 

yield in practical solutions. Therefore, it is necessary to apply some managerial decisions in order to make 

the results more practical. This paper presents a portfolio optimization based on an improved knapsack 
problem with the cardinality, floor and ceiling, budget, class, class limit and pre-assignment constraints for 

asset allocation. To handle the uncertainty associated with different parameters of the proposed model, we 

use robust optimization techniques. The model is also applied using some realistic data from US stock 
market. Genetic algorithm is also provided to solve the problem for some instances. 

doi: 10.5829/ije.2020.33.05b.16 
 

 
1. INTRODUCTION 

 

Markowitz [1, 2] theorem presents a portfolio selection 

model with continuous variables that simultaneously 

considers the risk and returns of the portfolio. One of the 

primary concerns with the classical mean-variance model 

based on the continuous variables is that the optimal result 

may not be necessarily applicable for asset allocation. In 

the past, the managers of most companies used to be 

interested in splitting the shares once in a while. However, 

presently, there is an increase in the number of firms whose 

managers are reluctant to split the shares of their 

companies; for instance, AMAZON, GOOGLE, etc. 

Therefore, in order to trade shares, the only possible way 

that remains is in the matter of integer values of them. 

Hence, the rounding problem is getting more important 

than it used to be and we need to develop more practical 

methods to handle the rounding issue. Another reason for 

the use of integer variables, usually binary, appears in 

practice because portfolio managers and their clients often 
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have unwilling to perform small transactions. Some studies 

focused on models that could solve such portfolio 

optimization problems. Corazza and Favaretto [3] analyzed 

the finite divisibility of the shares using some rounding 

procedures. Li and Tsai [4] provided an approach based on 

the following three steps: (i) dual Lagrangian relaxation, 

(ii) linear terms transformation and (iii) separable terms 

transformation approaches. Bonami and Lejeune [5] 

presented a branch-and-bound algorithm for classical 

Markowitz portfolio optimization with integer constraints 

in which the uncertainty in estimating the expected returns 

is considered as part of the model. Castro et al. [6] provided 

a method based on the computation of some test sets using 

Gröbner' idea [7] for a portfolio selection model with 

integer variables and non-linear constraints. In the 

following, this paper also focuses on the new portfolio 

optimization with discreet variables to eliminate the gap of 

share rounding. We present a knapsack problem-based 

model to asset allocation for cases that the portfolio must 

include assets with relatively large values.  
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On the other hand, in the real world, information on 

financial markets is flawed. The decision-making process 

should be conducted under uncertain conditions. Portfolio 

performance was also evaluated in such conditions in the 

financial market [8, 9]. Huang et al. [10] presented a 

combinatorial algorithm based on the possibilistic 

regression model to examine  portfolio optimization under 

uncertain conditions.Gregory et al. [11] studied the 

uncertainty of the returns using the method proposed by 

Bertsimas and Sim [12, 13]. Sadjadi et al. [14] compared 

Ben-Tal and Nemirovski [15, 16] with Bertsimas and Sim 

approaches [12, 13] for analyzing the uncertainty of the 

returns in the portfolio optimization problem. Ghahtarani 

and Najafi [17] presented a goal programming approach for 

multi-objective portfolio optimization and examined it 

under uncertain conditions. Kim et al. [18] evaluated the 

performance of the robust optimization method based on 

the worst case scenarios in the stock exchanges. Maillet et 

al. [19] presented a new approach based on the global 

minimum variance to reduce the impact of uncertainty in 

portfolio optimization. Huang and Di [20] considered 

uncertain conditions for a mean-risk portfolio optimization 

with experts’ evaluations of returns. Fernandes et al. [21] 

presented a one-period robust portfolio optimization with a 

sensory loss constraint under a data-driven polyhedral 

uncertainty set for adaptive asset allocation. Chen and Zhou 

[22] examined the mean-variance Markowitz model under 

uncertain condition originally developed by Ben-Tal and 

Nemirovski [15, 16]. Moreover, the portfolio optimization 

problem was examined under scenario uncertainty [23] and 

future returns scenarios [24]. In the following, this paper 

also focuses on the portfolio optimization with discreet 

variables under uncertain condition of Bertsimas and Sim 

[12, 13]. 

In addition, one of the primary concerns with most 

portfolio optimization is associated with the type of 

constraints considered with different models. In many 

cases, the resulted problem formulations do not yield 

practical solutions. For example, in 2006, Huang [25] 

examined portfolio optimization problem based on the 

chance constraint under fuzzy environment of returns. 

However, in 2010, Li et al. [26] provided more complete 

and accurate results by adding risk constraints and other 

possible conditions to the model proposed by Huang [25]. 

Therefore, it is necessary to apply some managerial 

decisions in order to make the results more practical. 

Hence, this paper also focuses on portfolio optimization 

with discrete variables and different constraints such as the 

cardinality, floor and ceiling, budget, class, class limit and 

pre-assignment constraints for asset allocation under 

uncertain condition. 

Finally, in this essay, a robust portfolio optimization based 

on an improved knapsack problem with the cardinality, 

floor and ceiling, budget, class, class limit and pre-

assignment constraints is presented. Then, a genetic 

algorithm (GA) is designed to examine the validity of the 

proposed model in large dimensions. A case study of the 

US stock market is considered to examine the performance 

of the proposed model and the efficacy of the designed 

algorithm to solve the portfolio selection model based on 

the knapsack problem. 

The essay is organized as follows: In Section 2, robust 

optimization techniques are defined. In Section 3, the 

constrained portfolio optimization based on an improved 

knapsack problem is introduced under uncertain 

conditions. In Section 4, a meta-heuristic algorithm is 

designed  for  the  proposed  optimization  problem.  In 

Section  5,  a  real  life  case  study  of the US stock 

exchange and sensitivity analysis are scanned. Eventually, 

a synopsis of the essay and inferences are presented in 

Section 6. 

 

 

2. PRELIMINARIES 
 

2. 1. Robust Optimization Techniques              In the 

robust optimization approach, there is no assumption about 

the distribution of parameters and the same importance is 

given to all possible values for the uncertain parameters. In 

fact, when the robust optimization is used, the analyst 

follows a response that behaves well for all possible values 

with uncertain parameters. Soyster [27] introduced a 

completely conservative approach based on the worst 

possible condition for robust optimization. In this way, the 

answer to the optimization problem should remain valid for 

all possible values for the model parameters. Since the 

problem of the Soyster robust solution is that the objective 

function value is much worse than that of the nominal 

solution, Ben-Tal and Nemirovski [15, 16, 28] introduced 

a new approach based on ellipsoidal uncertainty 

collections. The conservatism of this approach is less than 

that of the Soyster’s method and any justifiable answer 

from this approach is also justified in the Soyster’s method. 

Since the Ben-Tal and Nemirovski’s method is a nonlinear 

programming and particularly is not attractive for solving 

robust discrete optimization problems, Bertsimas and Sim 

[12, 13, 29] introduced a new robust discrete optimization 

problem based on the multi-level uncertainty collections. 

This approach takes a very low probability of occurrence 

of the worst condition for all parameters. To present robust 

optimization techniques, the following nominal linear 

optimization problem is considered: 
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(𝑀0) {

𝑚𝑎𝑥  ∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑗

𝑠. 𝑡: ∑ 𝑎𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏 ,

𝑥𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . , 𝑛},

  

 

(1) 

where 𝑎𝑗 (𝑗 ∈ {1,2, . . . , 𝑛}) is assumed uncertain 

parameters. 𝑎𝑗 (∀𝑗 ∈ {1,2, . . . , 𝑛}) is nominal values and 𝑎̂𝑗 

measures the precision of the estimate. In addition, 𝑎̃𝑗 (∀𝑗 ∈
{1,2, . . . , 𝑛}) is uncertain parameter defined as follows: 

𝑎̃𝑗𝜖[𝑎𝑗 − 𝑎̂𝑗 , 𝑎𝑗 + 𝑎̂𝑗].  
(2) 

Equation (2) can be written in another form as follows:  

𝑎̃𝑗 ≅ 𝑈(𝑎𝑗 − 𝜓𝑗𝜎𝑗 , 𝑎𝑗 + 𝜓𝑗𝜎𝑗)  
(3) 

𝜎𝑗 (∀𝑗 ∈ {1,2, . . . , 𝑛}) is the standard deviation of element 

weight 𝑗.𝜓𝑗 (∀𝑗 ∈ {1,2, . . . , 𝑛}) is the coefficient of element 

weight 𝑗 that varies around its nominal value and is defined 

by user. Moreover, when 𝑥∗ is the optimal solution, at 

optimality clearly, 𝜃𝑗 = |𝑥𝑗
∗|. 

According to Bertsimas and Sim’s method [12, 13], 

parameter 𝛤𝑖  is defined for constraint 𝑖 that limits the value 

of the parameter’s deviation from its mean value. 𝛤𝑖  is 

defined as follows: 

∑ 𝜂𝑗
𝑛
𝑗=1 ≤ 𝛤𝑖   ∀𝑖.  (4) 

In fact, 𝛤𝑖  is the adjustment of the stability of the proposed 

method versus the conservatism of the answer and takes in 

[0, 𝑛]. If 𝛤𝑖 = 0, constraint𝑖is analyzed in a complete 

deterministic state. If 𝛤𝑖 = 𝑛,  the parameters of 

constraint𝑖can have the maximum fluctuation of their mean 

values. In other word, constraint𝑖will be in the most 

conservative state. If 𝛤𝑖 ∈ (0, 𝑛), the decision-maker makes 

a trade- off between the protection level of the constraint 

𝑖and the degree of conservatism of the solution. Moreover, 

𝜂𝑗 is a new stochastic variable defined as follows: 

𝜂 = {𝜂||𝜂𝑗| ≤ 1, 𝜂𝑗 = (𝑎̃𝑗 − 𝑎𝑗) 𝑎̂𝑗 , ∀𝑗⁄ }.  (5) 

Note that 𝑎̃𝑗 = 𝑎𝑗 + 𝜂𝑗𝑎̂𝑗, ∑ 𝑎̃𝑗𝑥𝑗
𝑛
𝑗=1   is rewritten as follows: 

∑ 𝑎̃𝑗𝑥𝑗
𝑛
𝑗=1 = ∑ (𝑎𝑗 + 𝜂𝑗𝑎̂𝑗)𝑥𝑗 = ∑ 𝑎𝑗𝑥𝑗 +

𝑛
𝑗=1

𝑛
𝑗=1

∑ 𝜂𝑗𝑎̂𝑗𝑥𝑗 .
𝑛
𝑗=1   

(6) 

By using the definitions of Equations (4)-(6), 𝑀0 (Equation 

(1)) can be formulated as follows: 

{
  
 

  
 
𝑚𝑎𝑥 ∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1

𝑠. 𝑡:
∑ 𝑎𝑗𝑥𝑗 +𝑚𝑖𝑛∑ 𝜂𝑗𝑎̂𝑗𝑥𝑗 ≤ 𝑏,

𝑛
𝑗=1

𝑛
𝑗=1

∑ |𝜂𝑗|𝑗 ≤ 𝛤,

−1 ≤ 𝜂𝑗 ≤ 1 ∀𝑗 ∈ {1,2, . . . 𝑛},

𝑥𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . 𝑛}.

  (7) 

here 𝑚𝑖𝑛 ∑ 𝜂𝑗𝑎̂𝑗𝑥𝑗
𝑛
𝑗=1  is equivalent to:  

{
 
 

 
 
−𝑚𝑎𝑥∑ 𝜂𝑗𝑎̂𝑗|𝑥𝑗|

𝑛
𝑗=1

𝑠. 𝑡:
∑ 𝜂𝑗
𝑛
𝑗=1 ≤ 𝛤 

0 ≤ 𝜂𝑗 ≤ 1 ∀𝑗 ∈ {1,2, . . . 𝑛},

𝑥𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . 𝑛}.

  (8) 

Duality of Equation (8) can be formulated as follows: 

{
 
 

 
 
𝑚𝑖𝑛 𝛤𝑝 + ∑ 𝑞𝑗

𝑛
𝑗=1

𝑠. 𝑡:
𝑝 + 𝑞𝑗 ≥ 𝑒𝑎𝑗|𝑥𝑗

∗| ∀𝑗 ∈ {1,2, . . . , 𝑛},

𝑞𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . , 𝑛},

𝑝 ≥ 0,

  (9) 

Where 𝑝 and 𝑞𝑗 (∀𝑗 ∈ {1,2, . . . , 𝑛}) are the dual variables. 

Finally, a robust optimization of 𝑀0 (Equation (1)) using 

Bertsimas and Sim’s method can be defined as follows: 

(𝑀3)

{
 
 
 
 

 
 
 
 
𝑚𝑎𝑥∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1

𝑠. 𝑡:
∑ 𝑎𝑗𝑥𝑗
𝑛
𝑗=1 + 𝛤1𝑝 + ∑ 𝑞𝑗

𝑛
𝑗=1 ≤ 𝑏,

𝑝 + 𝑞𝑗 ≥ 𝑒𝑎̂𝑗𝜃𝑗  ∀𝑗 ∈ {1,2, . . . , 𝑛},

−𝜃𝑗 ≤ 𝑥𝑗 ≤ 𝜃𝑗  ∀𝑗 ∈ {1,2, . . . , 𝑛},

𝑥𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . , 𝑛},

𝑞𝑗 , 𝜃𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . , 𝑛},

𝑝 ≥ 0.

  (10) 

 

 

3. PROPOSED OPTIMIZATION MODEL 
 
3. 1. Portfolio Optimization Problem               The 

portfolio optimization based on an improved knapsack 

problem with the cardinality, floor and ceiling, budget, 

class, class limit and pre-assignment constraints can be 

defined as follows:  

(𝑀𝑃):   

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐸(𝑅𝑃) = ∑ 𝑟𝑖𝑥𝑖
𝑛
𝑖=1   (11) 

𝑠. 𝑡.   

∑ 𝑝𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝐵,  (12) 

∑ 𝑦𝑖
𝑛
𝑖=1 = 𝑘,  (13) 

𝑙𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖 ,  ∀𝑖 ∈ {1,2, . . . , 𝑛},  (14) 

𝑦𝑖 ≥ 𝑧𝑖 ,  ∀𝑖 ∈ {1,2, . . . , 𝑛},  (15) 

𝐿𝑚 ≤ ∑ 𝑥𝑖𝑦𝑖∈𝐶𝑚 ≤ 𝑈𝑚,  (16) 

𝑥𝑖 ∈ 𝑖𝑛𝑡,  ∀𝑖 ∈ {1,2, . . . , 𝑛},  (17) 
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𝑦𝑖 ∈ {0,1},  ∀𝑖 ∈ {1,2, . . . , 𝑛}.  (18) 

The proposed portfolio optimization based on the improved 

knapsack problem tries to select a combination of all 

possible combinations in the portfolio that has the highest 

returns according to the constraints. In the other words, the 

objective function given in Equation (11) attempts to select 

a portfolio that has the maximum expected returns with 

respect to the constraints. 𝑟𝑖 , ∀𝑖 ∈ {1,2, . . . , 𝑛} is the return 

of stock and 𝑛is the total number of stocks. 𝑥𝑖 , ∀𝑖 ∈
{1,2, . . . , 𝑛} is the integer variabel that demonstrates the 

number of n per shares. One of the realistic aspects of the 

portfolio optimization problem is considering the budget 

ceiling.  Equation (12) introduces the budget constraint that 

states the sum of the weights of the total assets is less than 

or equal to the financial plan. 𝑝𝑖  is the price of stock 𝑖, 𝐵is 

the total available budget and 𝑥𝑖 is the integer variable that 

represents the number of stock 𝑖. 
Equation (13) introduces the cardinality constraint that 

specifies the number of shares invested in the portfolio to 

provide the model according to the investor's 

expectations.𝑘
 
is the number of shares allowed to appear in 

the portfolio and𝑦𝑖is the binary variable signaling whether 

asset𝑖is involved in the portfolio or not.𝑦𝑖 = 1, if asset i is 

involved in the portfolio, and𝑦𝑖 = 0in any other way.  

Equation (14) explains the floor and ceiling constraints 

that specifies the maximum and minimum ratio of 

investment per share. 𝑙𝑖 and 𝑢𝑖 are the lower and upper 

bound of stock i, respectively. Therefore, Equation (14) 

states that the number of per share should only fluctuate 

between its lower and upper bound [30]. 

Equation (15) introduces the pre-assignment constraint 

that describes the investor’s subjective preferences. A 

stockholder may intuitively prefer a particular set of 

securities to be involved in the portfolio, with its proportion 

either fixed or to be specified. 𝑧𝑖 is the binary vector 

indicating whether stock i is included in the pre-assigned 

set {𝑍} or not that has to be involved in the portfolio or not. 

Equation (16) introduces the class constraints [31], 

when all available shares can be divided into several 

categories based on various features or according to the 

investor’s own intuition or preference (such as energy 

assets and transportation assets), these constraints are used 

to limit the proportion of the portfolio that must be invested 

in a particular category of stocks. In practical terms, 

stockholder may also want to confine the whole proportion 

invested in per class to a defined class limit [32]. 𝑈𝑚 and 

𝐿𝑚 are the lower and upper proportion limit for class 𝑚, 

respectively. 

Equations (17) and (18) explain the structure of the 

decision variables that are binary and integer variables. The 

main difference between the proposed model based on the 

improved knapsack problem with the classical mean-

variance model and its developed models is the type of 

decision variable. The classical mean-variance model is 

based on the continuous variables. One of the primary 

concerns with Markowitz asset allocation is that the 

optimal result may not be necessarily applicable for asset 

allocation when the cost of purchasing specific shares 

which their value is relatively high, e.g. Berkshire 

Hathaway Inc. Representative sample of four shares in a 

portfolio with due regard the budget allocated to these four 

shares is one million dollars and market prices are 340,000, 

1500, 250 and $1600, respectively. The optimal weights 

based on the Markowitz model are of 0.2, 0.4, 0.1, and 0.3. 

Eventually, the number of shares is 0.588, 266.6, 400 and 

187.5, respectively. It goes without saying, the numerical 

quantity of second and forth shares are not a whole number. 

Consequently, the rounding problem is getting more 

important than used to be and we need to develop more 

practical methods to handle the rounding issue. In addition, 

the numerical quantity of first share (0.588) is less than one 

share. This result illustrates that to solve portfolio selection 

models including specific shares which their value is 

relatively high, it is necessary to use portfolio optimization 

with integer variables. Hence, the portfolio optimization 

based on an improved knapsack problem is presented by 

considering discrete (integer and binary) variables. Since 

the proposed model is the mixed- integer programming, it 

has the potency to assign the optimal number to each 

selected share as an integer number and provide an 

acceptable solution for specific shares whose value is 

relatively high.  

In the following, the uncertain condition is considered 

in the proposed portfolio selection model. 

 
3. 2. Robust Portfolio Optimization               In the real 

world, information on financial markets is flawed and the 

decision-making process should be conducted under 

uncertain condition. The unreliability of the parameters is 

explained by uncertain set, which involves all possible 

values for parameters. Since the proposed model is the 

mixed - integer programming, the robust approach of 

Bertsimas and Sim [12, 13] is used. Therefore, a robust 

portfolio optimization based on an improved knapsack 

problem with the cardinality, floor and ceiling, budget, 

class, class limit and pre-assignment constraints can be 

defined as follows: 

(𝑀𝑅):   

𝑀𝑎𝑥𝑖𝑚𝑖𝑧 𝑅𝑃  (19) 

𝑠. 𝑡:   
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𝑅𝑃 −∑ 𝑟𝑗𝑥𝑗
𝑛
𝑗=1 + 𝛤1𝜆1 + ∑ 𝛿1𝑗

𝑛
𝑗=1 ≤ 0,  (20) 

∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 + 𝛤2𝜆2 + ∑ 𝛿2𝑗

𝑛
𝑗=1 ≤ 𝐵,  (21) 

𝜆1 + 𝛿1𝑗 ≥ 𝑒𝑟̂𝑗𝜃𝑗  ∀𝑗 ∈ {1,2, . . . , 𝑛},  (22) 

𝜆2 + 𝛿2𝑗 ≥ 𝑒𝑝̂𝑗𝜃𝑗  ∀𝑗 ∈ {1,2, . . . , 𝑛},  (23) 

−𝜃𝑗 ≤ 𝑥𝑗 ≤ 𝜃𝑗  ∀𝑗 ∈ {1,2, . . . , 𝑛},  (24) 

∑ 𝑦𝑗
𝑛
𝑗=1 = 𝑘,  (25) 

𝑙𝑗𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗𝑦𝑗 ∀𝑗 ∈ {1,2, . . . , 𝑛},  (26) 

𝑦𝑗 ≥ 𝑧𝑗  ∀𝑗 ∈ {1,2, . . . , 𝑛},  (27) 

𝐿𝑚 ≤ ∑ 𝑥𝑗𝑦𝑗∈𝐶𝑚 ≤ 𝑈𝑚  (28) 

𝑥𝑗 ∈ 𝑖𝑛𝑡  ∀𝑗 ∈ {1,2, . . . , 𝑛},  (29) 

𝑦𝑗 ∈ {0,1} ∀𝑗 ∈ {1,2, . . . , 𝑛},  (30) 

𝛿1𝑗 , 𝛿2𝑗 , 𝜃𝑗 ≥ 0 ∀𝑗 ∈ {1,2, . . . , 𝑛},  (31) 

𝜆1, 𝜆2 ≥ 0.  (32) 

Equations (19) and (20) define the objective function that 

maximizes the expected return of the portfolio according to 

the robust optimization method of Bertsimas and Sim. In 

the proposed constrained portfolio selection model is based 

on an improved knapsack problem, the parameters related 

to the price of each stock (𝑝𝑗 , ∀𝑗 ∈ {1,2, . . . , 𝑛}) ⊕ and the 

return of each stock (𝑟𝑗 , ∀𝑗 ∈ {1,2, . . . , 𝑛}) are considered 

as uncertain parameters. Thus, the uncertain parameter of 

stock price j (𝑝𝑗) takes values in [𝑝𝑗 − 𝑝̂𝑗, 𝑝𝑗 + 𝑝̂𝑗], 

where 𝑝𝑗 is the nominal value of stock price 𝑗 and 𝑝̂𝑗 

measures the precision of the estimate. The uncertain 

parameter of stock return j (𝑟̃𝑗) takes values in [𝑟𝑗 −

𝑟̂𝑗 , 𝑟𝑗 + 𝑟̂𝑗], where 𝑟𝑗 is the nominal value of stock return 𝑗 

and 𝑟̂𝑗 measures the precision of the estimate. Therefore, 𝛤1 

and 𝛤2 are defined as the budget of uncertainty in Equations 

(20) and (21), respectively. 𝛤𝑖  is the adjustment of the 

stability of the proposed method versus the conservatism of 

the answer. Moreover, 𝛤1 and 𝛤2 are not necessarily an 

integer number and take values in [0, 𝑛]. In addition, 

according to the robust technique of Bertsimas and sim, 

𝜆1, 𝛿1𝑗 and 𝜆2, 𝛿2𝑗∀𝑗 ∈ {1,2, . . . , 𝑛} are the dual variables in 

Equations (22) and (23), respectively. When 𝑥∗ is the 

optimal solution, at optimality clearly, 𝜃𝑗 = |𝑥𝑗
∗| (Equation 

(24)). Equation (25) is the cardinality constraint, Equation 

(26) is the floor and ceiling constraints, Equation (27) is the 

pre-assignment constraint and Equation (28) is the class 

constraints and class limit constraints. These constraints are 

fully explained in Section (3.1). Moreover, Equations (29)-

(32) explain the structure of the decision variables. 

Eventually, in the following, the aspects and benefits of the 

proposed model are listed.  

• The rounding problem is getting more important than it 

used to be and we need to develop more practical 

methods to handle the rounding issue. Hence, this paper 

also focuses on portfolio optimization with discrete 

variables to eliminate the gap of share rounding.  

• The proposed portfolio selection model is based on 

discrete variables that allow the treatment of some 

portfolio optimization problems in a more realistic way 

and provide the possibility of adding some natural 

aspects to the model. 

• Since the proposed model is the mixed- integer 

programming, it has the potency to assign the optimal 

number to each selected share as an integer number. 

• The proposed portfolio optimization provides an 

acceptable solution for specific shares whose value are 

relatively high. 

• The proposed portfolio selection model considers many 

limitations on real financial markets.  

• One of the primary concerns with most portfolio 

optimization is associated with the type of constraints 

considered with different models. In many cases, the 

resulted problem formulations do not yield in practical 

solutions. Therefore, it is necessary to apply some 

managerial decisions in order to make the results more 

practical. This paper presents a portfolio optimization 

based on an improved knapsack problem with the 

cardinality, floor and ceiling, budget, class, class limit 

and pre-assignment constraints for asset allocation. 

• In the portfolio optimization based on the improved 

knapsack problem, the uncertain condition of the 

parameters is regarded in the target function and 

limitation at the same time.  

• Since the proposed portfolio optimization is the mixed-

integer programming, the robust approach of Bertsimas 

and Sim [12, 13] is used. 

• Finally, the robust knapsack based constrained portfolio 

optimization selects the best portfolio based on 

maximum returns.  

 

 

4. GENETIC ALGORITHM 
 

A   knapsack   problem   is   a   combinatorial   optimization 
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problem [33,34] and one of the classical NP-complete 

problems [35]. Since the proposed portfolio optimization is 

based on the knapsack problem, it is essential to solve a 

wide-ranging problem, applying an approximate algorithm 

that presents a near-optimal answer. GA is believed to be 

one of the most popular techniques for solving large scale 

mixed-integer programming. Khuri et al. [36] illustrated 

that GA can provide a proper solution for NP-complete 

problems such as the 0/1 multiple knapsack problem 

(MKP). In GA, first several random or algorithmic 

responses are generated for the problem. Each answer is 

called a chromosome and the answer set is called primitive 

population. Then, each chromosome will be assigned to the 

value of the objective function. Fitness function is used for 

choosing more suitable chromosomes. These chosen 

chromosomes are combined and mutated with use of the 

operators. Ultimately, the current population is combined 

with a new population that results from the combination 

and mutation in the chromosomes. This process is repeated 

until the final condition is provided [37]. The main steps of 

a simple GA can be found in the literature [31]. Algorithm 

1 shows the stages of genetic algorithm: 
 

Algorithm 1. Pseudocode of GA 

Inputs 

ASSIGN value: population size, crossover rate, mutationrate, 

number of iterations; 

INITIAL population: the initial random population of 

individuals; 

EVALUATE fitness function: fitness function assesses 

whether fits or not; 

Repeat 

SELECT individuals from the next generation population: 

 (Using roulette wheel selection and regarding all 

constraints); 

RECOMBINE pairs of parents (single point crossover with 

selected probability); 

MUTATE the offspring (swap mutation for permutation with 

selected probability); 

EVALUATE whether new individuals fit or not; 

REPLACE some or all of the population by the children; 

UNTIL a satisfactory solution has been found based on the 

fitness function; 

END. 

In the following, each section is separately described: 

- Generic encoding: The representation is the first step to 

solve the problems with meta-heuristic algorithms. In 

genetic algorithms, each chromosome illustrates a point in 

the search space and a possible solution to the problem. The 

chromosome of this study includes a matrix(2 × 𝑛). The 

first row contains a binary (zero or one) string that shows 

the selected stocks. “1” is assigned to stocks that are 

selected and “0” is assigned to stocks that are not selected. 

The second row contains a string of integers that represent 

the number of stocks that are between their upper and lower 

bounds. Figure 1 shows a simple example of the 

representation for encoding the portfolio optimization 

problem:  

- Fitness function: A fitness function has to be used to 

measure the fitness value of each individual chromosome 

within the population of every generation. For each 

chromosome, a fitness function returns a number that 

indicates the suitability or individual ability of that 

chromosome. In this study, the fitness function is defined 

as the total returns, which must have the possible maximum 

value (Equation (11)). 

- Handling of configuration limitations: Moreover, to 

achieve possible results, each chromosome has to convince 

the existing limitations. A number of ways to handle 

constraints have been introduced in the literature, such as 

repairing, special representations, variable restriction, 

penalty function and modifying generic operator methods 

[38,39]. In this study, the repair mechanism, special 

representations and variable restriction are applied for 

constraints. For instance, Equations (12) and (14) are 

repaired between their lower and upper bounds, if they 

exceed their limit. Equations (13) and (15) have special 

binary representations and generate valid solutions. 

Equations (17) and (18) have variable restriction, which 

randomly generate the integer and binary numbers, 

respectively. Moreover, if Equation (16) is not provided, 

the answers are generated from the beginning. 

- Initial population: Initialization includes producing 

primary solutions to the optimization problem. The primary 

solutions can be created either randomly or using some 

heuristic approaches [40]. In this research, according to the 

generic encoding, the initial population is selected 

randomly. Then, this initial random population is checked 

in all constraints based on handling of configuration 

constraints. Finally, the algorithm begins with a valid 

response. 

- Selection and reproduction: In this research, the roulette 

wheel selection method is used. The roulette wheel method 

is one of the most suitable random selection operators that 

are filled with the cumulative probabilities based on the 

fitness function of each chromosome. The more elegant 

chromosomes, the more likely they will be selected for 

reproduction. 

 

 
 S1 S2 S3 … Sn-

2 

Sn-

1 

Sn 

𝑦𝑖 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}
∈ {0,1} 

1 0 1 … 0 1 0 

𝑥𝑖 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
∈ 𝑖𝑛𝑡 

5 3 10 … 6 12 9 

 

Figure 1. Representation of chromosome in GA 
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Crossover and mutation: The purpose of this process is 

to maintain the crowd diversity and variety and also to 

prevent early and incomplete convergence at a local 

optimum. But this process should not always occur because 

it creates a purely random search in the search space. In this 

research, a single point crossover method is used. In this 

operator, a random position is considered between two 

genes in the parent chromosomes. A new pair of 

chromosomes is obtained by changing all genes in the right 

or left side of this position. After the crossover operation is 

completed, the mutation operator acts on the chromosomes. 

In this research, swap mutation for permutation is used 
[41]. This operator randomly selects two genes from a 

chromosome and then changes them together. Figures 2 

and 3 show a simple example of the single point crossover 

and the swap mutation, respectively. 

The purpose of the crossover and mutation are to 

maintain the crowd diversity and variety and also to prevent 

early and incomplete convergence at a local optimum. But 

this process should not always occur because it creates a 

purely random search in the search space [42]. 

 

 

5. CASE STUDY: APPLICATION TO THE STOCKS OF 
US 
 

5. 1. Numerical Analysis                  The numerical analysis 

of the proposed study is associated with the shares of the 

NASDAQ stock exchanges, the Dow Jones Industrial 

Average (DJIA) and S&P 500 index listed in US stock 

market and includes daily financial time series data from 

February 2, 2014 to February 2, 2019; totaling 1259 trading 

days. The information about the price and returns of any 

stocks and their upper and lower bounds that are used in 

this research are available in Appendix A. Results are 

obtained for the constrained portfolio selection model with 

cardinality 𝑘 = {5,6,7,8,9,10}, uncertain paremeters 𝛤𝑖 = 

 

 
A 0 1 0 1 0 1 1  0 1 1 0 0 1 0 

 4 5 1 9 6 2 7  4 5 4 1 6 1 3 

        
 

       

B 1 1 1 0 0 1 0  1 1 0 1 0 1 1 
 1 8 4 1 6 1 3  1 8 1 9 6 2 7 

 Parent chromosomes  offspring chromosomes 
 

Figure 2. Single point crossover 
 

 
0 1 0 1 0 1 1  0 0 0 1 1 1 1 

4 5 1 9 6 2 7  4 6 1 9 5 2 7 

Parent chromosome  offspring chromosome 
 

Figure 3. Swap mutation 

{5,6,7,8,9,10}, pre-assignment 𝑍 = {3}, class  𝑀 = 3 with 

10, 10, 10 assets in each class (i.e., 𝐶1 ∈ {𝑠1, . . . , 𝑠10}, 𝐶2 ∈
{𝑠11, . . . , 𝑠20}, 𝐶3 ∈ {𝑠21, . . . , 𝑠30}), and 𝐿𝑚 = 8, 𝑈𝑚 = 200 

for each 𝑚 = 1,2,3. In addition, the degree of confidence 

is considered 95%. 

First, the proposed model using deterministic 

parameters is solved with GAMS software. Given that the 

portfolio optimization based on an improved knapsack 

problem is the mixed-integer programming and the 

solutions are based on the assumed budget. Therefore, the 

GAMS software has the capability to specify the optimal 

portfolio with cardinality 𝑘 = {5,6,7,8,9,10} and cannot 

solve this problem in larger dimensions.  

Then, the robust optimization model (𝑀𝑅) based on the 

different values of uncertain parameters 𝛤𝑖 =
{5,6,7,8,9,10} and different cardinalities 𝑘 =
{5,6,7,8,9,10} is solved with GAMS software. It should be 

noted that the uncertain parameters take values in 𝛤𝑖 ∈ (0𝑘] 
for each 𝑘. In fact, 𝛤𝑖 = 0 represents results in nominal 

solution and 𝛤𝑖 = 𝑘 represents the worst case scenario 

where uncertainty exists among all input parameters. Table 

1 shows the results of solving the certain and robust 

optimization model for different cardinalities 𝑘 =
{5,6,7,8,9,10}.  

As shown in Table 1, the objective function, which is 

the maximum returns, has a declining trend by increasing 

the uncertainty parameter in proposed optimization 

problem with different cardinalities, which means that the 

value of the target function decreases with an increase in 

risk. This process reflects the validity of the proposed 

model.  

Table 1 illustrates the important role of risk assessment 

in the proposed model and different results are obtained by 

considering various values for the uncertain parameters. 

The mean of these solutions is significantly different from 

the nominal values. For instance, the expected return of the 

proposed model with cardinality 𝑘 = 10 and uncertain 

parameters 𝛤𝑖 ∈ [010] lies in [3.22240 3.92010] where 𝛤𝑖 =
0 demonstrates the expected return of the portfolio in 

nominal solution that is 3.92010 and 𝛤𝑖 = 10 demonstrates 

the expected return of the portfolio based on the worst case 

scenario among all input parameters that is 3.22240. The 

standard error of mean and standard deviation of these two 

solutions are 0.349 and 0.493, respectively. Other values of 

𝛤𝑖  result in the expected return between 3.22240 to 3.92010. 

Moreover, the selected shares of the portfolio are different 

based on the different uncertain parameters (except stocks 

that include pre-assignment constraint). 

In the following, the consequences of the exact solution 

should be contrasted with the consequences of the proposed 

GA  in  small  dimensions  to  measure  the  validity  of  the 
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TABLE 1. Exact solutions of the certain and robust model 

 𝒌 = 𝟓 𝒌 = 𝟔 𝒌 = 𝟕 𝒌 = 𝟖 𝒌 = 𝟗 𝒌 = 𝟏𝟎 

𝜞𝒊 = 𝟎  E(R)= 5.35853 

X7=8, X12=12 

X19=19, X24=40 

X29=8 

E(R)= 5.26656 

X5=10, X7=8 

X12=15, X19=10 

X24=40, X29=8 

E(R)= 5.13979 

X5=11, X7=8 

X10=11, X19=9 

X24=40, X28=7 

X29=8 

E(R)= 4.78896 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=36 

X28=7, X29=8 

E(R)= 4.35559 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=28 

X26=1, X28=7 

X29=8 

E(R)= 3.92010 

X2=1, X5=10 

X7=8, X8=1 

X10=11, X19=8 

X24=20, X26=1 

X28=7, X29=8 

𝜞𝒊 = 𝟓  E(R)=4.83100 

X7=8, X12=12 

X19=16, X24=40 

X29=8 

E(R)=4.80158 

X5=10, X7=8 

X12=12, X19=10 

X24=39, X29=8 

E(R)=4.66865 

X5=10, X7=8 

X10=11, X19=8 

X24=38, X28=7 

X29=8 

E(R)=4.31243 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=31 

X28=7, X29=8 

E(R)=3.90130 

X5=10, X7=8 

X9=1, X10=11 

X19=8, X24=23 

X26=1, X28=7 

X29=8 

E(R)=3.35206 

X2=1, X5=10 

X7=8, X8=1 

X10=11, X11=1 

X19=8, X24=21 

X26=1, X29=8 

𝜞𝒊 = 𝟔  - E(R)= 4.76082 

X5=10, X7=8 

X12=14, X19=8 

X24=40, X29=8 

E(R)= 4.59583 

X5=10, X7=8 

X10=11, X19=8 

X24=37, X28=7 

X29=8 

E(R)= 4.23961 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=30 

X28=7, X29=8 

E(R)= 3.83289 

X5=10, X7=8 

X8=1, X19=8 

X24=22, X26=1 

X27=9, X28=7 

X29=8 

E(R)= 3.33038 

X2=1, X5=10 

X7=8, X8=1 

X11=1, X19=8 

X24=22, X26=1 

X28=7, X29=8 

𝜞𝒊 = 𝟕  - - E(R)= 4.58944 

X5=10, X7=8 

X10=11, X19=8 

X24=37, X28=7 

X29=8 

E(R)= 4.21518 

X5=10, X7=8 

X10=11, X19=8 

X24=20, X27=9 

X28=7, X29=8 

 

E(R)= 3.82209 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=22 

X26=1, X28=7 

X29=8 

E(R)= 3.29217 

X2=1, X5=10 

X7=8, X8=1 

X10=11, X11=1 

X19=8, X24=20 

X26=1, X29=8 

𝜞𝒊 = 𝟖  - - - E(R)= 4.17971 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=29 

X28=7, X29=8 

E(R)= 3.76858 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=21 

X26=1, X28=7 

X29=8 

E(R)= 3.27627 

X2=1, X5=10 

X7=8, X8=1 

X11=1, X19=8 

X24=21, X26=1 

X28=7, X29=8 

𝜞𝒊 = 𝟗  - - - - E(R)= 3.76801 

X5=10, X7=8 

X8=1, X10=11 

X19=8, X24=21 

X26=1, X28=7 

X29=8 

E(R)= 3.22287 

X2=1, X5=10 

X7=8, X8=1 

X11=1, X19=8 

X24=20, X26=1 

X28=7, X29=8 

𝜞𝒊 = 𝟏𝟎  - - - - - E(R)= 3.22240 

X2=1, X5=10 

X7=8, X8=1 

X11=1, X19=8 

X24=20, X26=1 

X28=7, X29=8 

 

 
proposed GA for its use in larger dimensions. Hence, the 

Taguchi method is applied to choose proper parameters. 

Taguchi approach is applied for four parameters of the 

proposed GA (number of iterations, population size, 

mutation rate, crossover rate) at three different 

levels. {200,500,1000} is employed for the number of 

iterations and the population size; 0.05, 0.5 and 0.2 for the 

mutation rate; 0.8, 1 and 0.7 for the crossover rate. 

Table 2 presents the parameter setting of the 

implemented GA for the certain and robust model. 
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TABLE 2. Parameter setting of GA 

Parameter 
Certain optimization 

model 

Robust optimization 

model 

Number of iterations 500 500 

Population size 1000 500 

Crossover method 
Single point crossover 

𝑃𝑐 = 1.0 

Single point crossover 

𝑃𝑐 = 1.0 

Mutation method 

Swap mutation for 
permutation 

𝑃𝑚 = 0.05 

Swap mutation for 
permutation 

 𝑃𝑚 = 0.2 

 

 

Table 3 presents the results of the five-time 

implementation of the proposed GA for the certain 

optimization model (𝛤𝑖 = 0) with different cardinalities 

𝑘 = 5,6,7,8,9,10. Then, Table 4 and Figure 4 presents a 

comparison of the exact solutions with GA solutions in the 

certain optimization model (𝛤𝑖 = 0) with different 

cardinalities 𝑘 = 5,6,7,8,9,10. 

Table 5 gives the results of the five-time 

implementation of the proposed GA for the robust 

optimization model with different cardinalities 𝑘 =
5,6,7,8,9,10 and uncertain parameters 𝛤𝑖 = 5. Then, Table 

6 and Figure 5 presents a comparison of the exact solutions 

with GA solutions  in the  robust optimization  model  with 
 
 

TABLE 3. GA solutions of the certain optimization model 

No. 
Size 

K=5 K=6 K=7 K=8 K=9 K=10 

1 5.3313 5.2665 5.1096 4.7889 4.3513 3.9200 

2 5.3585 5.2609 5.1250 4.7425 4.3207 3.8976 

3 5.3384 5.2652 5.0960 4.7379 4.3112 3.9173 

4 5.3449 5.2582 5.1232 4.7639 4.3046 3.9012 

5 5.3558 5.2395 5.0935 4.7868 4.3555 3.9200 

Mean 5.3458 5.2581 5.1095 4.7641 4.3287 3.9113 

SE. Mean 0.0051 0.0048 0.0065 0.0107 0.0105 0.0048 

S.D. 0.0115 0.0109 0.0147 0.0239 0.0234 0.0109 

 

 
TABLE 4. Compression of the exact results with GA results for 

the certain optimization model 

 
Size 

K=5 K=6 K=7 K=8 K=9 K=10 

Exact 5.3585 5.2665 5.1397 4.7889 4.3555 3.9201 

GA 5.3458 5.2581 5.1095 4.7641 4.3287 3.9113 

SE. Mean 0.0063 0.0042 0.0151 0.0124 0.0134 0.0044 

S.D. 0.0090 0.0059 0.0214 0.0176 0.0190 0.0063 

P-Value* 0.001 0.001 0.002 0.002 0.002 0.001 

* denotes rejection of the hypothesis at the 0.01 level 

 
Figure 4. Comparison of the exact solutions with GA solutions 

for the certain optimization model 

 

 

different cardinalities 𝑘 = 5,6,7,8,9,10 and uncertain 

parameters 𝛤𝑖 = 5. 

As can be seen in Table 4, the standard errors of mean 

(SE. Mean), standard deviations (S.D.) and probability 

values (P-value) are less than 0.0151, 0.0214 and 0.002, 

simultaneously. In addition, in TABLE 6, SE. Mean, S.D. 

and P-value are less than 0.0267, 0.0377, and 0.004, 

simultaneously.  
 

 

TABLE 5. GA solutions for the robust optimization model 

 
 Size 

 K=5 K=6 K=7 K=8 K=9 K=10 

𝜞 = 𝟓  

1 4.7529 4.7423 4.6486 4.2628 3.8800 3.3204 

2 4.7919 4.7608 4.5762 4.2441 3.8678 3.3249 

3 4.8284 4.7357 4.6576 4.2548 3.8996 3.2950 

4 4.7912 4.7570 4.6422 4.2461 3.8745 3.3518 

5 4.8310 4.7450 4.6187 4.3068 3.8658 3.2921 

Mean  4.7991 4.7482 4.6287 4.2629 3.8775 3.3168 

SE.Mean  0.0144 0.0046 0.0146 0.0115 0.0060 0.0109 

S.D.  0.0321 0.0105 0.0327 0.0256 0.0136 0.0244 

 

 

TABLE 6. Compression of the exact solutions with GA solutions 

for the robust optimization model 

 
Size 

K=5 K=6 K=7 K=8 K=9 K=10 

Exact 4.8310 4.8015 4.6686 4.3124 3.9013 3.3520 

GA 4.7991 4.7482 4.6287 4.2629 3.8775 3.3168 

SE.Mean 0.0160 0.0267 0.0199 0.0248 0.0119 0.0176 

S.D. 0.0226 0.0377 0.0282 0.0350 0.0168 0.0249 

P-Value* 0.002 0.004 0.003 0.004 0.002 0.003 

* denotes rejection of the hypothesis at the 0.01 level 
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Figure 5. Comparison of the exact solutions with GA 

solutions for the robust optimization model 

 

 

Finally, all results show that the used GA is very 

suitable for solving the proposed portfolio selection model 

in small dimensions. All results confirm the reliability and 

credibility of the used GA for the suggested model. Hence, 

the used GA can be cited in larger dimensions as well. 

 

 

6. CONCLUSION  
 

One of the main concerns with Markowitz asset allocation 

is that the optimal result may not be necessarily applicable 

for asset allocation when the cost of purchasing specific 

shares which their value is relatively high. In this essay, we 

have suggested the portfolio optimization based on the 

improved knapsack problem with the cardinality, floor and 

ceiling, budget, class, class limit and pre-assignment 

constraints for asset allocation. To handle uncertainty 

associated with different parameters of the proposed model, 

we have used robust optimization techniques. 

The proposed model was investigated with some 

realistic data from US stock market. The portfolio 

optimization based on an improved knapsack problem was 

solved using GAMS software in small dimensions. Since 

the complexity of the knapsack problem is NP-complete, it 

is not possible to use common mathematical and exact 

methods to reach the optimal answer in large dimensions. 

Therefore, the proposed model was solved using GAin 

larger scales. The results of this research show that the 

robust portfolio optimization model has high reliability and 

efficiency in stock market optimization and the used GA is 

valid for solving this model in large dimensions. 

Since the proposed model based on the improved 

knapsack problem is the mixed- integer programming, it 

has the potency to assign the optimal number to each 

selected share as an integer number and provides an 

acceptable solution for specific shares whose value is 

relatively high. Finally, due to the limitations of real 

financial markets, the proposed model maximizes the 

returns of investment and considers the uncertain 

conditions, simultaneously. 

 

 

7. APPENDIX A 
 
data. Data related to this paper can be found at 

https://my.pcloud.com/publink/show?code=XZ5WWhkZ

Av23S9ISmyYd8ljhFUgLfQSNnkkV 
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Persian Abstract 

 چکیده 

 ها،یی دارا صیتخص یسنت یهاروش  .است سهام بازار در بالا نسبتا   خالص ارزش  با ییهاییدارا یبرا سهام تعداد نییتع  ،یگذارهیسرما سبد یسازنهیبه در یاساس یهای نگران  از یکی

 لازم ن،یبنابرا د.باشینم یعمل ت،یواقع  در هک باشد بازار در سهم از یمین میتقس دهندهنشان است نکمم نسبت نیا و دهندیم ارائه درصد عنوان به را حلهرا تزیوکمار هیقض مانند

 همزمان بطور مختلف یهاتیمحدود گرفتن نظر در به مربوط ها،ی نگران نیتریاصل از گرید یکی ن،یهمچن .شود شنهادیپ ییدارا هر یبرا سهام نهیبه تعداد نییتع  یبرا یروش است

 لاسک لاس،ک بودجه، سقف، و فک ،یتینالیاردک یهاتیمحدود گرفتن نظر در با یپشتولهک مسئله اساس بر یگذارهیسرما سبد یسازنهیبه مدل یک مقاله نیا در .است هامدل در

 بزرگ  ابعاد در هاحلراه  افتن ی ی برا یکژنت  تمیالگور یک سرانجام، .شودی م  ارائه تیقطع  عدم ط یشرا تحت  هایی دارا صیتخص یبرا شدهن ییتع  شیپ یهاتیمحدود و شده محدود

 .است شده انجام متحده الات یا بهادار اوراق بورس در موجود سهام از یتعداد یرو بر یمورد مطالعه ت.اس شده یطراح

 


