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A B S T R A C T  
 

This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear 

multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical 
uncertainties. Compared with the previous studies which primarily concentrated on linear single-input 

single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is 

applied on affine nonlinear agents with nonlinear control gain such as the quadrotor. This designing 
procedure overcomes the problem of unknown nonlinear affine functions of the quadrotors. Fuzzy 

systems are engaged both to compensate recursively the unknown nonlinear functions and to apply the 

expert’s knowledge on the formation technique. On-line updating the controller parameters, achieving 
the formation of quadrotor, boundedness of all signals involved in the closed loop of the quadrotor, and 

chattering reduction are the focal features of the proposed formation methodology. To demonstrate the 

persistency and efficiency of the methodology, a numerical example of the multi-quadrotor system is 
considered in this paper. 

doi: 10.5829/ije.2020.33.05b.11 
 

NOMENCLATURE 

Symbol Description Symbol Description 

G Graph theory 𝜑 Roll angle 

V node 𝜃 Pitch angle 

E edge 𝜓 Yaw angle 

A Adjecency U1 Total upward force 

D Degree matrix U2 Pitch torque 

L Laplacian U3 Roll torque 

x Position along x-axis U4 Yaw torque 

y Position along y-axis z Position along z-axis 

 
 

1. INTRODUCTION1 
 

In recent years, the formation of multi-agent systems has 

received influential consideration because of its broad 

applications, such as UAV formation flying, wireless 

sensor network and formation of the quadrotor. The poor 

information about the agents, such as the parameters and 

the interaction between them, is the main difficulty to 

achieve the formation in this approach. 

 

*Corresponding Author Institutional Email: r.ghasemi@qom.ac.ir  

(R. Ghasemi) 

Ghasemi settled a fuzzy sliding mode adaptive 

controller technique for coupled nonlinear large scale 

systems [1]. Both the leaderless [2] and the leader-

follower consensus [3] were comprehensively improved 

for the first-order and second-order multiagent systems 

(MAS). Intelligent adaptive back-stepping technique is 

deliberated for the nonlinear strict-feedback system [4, 

5]. The impulsive methodology is used to derive the 

consensus protocol for the nonlinear MAS [6]. The 
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leader-follower controller is designated for the single 

integrator with time delayed communication [7]. The 

high gain observer based fuzzy adaptive protocol is 

planned by Chen et al. [2] for the heterogeneous second 

order MAS without guaranteed stability.  

Observer based adaptive back-stepping consensus 

controller is discussed for nonlinear affine MAS [8]. The 

fuzzy adaptive sliding mode controller is industrialized 

for affine nonlinear MAS [9]. Neuro-adaptive consensus 

procedure is suggested for the nonlinear affine strict-

feedback MAS by Shen et al. [10]. In the above literature, 

it is assumed that the control gains of the agents are 

constant and equal to 1.  

Fuzzy adaptive back-stepping controller is discussed 

for a class of affine nonlinear systems by Wang et al. [11] 

based on high gain observer. Neuro-adaptive protocol is 

suggested by Wang et al. [12] for time-delay affine 

nonlinear systems. Wang et al. [13], designed observer 

based TS fuzzy system which is planned for an industrial 

system. The fault tolerant output predictive controller is 

improved for industrial processes [14]. 

A distributed robust leader-follower formation 

controller methodology is designated by Wang et al. [15] 

in presence of the mobile obstacles. The sliding mode 

formation controller is derived by Sanchez and Fierro 

[16]. Defoort et al. [17] have suggested a sliding mode 

controller for formation of a multi-robot with limited data 

accessibility.  

A second-order sliding mode controller is presented by 

Chang et al. [18] to form a prescribed geometry. Guillet 

et al. [19] have studied a robust adaptive controller to 

preserve mobile robots’ formation considering 

parametric uncertainties. A distributed robust formation 

controller has been presented by Shasti et al. [20] to study 

space-craft flight with six-degree of freedom in the earth 

orbit.  

A constrained model predictive controller is derived 

for linear time varying system via Kautz Parametrization 

[21]. Li et al. [22] developed a learning methodology for 

a nonlinear feature collection. Brustad [23] derived a 

curve geometry for both the reality and the virtual one. A 

vehicle counting system was developed based on Kalman 

filter by Espejel-García et al. [24]. Berdnikov and Lokhin 

[25] proposed a new approach to investigate the stability 

criteria  for  nonlinear  system  based  on  a  fuzzy 

controller. 

Compared with the previous studies which primarily 

concentrated on linear single-input single-output (SISO) 

agents or nonlinear agents with constant control gain, the 

proposed method is applied on affine nonlinear agents 

with nonlinear control gain such as a quadrotor. Because 

of 1) unknown nonlinear function of the agents, 2) 

applying the knowledge of the experts, 3) stability of the 

overall closed loop system, we emphasis on the policy of 

stable fuzzy adaptive sliding mode controller for a class 

of multi-agent affine nonlinear systems. The focal 

contributions of this methodology are as: 1) dynamics of 

the agents are all unknown affine nonlinear functions, 2) 

the robustness against uncertainties and external 

disturbances is guaranteed, 3) the boundedness of the 

signals in MAS is satisfied, 4) convergence of the 

formation error to zero is assured, and 5) stability of the 

overall MAS is gratified.  

The remainder of the paper is prearranged as follows. 

Section 2 gives preliminaries. Designing fuzzy adaptive 

sliding mode controllers is proposed in Section 3. Section 

4 presents simulation results of the proposed controller, 

and Section 5 concludes the paper. 

 
 

2. PRELIMINARIES 
 
This section discusses about the basics of the graph 

theory, Kronecker mathematics and the problem 

statement.  

 
2. 1. Graph Theory                An undirected graph is 

denoted as G = (V, E), where V = {1, 2, …, N} is a finite 

and non-empty set of nodes (each node denotes the 

follower), there are N followers for i = {1, 2,…, N}, and 

also 𝐸 ⊂ 𝑉 × 𝑉 is a set of edges, each edge denotes an 

ordered pair of nodes. An edge(𝑣𝑖 , 𝑣𝑗) in an undirected 

graph shows that the agent i can access to the information 

of agent j, and it means that the agent j is the 

neighborhood of agent i. Let’s define an adjacency 

matrix A = [aij] associated with graph G as follows: aij = 

aji > 0 if (𝑣𝑖 , 𝑣𝑗) ∈  𝐸 , otherwise aij = aji = 0. Moreover, 

it is assumed that aii = 0 for i = {1, 2, …, N}. The set of 

neighbors of agent i is denoted by 𝑁𝑖  =  {𝑗 | (𝑣𝑖 ,  𝑣𝑖) ∈
 𝐸}. Define the degree matrix as D = diag(d1, …, dN) with 

𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖
. The symmetric Laplacian matrix 

corresponding to the undirected graph G is defined as 

follows: 𝐿 = 𝐷 − 𝐴. The leader agent is represented by 

vertex 0, and information is exchanged between the 

leader and the followers that are the neighbors of the 

leader.  

 
2. 2. Kronecker Mathematics          Kronecker 

multiplication, shown with the symbol ⊗,  is used in the 

context of MAS. For two matrices G and F, the operation 

𝐺 ⊗ 𝐹 produces a matrix with dimensions 𝑚𝑝 × 𝑛𝑞 

when matrix 𝐺 = [𝑎𝑖𝑗] with dimensions  𝑚 × 𝑛 and 

matrix F with dimensions 𝑝 × 𝑞 are available or given: 

𝐺 ⊗ 𝐹 =

[
 
 
 
 
 
𝑎11𝐹 . . . . 𝑎1𝑛𝐹

. .

. .

. .

. .
𝑎𝑚1𝐹 . . . . 𝑎𝑚𝑛𝐹]

 
 
 
 
 

  

Consider the following nonlinear canonical multi-agent 

system in Equation (1).  
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{

𝑥̇𝑖 = 𝑣𝑖𝑖 = 1,2, . . . , 𝑁
𝑣̇𝑖 = 𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖 + 𝑑𝑖(𝑡)

𝑦𝑖 = 𝐶𝑖
𝑇 [
𝑥𝑖
𝑣𝑖
]

  (1) 

where 𝑥𝑖 , 𝑣𝑖 are the state variable of the ith agent. N is a 

number of agents and 𝑢𝑖 ∈ ℝ is the control input and 𝑦𝑖 ∈
ℝ is the output of ith agent and 𝐶𝑖 is apropriate mtrice. It 

should be mentioned that state variables of all agents are 

accessible. 𝑓𝑖(𝑥𝑖) and 𝑔(𝑥𝑖) are nonlinear smooth and 

unknown functions and 𝑑𝑖(𝑡) is bounded external 

disturbance. Based on 𝑧𝑖 = [𝑥𝑖 𝑣𝑖]𝑇, the above equation 

can be rewritten as Equation (2).  

{
𝑧̇𝑖 = 𝐴𝑧𝑖 + 𝐵(𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖 + 𝑑𝑖(𝑡))

𝑦𝑖 = 𝐶𝑖
𝑇𝑧𝑖

  (2) 

where matrix 𝐴and vector 𝐵 are defined as follows. 

 A= [
0 1
0 0

] , 𝐵 = [
0
1
]  (3) 

Purposes of the controller are both to keep signals of the 

closed loop system bounded, and to obtain a 

predetermined formation for the agents.  

In this section, the following assumptions are 

considered for the agents of the form (2):  

Assumption 1: without loss of generality, it is assumed 

that smooth functions 𝑔(𝑥𝑖) ≠ 0 and 𝑓𝑖(𝑥𝑖) are 

continuous. In addition, without loss of generality, it is 

assumed that 𝑔(𝑥𝑖) > 𝑔𝑚𝑖𝑛  and 
𝑑𝑔(𝑥𝑖)

𝑑𝑡
> 𝑔𝑚𝑖𝑛

′  are 

satisfied which can be rewritten for 𝑔(𝑥𝑖) < 0.    

Assumption 2: external disturbances given in Equation 

(2) satisfies the inequality mentioned in (4).  

‖𝑑𝑖(𝑡)‖∞ ≤ 𝑑𝑚𝑎𝑥   (4) 

𝑑𝑚𝑎𝑥  is a known value.  

Assumption 3: the agents given in Equation (2) are 

controllable and observable.  

Assumption 4: the graph of the system is undirected with 

spanning tree.  

The closed form of the multi-agent system mentioned 

in Equation (2) can be written in the form of Equation (5).  

{
𝑍̇ = (𝐼𝑁⊗𝐴)𝑍 + (𝐼𝑁⊗𝐵) (

𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖
+𝑑𝑖(𝑡)

)

𝑌 = (𝐼𝑁⊗𝐶𝑖
𝑇)𝑍

  (5) 

In the above equation, 𝑌 = [𝑦1, 𝑦2, ⋯ 𝑦𝑁]𝑇 ∈
ℝ𝑁and𝑍 = [𝑧1, 𝑧2, ⋯ 𝑧𝑁]𝑇 ∈ ℝ𝑛.𝑁are the output 

and the state vector and of the general multi-agent 

system, respectively. 𝐼𝑁depicts for Identity matrice with 

dimention N. 

In order to control the mentioned multi-agent system 

in Equation (2), a formation error of the ith agent can be 

described as in Equation (6).  

𝑒𝑖 = 𝑘𝑝(𝑥0 − 𝑥𝑖 − 𝛥𝑖) + 𝛾𝑘𝑣(𝑣0 − 𝑣𝑖) +

𝑐 ∑ 𝑎𝑖𝑗((𝑥𝑗 − 𝛥𝑗 − 𝑥𝑖 + 𝛥𝑖) − 𝛾(𝑣𝑗 − 𝑣𝑖))𝑗∈𝑁𝑖   
(6) 

where 𝑥0 is the position of the leader, 𝑣0 is the velocity 

of the leader, 𝛥𝑖 is the difference position of the ith agent 

with the leader and 𝑁𝑖 is the neighborhood of the ith 

agent.  

After some mathematical manipulation, the closed 

form of the multi-agent system in Equation (6) can be 

written in overall form as Equation (7). 

𝐸 = (𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗ 𝐵𝐾)𝑍  (7) 

where 𝐸 = [𝑒1 𝑒2 ⋯ 𝑒𝑁]𝑇 is the error vector of the 

multi-agent system, 𝑘𝑍 = [𝑘𝑝 𝑘𝑣]𝑇, and L is the 

Laplacian matrix and 𝑍 is defined as follows.  

𝑍𝑖 = [
𝑥0 − 𝑥𝑖 − 𝛥𝑖
𝑣0 − 𝑣𝑖

]  (8) 

By defining 𝑍𝑖0 = [𝑥0 𝑣0]𝑇 and 𝑍𝑖𝑑 = [𝛥𝑖 0]𝑇, the 

above equation can be written in the form of Equation 

(9). 

𝑍𝑖 = 𝑍𝑖0 − 𝑍𝑖 + 𝑍𝑖𝑑  (9) 

Consider the dynamics of 𝑍0 and 𝑍𝑑 as follows.  

{
𝑍̇𝑑 = (𝐼𝑁⊗𝐴)𝑍𝑑 + (𝐼𝑁⊗𝐵′)𝑟𝑑

𝑌𝑑 = (𝐼𝑁⊗𝐶𝑖
𝑇)𝑍𝑑

 

{
𝑍̇0 = (𝐼𝑁⊗𝐴)𝑍0
𝑌0 = (𝐼𝑁⊗𝐶𝑖

𝑇)𝑍0
 

(10) 

The closed form of Equation (9) is as: 

𝑍̇ = 𝑍̇0 − 𝑍̇𝑖 + 𝑍̇𝑑  (11) 

Using Equations (10) and (5), Equation (11) can be 

designated in Equation (12). 

𝑍̇ = (𝐼𝑁⊗𝐴)𝑍0 − (𝐼𝑁⊗𝐴)𝑍 + (𝐼𝑁⊗𝐴)𝑍𝑑 

+(𝐼𝑁⊗𝐵) (
𝑓𝑖(𝑥𝑖)
+𝑔(𝑥𝑖)𝑢𝑖 + 𝑑𝑖(𝑡)

) + (𝐼𝑁⊗𝐵′)𝑟𝑑 
(12) 

Considering the formation error mentioned in Equation 

(7), the dynamics of the formation error can be derived in 

Equation (13). 

𝐸̇ = (𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗ 𝐵𝐾)(𝐼𝑁⊗𝐴)𝑍 

+(𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗ 𝐵𝐾)(𝐼𝑁⊗

𝐵)(

𝑓𝑖(𝑥𝑖)

+𝑔(𝑥𝑖)𝑢𝑖
+𝑑𝑖(𝑡)

) + (𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗

𝐵𝐾)(𝐼𝑁⊗𝐵′)𝑟𝑑 

(13) 

Theorem 1: Assume that the function 𝑓𝑖(𝑥𝑖) and 𝑔(𝑥𝑖) 
are both continuously differentiable for any arbitariry 

(𝒙𝑖 , 𝑢𝑖) ∈ ℝ
𝑛 × ℝ and there exists a constant value 𝑔𝑚𝑖𝑛 

which satisfies the assumption 1. Then, there exists a 

continuous function like 𝑢𝑖
∗ = 𝑢𝑖(𝒙𝑖) such that 𝑓𝑖(𝑥𝑖) +

𝑔(𝑥𝑖) 𝑢𝑖
∗( 𝒙𝑖) = 0.   

Considering Theorem 1, it is clear that equation 

𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖 − 𝑣𝑖 = 0 can be solved locally with 

respect to control input 𝑢𝑖 for any arbitrary (𝑥̱𝑖 ,v𝑖); 
therefore, an ideal control input 𝑢𝑖

∗(𝑥̱𝑖 ,v𝑖) for any 
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arbitrary (𝑥̱𝑖 ,v𝑖) ∈ ℝ𝑛× ℝ, should satisfy the following 

equation.  

𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖
∗(𝑥̱𝑖 ,v𝑖)  − 𝑣𝑖 = 0  (14) 

Using the mean value theorem, Equation (15) can be 

attained. 

𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖 = 𝑓𝑖(𝑥𝑖) +
𝑔(𝑥𝑖)𝑢𝑖

∗(𝑥̱𝑖 ,v𝑖) +𝑔(𝑥𝑖)(𝑢𝑖 -u𝑖
∗(𝑥̱𝑖 ,v𝑖) ) = 𝑓𝑖(𝑥𝑖) +

𝑔(𝑥𝑖)𝑢𝑖
∗(𝑥̱𝑖 ,v𝑖) + 𝑔(𝑥𝑖)𝑒𝑢 

(15) 

Considering Equation (15), Equation (13) can be written 

as (16).  

𝐸̇ = (𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗ 𝐵𝐾)(𝐼𝑁⊗𝐴)𝑍 +(𝐼𝑁⊗
𝑘𝑍 − 𝑐𝐿 ⊗ 𝐵𝐾)(𝐼𝑁⊗𝐵) ∗ (𝑓𝑖(𝑥𝑖) + 𝑔(𝑥𝑖)𝑢𝑖

∗ +
𝑔(𝑥𝑖)𝑒𝑢 + 𝑑𝑖(𝑡) + 𝑣𝑖 − 𝑣𝑖) +(𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗

𝐵𝐾)(𝐼𝑁⊗𝐵′)𝑟𝑑 

(16) 

In order to facilitate the formulation, the following 

variables are defined.  

𝜉 = (𝐼𝑁⊗𝑘𝑍 − 𝑐𝐿 ⊗ 𝐵𝐾)  

𝐴′ = (𝐼𝑁⊗𝐴)  

𝐵′ = (𝐼𝑁⊗𝐵)  

𝐵″ = (𝐼𝑁⊗𝐵′)  

(17) 

using Equations (13) and (17), Equation (16) can be 

rewritten as:  

𝐸̇ = 𝜉𝐴′𝑍̃ + 𝜉𝐵′(𝑔(𝑥𝑖)𝑒𝑢 + 𝑑𝑖(𝑡) + 𝑣𝑖) + 𝜉𝐵
″𝑟𝑑  (18) 

The ideal control input of Equation (14) is suggested 

below.  

𝑢𝑖
∗ = 𝑓𝑖(𝛺̱𝑖)  (19) 

In the above equation, 𝛺̱𝑖 = [𝑥𝑖 , 𝑣𝑖]
𝑇 and 𝑓𝑖(𝛺̱𝑖) is also 

approximated using fuzzy systems as 𝑓𝑖(𝛺̱𝑖) =
𝜃∗ 𝑤𝑖(𝛺̱) + 𝜀. where 𝜃∗  and 𝑤𝑖(𝛺̱𝑖) are fuzzy 

parameters and basis function; 𝜀is also estimation error 

which satisfies |𝜀| ≤ 𝜀𝑚𝑎𝑥. Parameter 𝜃∗  is obtained 

through the following optimization.   

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

[𝑠𝑢𝑝|𝜃𝑇𝑤𝑖(𝑧̱𝑖) − 𝑓𝑖(𝑧̱𝑖)|]  (20) 

where 𝜃 is an estimation of 𝜃∗ .  

However, the implicit function theory only 

guarantees the existence of the ideal controller 𝑢𝑖
∗, and 

does not recommend a technique for constructing 

solution even if the dynamics of the system are well 

known and 𝑢𝑖is used as an estimation of 𝑢𝑖
∗.  

 

 

3. FUZZY ADAPTIVE SLIDING MODE CONTROLLER 
DESIGN 
 
In previous section, the existence of an ideal controller 

for achieving control objectives is presented. We show 

how to derive a fuzzy system to adaptively approximate 

the unknown ideal controller. 

In order to design the sliding mode controller for the 

system described in Equation (18), the sliding surface is 

proposed in Equation (21). 

𝑠 = 𝛬𝑇𝐸  (21) 

where 𝛬 = [𝜆1 𝜆2 ⋯ 𝜆𝑁]
𝑇. Considering the sliding 

surface given in the above equation, the control input of 

the system in Equation (19) can be described as in 

Equation (22).  

𝑢 = 𝜃𝑇𝑤𝑖(𝑧̱𝑖) + 𝑢𝑖𝑒𝑞 + 𝑢𝑖𝑟  (22) 

where 𝑢𝑒𝑞  is equivalent input and 𝑢𝑟 is the input to reach 

the sliding surface; where 𝑢𝑒𝑞  and 𝑢𝑟 can be described as 

Equation (23).  

𝑢𝑒𝑞 = −𝜃
𝑇𝑤𝑖(𝑧̱𝑖) − 𝜀̂ −

(𝛬𝑇𝜉𝐵′)
+
‖𝛬𝑇𝜉𝐵′‖𝑣̂𝑖 𝑠𝑖𝑔𝑛( 𝑠)  

𝑢𝑟 = −𝑘
′𝑠𝑖𝑔𝑛(𝑠)  

(23) 

The adaptive updating of the controller parameters are 

presented in (24). 

𝜃̇𝑖 = 𝛾1𝑤𝑖(𝑧̱𝑖) 𝐵
′𝑇 𝜉𝑇𝛬𝑠  

𝜀̂̇ = −𝛾1𝑠𝛬
𝑇𝜉𝐵′  

𝑣̂
′𝑖̇

𝛾3|𝑠|

𝑓𝑚𝑖𝑛|𝛬
𝑇𝜉𝐵′|  

(24) 

where 𝛾3 > 0, 𝛾2 > 0, 𝛾1 > 0 are positive constant 

parameters.  

Theorem: Consider the multi-agent nonlinear system 

mentioned in Equation (2) which satisfies Assumptions 1 

and 3, the graph of the system satisfies Assumption 4 and 

the external disturbances gratify Assumption 2. Consider 

the sliding surface as cited in Equation (21), the 

controller input mentioned in Equation (22) with 

equivalent and reaching terms in Equation (23) and the 

updating terms in Equation (24) makes the dynamics of 

the formation error in Equation (18) uniformly ultimately 

bounded. Furthermore all closed loop system signals also 

remain bounded.  

Proof: In order to analyze the Lyapunov stability of the 

closed loop system, the following Lyapunov function is 

candidate.  

𝑉 =
1

2𝑔(𝑥𝑖)
𝑠2 +

1

2𝛾1
𝜃𝑇𝜃 +

1

2𝛾2
𝜀̃𝑇𝜀̃ +

1

2𝛾3
𝜈𝑖
𝑇𝜈𝑖  (25) 

Taking the time derivative of the Lyapunov function as 

with respect to time is derived in (26).  

𝑉̇ =
1

𝑔
𝑠𝑠̇ −

𝑔̇

𝑔2
𝑠2 +

1

2𝛾1
𝜃̇𝑇𝜃 +

1

2𝛾2
𝜀̂̇𝑇𝜀̃ +

1

2𝛾3
𝑣̇̂𝑖
𝑇
𝑣̃𝑖 ≤ −𝜂|𝑠| 

(26) 

Using Equations (18) and (21), the above equation can be 

rewritten as Equation (27).  
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𝑉̇ =
1

𝑔
𝐸𝑇𝛬𝛬𝑇(𝜉𝐴′𝑍 + 𝜉𝐵′(𝑔(𝑥𝑖)𝑒𝑢 + 𝑑𝑖(𝑡) +

𝑣𝑖) + 𝜉𝐵
″𝑟𝑑) −

𝑔̇

𝑔2
𝑠2 +

1

2𝛾1
𝜃̇𝑇𝜃 +

1

2𝛾2
𝜀̂̇𝑇𝜀̃ 

+
1

2𝛾3
𝑣̇̂𝑖
𝑇
𝑣̃𝑖 ≤ −𝜂|𝑠| 

(27) 

After some mathematical manipulations and the updating 

laws in Equation (24) can be designated as follows  

𝑉̇ ≤ −

{
 
 
 

 
 
 

(

 
 

𝑔̇

𝑔2
𝜆(𝜉𝑇𝛬𝛬𝑇𝜉)𝑚𝑖𝑛

−
1

𝑔𝑚𝑖𝑛(𝜉
𝑇𝛬𝛬𝑇𝜉𝐴′)𝑚𝑎𝑥

()‖𝑍‖

−
1

𝑔𝑚𝑖𝑛‖𝜉
𝑇𝛬𝛬𝑇𝜉𝐵″‖‖𝑟𝑑‖

‖𝑍̃‖

)

 
 

−𝐸𝑇𝛬𝛬𝑇𝜉𝐵′𝑘𝑠𝑖𝑔𝑛(𝑠)

+
1

𝑔𝑚𝑖𝑛|𝑠|‖𝛬
𝑇𝜉𝐵′‖‖𝑍̃‖2|𝑠|𝑚𝑎𝑥 }

 
 
 

 
 
 

  (28) 

By a proper selection of k in the above equation, the 

closed loop system remains ultimate uniform bounded in 

the closed area 𝛺. 

( )

( )

min
min2

min

max
min

1

1

T T
d

T T

T T

B r
Z Z

gg

g

A
g

 

  

  

 
 
 
 
 

 
 =  

    
  
  −    
  

 (29) 

The proof is complete. 

One of the main disadvantages of this method is 

unwanted chattering of the control input; in order to 

eliminate these oscillations and to stabilize the agents that 

tracking error converges to the neighborhood of zero.  

The design of decentralized sliding mode super 

twisting controller for the non-affine nonlinear multi-

agent system is studied in the next section.  

 

 
4. SIMULATION RESULTS 

 
In order to investigate the proposed controller, the 

proposed methodology is applied on the multi-quadrotor.  

The E-frame and the B-frame of the quadrotor is shown 

in Figure 1. 

The topology of the MAS is proposed in Figure 2. As 

shown in Figure 2, the system has three agents. 

The quadrotor has two coordinate systems, as the 

Earth Fixed Frame (E) and the Body Fixed Frame (B). 

The roll, pitch and yaw angles, angular velocities of the 

quadrotor are stated in earth fixed frame (E), while the 

linear accelerations are presented in body fixed frame 

(B). The nonlinear dynamics of the quadrotor mentioned 

in Figure 1 is proposed as bellows: 

 
Figure 1. The inertial, body and quadrotor frames of 

reference 

 

 

 
Figure 2. The communication graph among the agents 

 

 

{
 
 
 
 

 
 
 
 𝑋̈ = (𝑠𝑖𝑛 𝛹 𝑠𝑖𝑛 𝜙 + 𝑐𝑜𝑠 𝛹 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙)

𝑈1

𝑚
    

𝑌̈ = (− 𝑐𝑜𝑠 𝛹 𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝛹 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙)
𝑈1

𝑚

𝑍̈ = −𝑔 + (𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙)
𝑈1

𝑚

𝜑̈ =
𝐼𝑌𝑌−𝐼𝑍𝑍

𝐼𝑋𝑋
𝜃̇ 𝜓̇ −  

𝐽𝑇𝑝

𝐼𝑋𝑋
𝜃̇ 𝛺 +

𝑈2

𝐼𝑋𝑋

𝜃̈ =
𝐼𝑍𝑍−𝐼𝑋𝑋

𝐼𝑌𝑌
𝜑̇ 𝜓̇ +  

𝐽𝑇𝑝

𝐼𝑌𝑌
𝜑̇ 𝛺 +

𝑈3

𝐼𝑌𝑌

𝜓̈ =
𝐼𝑋𝑋−𝐼𝑌𝑌

𝐼𝑍𝑍
𝜑̇ 𝜃̇ +

𝑈4

𝐼𝑍𝑍

  (33) 

[𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓] is the vector of the linear and angular 

position of the quadrotor in the earth frame and 

[𝑥̇, 𝑦̇, 𝑧̇, 𝜑̇, 𝜃̇, 𝜓̇] shows the vector containing the linear 

and angular velocities in the body frame. 
[𝑈1 𝑈2 𝑈3 𝑈4]is the control input vector. The 

parameters for simulation are shown in Table 1. 

In this section, the proposed methodology is applied 

on the multi-quadrotor. The quadrotors should form a 

triangle shape. The path formation of the leader and the 

followers is shown in Figure 3. The control inputs of the 

first agent is shown in Figure 4. The control inputs of 

the second agent is demonstrated in Figure 5. 

 

 
TABLE 1. the value of the parameters 

Parameters value Parameters value 

𝑔  9.81 𝐽𝑇𝑃 6 × 10−5 

𝑚  3.2 𝑙 0.2 

𝐼𝑥𝑥  11 × 10−2 𝐼𝑦𝑦 19 × 10−2 

𝐼𝑧𝑧  1.3 × 10−2   
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Figure 3. The path formation of the MAS in x-y-z plane 

 

 

 
Figure 4. Control inputs of the first agent 

 

 

 
Figure 5. The control inputs of the second agent 

 

 

The convergence of the sliding surface of the 

followers to zero is clear in the above figures. The 

position of the followers and the leader is demonstrated 

in Figure 6. The angles of the followers and the leader are 

verified in Figure 7. 

States of the agents are convergenced to zero, and 

formation of the MAS are all illustrated based on the 

above figures. 

As shown in above figures, the formation achievement, 

convergence of the sliding surface to zero, convergence 

of the formation error to zero, and stability of the closed 

loop system are all feasible. 

 
Figure 6. The position of the leader and the followers 

 

 

 
Figure 7. The angle of the sliding surface of the second 

follower 

 

 

5. CONCLUSION  
 

In this paper, a decentralized formation design for a class 

of affine nonlinear multi agent systems is investigated 

under the fixed directed topology. The proposed method 

in this research discussed on an affine nonlinear 

quadrotor with a nonlinear control gain. It is assumed that 

the functions of the agent are all unknown. To challenge 

both the uncertainties and the unknown function of the 

agent, a fuzzy adaptive sliding mode controller was 

derived for this class of MAS. Among the advantages of 

the method presented in this paper, the followings can be 

mentioned: 

1) Ultimate uniform boundedness of formation error  

2) Robustness against approximation error and bounded 

external disturbances, and 

3) Boundedness of internal signals of the closed loop 

system. 

The proposed methodology can be applied on a wide 

class of nonlinear affine system with unknown function 

of the agents. The simulation results show promising 

performance of the proposed methodology. An extension 

of this method to nonlinear non-affine multi-agent 

systems and practical implementations of our approach 

can be considered in future studies. 
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Persian Abstract 

 چکیده 

پیشنهاد   جهتثابت بی  توپولوژی تحت افاین چند کوادکوپتری غیرخطی سیستم چند عاملی برای  متمرکز غیر بندی تطبیقی مد لغزشی آرایش کنندهطراحی کنترل  مقاله این  در

های خطی تک ورودی های چند عاملی با عاملباشد. با توجه به بررسی مطالعات قبلی که بر روی سیستمدینامیکی می   هایقطعیت عدم  های پیرو داریعامل  درحالی که  شودمی

های غیرخطی با ضریب کنترلی  های چند عاملی با عاملارئه شده بر روی سیستم روشغیرخطی با ضریب کنترلی ثابت متمرکز شده بودند، های و تک خروجی و یا سیستم

ی اعمال اطلاعات  های فازی براکند. سیستمپروسه طراحی پیشنهاد شده مشکل نامعین بودن توابع غیرخطی کوادکوپترها را حل می  متمرکز شده است. مانند کوادکوپتر غیرخطی 

 کاهش و بسته حلقه هایسیگنال  تمامی محدود بودن بندی کوادکوپترها،آرایش کننده،کنترل  پارامترهای آنلاین روزرسانی بهرود. فرد خبره و یادگیری توابع غیرخطی بکار می 

 .است شده گرفته  نظر در  مقاله این در کوادکوپتر سیستم از عددی نمونه یک مطروحه، روش کارایی. باشدمی شده ارائه روش اساسی هایویژگی  از چترینگ 
 


