
IJE TRANSACTIONS A: Basics  Vol. 33, No. 4, (April 2020)   607-620 

 

  
Please cite this article as: R. Noori, A. Sadegheih, M. M. Lotfi. Integrated Inspection Planning and Preventive Maintenance for a Markov 
Deteriorating System Under Scenario-based Demand Uncertainty, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics  Vol. 
33, No. 4, (April 2020)   607-620 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Integrated Inspection Planning and Preventive Maintenance for a Markov 

Deteriorating System Under Scenario-based Demand Uncertainty 
 

R. Noori, A. Sadegheih*, M. M. Lotfi  
 
Department of Industrial Engineering, Yazd University, Yazd, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 13 December 2019 
Received in revised form 24 January 2020 
Accepted 08 March 2020  

 
 

Keywords:  
Stochastic Programming 
Stochastic-dynamic Process 
Inspection Planning 
Condition-based Maintenance 
Demand Uncertainty 
 

 
 
 
 

A B S T R A C T  
 

 

In this paper, a single-product, single-machine system under Markovian deterioration of machine 

condition and demand uncertainty is studied.  The objective is to find the optimal intervals for inspection 

and preventive maintenance activities in a condition-based maintenance planning with discrete 
monitoring framework. At first, a stochastic dynamic programming model whose state variable is the 

machine status is presented. In the first model, the demand is assumed to be deterministic and the 

objective is to minimize the sum of inspection, preventive maintenance, and lost sale costs. Then, in 
order to take the demand uncertainty into account, the extended model is formulated as a scenario-based 

two-stage stochastic programming one. In the second model, selecting the best inspection plan and 

finding the appropriate intervals for preventive maintenance are considered as the first and second stage 
decisions, respectively. Analyzing an illustrative example to study the effect of demand uncertainty in 

the problem shows that

doi: 10.5829/ije.2020.33.04a.12 

 

 
1. INTRODUCTION1 
 
In recent decades, with a view toward just in time (JIT) 

in production and operation management, the production 

procedures have changed and JIT roles have become 

prominent. Machine deterioration is one of the main 

reasons for production capacity loss and consequently of 

delay in customer requests in many manufacturing 

industries. Growing machine health by preventive 

maintenance is a policy to restore production capacity, 

improving the timely delivery of customer requests [1]. 

However, preventive maintenance decreases machine 

unavailability and thus increases the potential production 

capacity of the machine for processing customer request. 

Therefore, adopting a preventive maintenance strategy 

that can keep the machine in a position to respond as 

much as possible to customer orders is a challenging 

problem [2]. 

 

*Corresponding Author Email: sadegheih@yazd.ac.ir (A. Sadegheih) 

Generally, in literature there are two strategies for 

preventive maintenance (PM), namely time-based 

maintenance (TBM) and condition-based maintenance 

(CBM). Traditionally, PM is carried out in the form of 

system overhaul or unit replacement based on the elapsed 

time, which is often mentioned to as time-based 

maintenance. TBM policies are usually approved based 

on a probabilistic model of system failure. In TBM, the 

machine age is the basis of the planning and the 

maintenance will be carried out after a specific period of 

time regardless of the health status of a physical asset and 

customer demand. In this approach, employing a suitable 

policy to determine PM durations and the frequencies is 

very important because an over frequent policy leads to 

additional cost and an over duration policy leads to 

unexpected failures [3, 4]. 

In recent years, to reduce the number of unnecessary 

scheduled preventive maintenance operations and 

 

 

  the total average cost is a non-decreasing function of machine state and demand. 

Moreover, if the machine state is worsened or the demand is increased, the number of inspections 

increase and the preventive maintenance should be executed at the same time or earlier. Finally, when 

the unit lost sale cost is greater than a certain amount, ignoring the demand uncertainty is not costly. 
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eliminate the risks associated with them, more efficient 

maintenance approaches such as condition-based 

maintenance have emerged [5]. Unlike TBM policies 

built on historical failure data, CBM is a maintenance 

approach that emphasizes the information collected 

through condition monitoring. This policy consists of 

two stages. In the first stage, system status is evaluated 

and the machine state is identified. This stage can be 

either a continuous monitoring (inspection) or a discrete 

one. In continuous monitoring, which may be costly in 

some industries, some sensors continuously control the 

system status. By continuous monitoring, one 

continuously monitors (usually by mounted sensors) a 

machine and triggers a warning alarm whenever 

something wrong is detected. There are two limitations 

in the continuous monitoring. Firstly, it is often 

expensive and secondly, it produces inaccurate 

diagnostic information due to monitoring of raw signals 

with noise, continuously [6]. In discrete monitoring, 

some machine’s significant covariates will be measured 

within a specific time period. Although this approach is 

more economical than the continuous one, there is always 

the risk of missing some alert between two inspections. 

In this type of monitoring, if the inspection is over 

frequent the inspection cost will increase, and in contrast, 

the cost of unnecessary PM operation will decrease. In 

contrast, if the inspection frequency decreases, the total 

cost of PM operation and unexpected failure will increase 

despite the decrease in inspection cost. Accordingly, 

there are different approaches to determine the duration 

and frequency of inspections, in discrete monitoring. The 

first one is to do it on a fixed interval. However, in the 

second approach, the duration is constant, but frequency 

achieves by running a model considering different 

economic measurements. In the third approach, the 

duration is not constant and the frequency is not 

predefined but by running a model the optimal plan will 

be extracted [7-10]. Furthermore, all possible inspection 

schemes were incorporated to prevent local optimum 

solution and avoid unnecessary combinations [11]. In 

fact, the possibility that there are savings in the number 

of inspections undertaken was considered [12]. As such, 

a proportional hazards model was used for risk of failure 

and a Markovian process to model the system covariates. 

In the second stage, based on the collected information 

from the first stage, the PM execution interval will be 

determined. In CBM, the PM operations will be executed 

if the machines significant covariates are more than 

predefined values called threshold. The main challenge 

in CBM is determined the optimum threshold policy for 

PM execution. Base on literature [13, 14], a maintenance 

policy for a degrading system with age- and state-

dependent operating cost in which cost is increased with 

aging of the system and degradation levels was proposed. 

Ghandali et al. [15] have proposed a partially observable 

Markov decision process structure in which inspection 

and maintenance optimal strategies must be adapted to 

maximize the system availability and the expected value 

of profit together. 

In the optimization procedure of the previous models, 

customer requirements have been neglected and the 

modeling was based on the hazard rate function of the 

machine. In the following, some models are investigated 

in which production and PM planning have been 

integrated. The problem of production and maintenance 

planning of a multiple-product manufacturing system 

with a single deteriorating machine was modeled as a 

Markov decision process [16, 17]. The objective was to 

choose simultaneously the equipment maintenance plan 

as well as the quantity to produce in a way that the sum 

of expected production, backorder, and holding costs 

were minimized. A semi-Markov decision process model 

for a single-stage production system with multiple 

products and multiple maintenance actions was presented 

by Sloan, Kang and Subramaniam [18, 19]. Other factors 

such as the lost sale cost added to previous factors to run 

the optimization model for threshold [2, 20, 21]. In none 

of these models, inspection has not been a decision 

variable, and the cost of inspection has not been taken 

into account, although other decisions in production 

planning such as production, inventory, and backorder 

quantity have been considered.  

To the best of our knowledge, so far there has been 

no model in which inspection and preventive 

maintenance planning are simultaneously determined in 

the presence of the Markovian deteriorating machine 

conditions and under scenario-based uncertain demand. 

However, in practice, demand motivates running the 

machine. For example, consider a situation in which the 

optimum time of PM execution coincides with the 

customer order reparation and delivery. This coincidence 

leads to a delay in order delivery and accordingly 

customer dissatisfaction. Therefore, delay in PM 

operations result in unexpected failure and also have an 

undesired effect on the lost sale cost and customer's 

satisfaction, especially in uncertain situations. The key 

contribution of this paper is summarized in the following: 

We have taken scenario-based uncertain demand into 

account and analyzing the effect of it on decisions and 

costs when it is decided about the inspection and the PM 

operations, simultaneously. To achieve this goal, 

employing stochastic dynamic programming, two 

models for condition-based maintenance planning in 

tactical level and finite time horizon are presented. In 

both models, the discrete inspections are considered that 

its frequencies are neither predefined nor fixed, but they 

are decision variables. Moreover, based on the result of 

the inspection, the optimum interval for PM, which 

depends on the state variable whose value is emerged 

during the inspection stage, will be determined. In the 

first model, demand is certain but the machine status is 

not certain. This uncertainty is defined by considering the 

machine status as a state variable, and the related 

decision variables will be calculated such that the sum of  
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inspection, PM, and lost sale costs are minimized. The 

second model is developed by assuming uncertainty for 

the demand and by a scenario-based two-stage stochastic 

programming approach. Each scenario is a stochastic 

vector whose elements show the demand in their 

corresponding periods. Considering the set of scenarios 

as a sample space of a random experiment, we deal with 

a probability distribution function (p.d.f). In the second 

model, the total cost of two successive inspections, as a 

function of the scenario, is another random variable and 

its conditional expected value given a specific scenario is 

placed in the optimality equation. This new arrangement 

of the optimality equation allows the uncertainty of the 

demand to be taken into account substantially. We also 

run these models separately for all possible inspection 

plans ( K2 possibilities, where k equals the number of 

time periods) and compare the results and find the 

optimal combination of inspection and PM time. 

Furthermore, in order to analyze the effect of demand 

uncertainty on total cost, two measurements known as 

value of stochastic solution (VSS) and the expected value 

of perfect information (EVPI), which have been defined 

in literature [22], are calculated. 

This paper is prepared as follows. Section 2 explains 

the problem and assumptions associated with it in 

general. Section 3 displays our modeling framework 

including appropriate mathematical representation. 

Section 4 gives a solution algorithm. Numerical study 

and its computational sequences have been described in 

Section 5. Finally, Section 6; concludes the paper. 
 

 

2. PROBLEM STATEMENT 
 
First of all, a single product system whose production is 

based on the customer order is considered and the 

planning is done in a finite time horizon with K equal 

intervals with length of T. Let  , a discrete random 

vector of K elements whose probability distribution 

function (p.d.f) is g  , be the demand in the planning 

horizon. The range of   is shown by R  each member 

of it represented by ( (1), , ( ))K  =  is a demand 

scenario, whose elements show the demand in different 

periods, determined at the beginning of the period. The 

demand of every period must be satisfied in that period. 

If the system cannot respond to the demand completely, 

for every unit of the unsatisfied demand, a value 

represented by h will be lost. For simplicity, the whole 

production system is considered as a single machine 

which deteriorates during its operation time because of 

production. A variety of levels are defined for the 

machine deterioration, called state, and the set of 

machine states are shown as {0,1,2,..., }N=S . The 

deterioration is assumed to be a Markov stochastic 

process, i.e. if ( : [0, ))tX t=  X  be the machine 

deterioration process and assume X  to be a  

 

homogeneous continuous time Markov process with 

discrete state space S , then the deteriorating machine 

can be in one of N operational states 0,1,2,..., -1N  or in a 

failure state N. The machine has the best performance in 

the state 0 and is out of service in the state N. In other 

states, a larger number shows a lower performance, 

hence ( )r s  is an absolutely decreasing function while 

( )r s  is the machine performance in the state s. 

As mentioned before, two models are proposed in the 

stochastic dynamic programming form for overcoming 

this problem. Both models consist of two stages: the first 

stage is related to inspections while the second one 

includes decision making about appropriate interval for 

PM activities.  

In the first stage, it is assumed that in the inspection 

the machine state is observable, i.e. its specification is 

error-free (in contrast with the hidden state). Moreover, 

it is assumed that at the beginning of the planning 

horizon, the inspection must be executed. The successive 

inspection will be carried out only at the beginning of 

each period while conducting the inspections depends on 

our decision. The cost and inspection processing time are 

constant parameters and will be shown by 
ins

c and 
ins

t , 

respectively. In the second stage, it is assumed that the 

machine state becomes zero just after the execution of 

PM operation. PM cost and its processing time which 

depend on machine state (s) are absolutely increasing 

function in s. These parameters are shown by ( )pmc s

and ( )pmt s , respectively. Moreover, we assume that 

(0),  (0)pmpmc t are equal to zero. 

The inspection plan identifies the inspection 

frequency and therefore has a direct impact on inspection 

cost. However, it has an indirect impact on other costs 

because other procedures will be carried out after 

inspection execution and they depend on the inspection 

plan. In addition to inspection cost, there are two types of 

costs. The first type is the PM cost and the second type is 

the lost sale cost which is due to machine unavailability 

during inspection and/or PM operations. In order to 

consider this cost, besides creating a dependency 

between production rate and machine state, the time 

elapsed for inspection and PM operations is also taken 

into account. This cost is proportional to the difference 

between actual production capacity and certain demand 

in the first model and the expected value of the difference 

between actual production capacity and stochastic 

demand in the second model.  

The goal is to find the optimal intervals for inspection 

and PM activities in a condition-based maintenance 

planning with discrete monitoring (CBMDM) 

framework over a finite time horizon to satisfy the 

scenario-based uncertain demand. Here, the appropriate 

PM interval must be based on the inspection results so 

that the total cost in planning horizon, including 

inspection, PM, and lost sale cost, is minimized. 
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3. THE MATHEMATICAL MODEL 
 

To develop the model, in this section, initially the basic 

model of finite time horizon stochastic dynamic 

programming is explained and the first model with 

certain demand is made. Then, the second model is 

extended to take the scenario-based uncertain demand 

into account.  

 

3. 1. Basic Model of Stochastic Dynamic 
Programming with Finite Time Horizon        In this 

research, we use stochastic dynamic programming with 

finite time horizon method for modeling the problem. In 

this method, deriving the optimality equation that is a 

backward recursive equation is the most important part 

of the modeling. The components of this equation are the 

stage (n), state variable (s), action (a), transition 

probability matrix (P(a)) and current stage cost ( ( , ))C s a

when the system state is s and action a is decided. 

Equation (1) shows the optimality equation in the general 

form: 

1min ( , )  

 ( 1

}

)

( ) { ( ) ( )n ss n
a

s

V C s a P V

n

s a s −




= +

 


A

S  (1) 

where, S , A  are state and action spaces, respectively, 

and ( )nV s shows expected total cost when the system 

state is  s  and  there are n  stages to the end of the 

planning horizon. Moreover, it is assumed that

0 0  ( )( )V s s=  S [23]. 

 

3. 2. Proposed Model I with Certain Demand        In 

this section, the problem is modeled in a stochastic 

dynamic programming form without considering the 

demand uncertainty. For this purpose, first, the 

optimality equation components are defined and, then the 

optimality equation is made.  

 
3. 2. 1. Components of the Proposed Model I 
I. The First Component (Stage)        Each point of 

decision about inspection is defined as a stage. The 

structure of model I is such that it requires in each stage 

the number of the remained periods to the end of the 

planning horizon. The beginning of each period is an 

option for inspection. Therefore, the inspection in each 

period is considered as a binary decision variable. Each 

feasible solution is an array consists of 0 and 1s which is 

shown by 
0( )  K

k kI i == and referred to an inspection 

plan. It is assumed that an inspection is performed at the 

beginning of the first period. Also, for simplicity, we 

assume that the last element of each sequence is 1. That 

is, each sequence starts with and ends to 1, where the 1 

at the end of the sequence is not a real inspection and is 

only for the simplicity of modeling, i.e. 

0 1 0 0( , , , ) ( )       ,  1K

K k k KI i i i i i i==  = = =  

Where, K is the number of periods included in the 

planning horizon, the set of feasible solutions is shown 

by I . Therefore, the number of elements of I  is equal 

to 12K − . 

Assume that sequence 
0( )  K

k kI i == is an arbitrary 

inspection plan and henceforth constant. Assume that I   

is a subsequence of I that consists of its 1s, i.e.  

0 1 ( )

( )

0( , , , ) ( )
m I i

m I

k k k k iI i i i i == =  

so that, 

1      {0,1, , ( )}
iki i m I=    

and 

0 1 ( )0      { , , , }k m Ii k k k k=    

Now, the sequence ( )

0( ) ( ( ) )m I

n nJ I j I ==  is defined as 

follows: 

0 1 ( )

( ) ( ) 1 1 0

( ) ( ( ) , ( ) , , ( ) )

( , , ,   , )

m I

m I m I

J I j I j I j I

K k K k K k K k
−

= =

− − − −
 

The sequence ( )J I  that indirectly identifies the stages is 

named as stages sequence. The number of sentences in 

this sequence determines the number of stages. 

Example 1. Assume that (1,0,0,1,0,1,1)I = is an 

inspection plan for a problem with six periods. As shown 

in Figure 1, in this inspection plan, inspections are carried 

out at the beginning of the first, fourth, and sixth periods.  

According to the definition, the last sentence in the 

sequence I is always considered 1, therefore, it is shown 

differently from the rest. Consider the subsequence 

(1,1,1,1)I =  that consists of ones of the sequence I and 

the sequence (0,3,5,6)k =  which contains the index of 

these ones. 

The stages sequence corresponded to I is obtained as 

follows: 
( ) (6 6, 6 5, 6 3, 6 0) (0,1,3, 6)J I = − − − − =  

This sequence shows that for the inspection plan 

(1,0,0,1,0,1,1)I = , the stochastic dynamic programming 

model includes four stages: first, second, third, and fourth 

stages show times when zero, one, three, and six time 

periods are remained until the end of the planning 

horizon, respectively. 

II. The Second Component (State Variable)       The 

machine status is defined as the state variable of the 

model, and the indexes and s s   are considered for it, so 

that ,s s S . 

III. The Third Component (Decision Variable)        In 

our problem, there are two types of decision variables. 

The first type specifies the periods in which the machine 

should be inspected and the second one specifies, at each 

stage until the next inspection time (the next stage), the 

period selected for the PM execution according to the 

state (machine status) of the current stage- Note that there 

 

 

 
Figure 1. Inspection scheme for the example 1 
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is the possibility of not executing the PM in a period. 

Each inspection plan is a finite sequence of the first type 

decision variables. Assume that 
0( )  K

k kI i ==  is an 

arbitrary inspection plan and henceforth is constant and 
( )

0( ) ( ( ) )m I

n nJ I j I ==  is its corresponding stages sequence 

in the dynamic stochastic programming model. In the 

stage n, the second type decisions’ space correspond to 

this inspection plan is 
,{0,1,..., }I nl=A , such that 

, 1( ) ( )I n n nl j I j I −= − . In this space, decision 0 means 

that after the implementation of the inspection, the 

decision to perform preventive maintenance is not made, 

and decision a means that the preventive maintenance 

will be implemented during the ath period between the 

current and the next inspections 
, )(1 I na l  . 

IV. Fourth Component (Transition Probability 
Matrix)        As mentioned before, we assume that the 

machine deterioration process is a homogeneous 

continuous time Markov process with a discrete state 

space  0,1, ,N= S  shown by ( : [0, ))tX t=  X . 

Having the transition rate matrix is sufficient for 

attaining the transition probability matrix of the process. 

The transition rate matrix Q is defined as follows: 

( 1) ( 1)[ ]ss N NQ q +  +=  

0

0

( | )
lim ,    , , ,t

ss
t

Pr X s X s
q s s s s

t→


= =
= 


 S      

.ss ss

s s

q q


= −  

Furthermore, we assume that the following conditions 

hold on the matrix Q: 

Condition1: Without implementing PM, the machine 

status deteriorates because of production, i.e.  

0,  ssq s s =     (2) 

Condition2: The rate of transition to inferior states 

increments, as a result of deteriorating of the machine. In 

other words, 

( 1) ,   , ( 2)ss s s

s u s u

q q u u s+

 





     +  S  
(3) 

Now, the transition probability matrix of the process is 

obtained by using the Chapman-Kolmogorov equation 

[23]. Hence, assume that 0P  and 1P  are these matrices 

after elapsing a time interval with length T when PM is 

not carried out and when PM is carried out, respectively. 

So we have: 

0  TP e= Q  (4) 

1 0    TP R P R e=  =  Q  (5) 

where, R is defined as follows:  

( 1) ( 1)[ ]ss N NR r +  +=  

00
Pr(     |   ,    1  )ssr X s X s a+ = = = =  

But because we assume that the machine after 

performing PM is restored to an as-good-as-new status, 

we have: 

1 0 0

0 0

1 0 0

R

 
 

=
 
  

 

V. Fifth Component (Total Cost Between Two 
Successive Inspections)         Assume that 

, ( ),Z
n lC s a  is 

the total cost between the current inspection and the next 

one (two successive inspections) in which Z, n, s, l, and 

a are demand vector, current inspection index in an 

inspection plan, machine status in the inspection, the 

number of time periods between the current inspection 

and the next one, and a member of decision space

{0,1,..., }l=A , respectively. 
, ( ),Z

n lC s a  is calculated using 

the Equations (6)-(8). In these equations,   is a discount 

factor and ( )z w is the demand in the period w. 
1( , )AT s b  

and 
2 ( , )AT s b are actual time for production operations in 

one period in the case of performing and not performing 

the inspection, respectively, such that the machine is in 

the state s at the beginning of the time period and action 

b is decided for PM execution. These expressions are 

calculated as follows: 

1

2

,  ,         {0,1}

,  ,        {0,1}

( ) ( )

( ) ( )

A ins pm

A pm

T s b T t bt b

T s b T bt

s

bs

= − − 

= − 
 

The ( , )r s b  is the machine production rate in one period 

such that the machine is in the state s at the beginning of 

the time period and action b is decided for PM execution: 

( )   0
( , )

(0) 1

r s b
r s b

r b

=
= 

=

 

The h  is an indicator function such that: 

(

:{ , , } {0,1}

0

1 1
)

h

h

h

l
l

h K

l

h





→

=
= 

 +

 

Equation (6) calculates the cost between two 

successive inspections in a situation where the current 

inspection index is n, machine status in the inspection is 

s, the number of time periods until the next inspection is 

l, and PM action is not implemented between these two 

inspections. The terms of this equation are explained in 

Table 1. 

 

 
TABLE 1. The explanation of the Equation (6) 

insc  

Inspection cost 

1[ ( ) ,0 ( ,) 0( )]Ah z n T s r s +−  

Lost sale cost for the first period between two successive 

inspections 

0 , 2

0

( [ ( ) ,0 () ,0)( ])
N

w w

s s A

s

P h z n w T s r s +



=

 + −  

The discounted expected value of the lost sale cost for the (w+1)th 

period between two successive inspections ( {1, , 1}w l − ) 
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  

, 1 1

1

0 , 2

1 0

,0 [ ( ) ,0 ( ,0)]

( [ ( ) ,0 ( ,0)]

( 1,..., , 1, , 1 ,  )

( ) ( ) ( )

) ( )

Z

n l ins A

l N
w w

s s A

w s

C s c h z n T s r s

P h z n w T s r s

n K l

l

K n s





+

−
+



= =

= + − +

 + −

  − + 

 

S

 (6) 

Equation (7) calculates this cost in similar conditions 

with the difference that PM action is implemented in the 

first time period between those two inspections. The 

expressions of this equation are described in Table 2.   

  

, 1

1

1

1

1

1 0 , 2

0

,1 [ ( ) ,1 ,1 ]

( [ ( ) ,0 ( ,0)]  

( 1,..., , 1, , 1 ,  )

( ) ( ) ( ) ( )

( )

) ( )

Z

n l ins pm A

l

w

N
w w

s s A

s

C s c c h z n T s r s

P P h z n w T s r s

n K n

s

l

l K s





+

−

=

− +



=

= + + −

+

 + −

  − + 





S

 
(7) 

If the number of time periods between two successive 

inspections is greater than one, then Equation (8) is used 

for calculating 
, ( ),Z

n lC s a . The parts of this equation are 

disclosed in Table 3. 

, 1

2

2 0 ,

1 0

2

1 1

0 ,

0

2

1
1

0 1 0 ,

0

( , ) ( ( ) ( ,0) ( ,0))

( ) ( ) [ ( )

( ,0) ( ,0)]

( ) { ( ) [ ( 1)

( ,1) ( ,1)] } 

( ) ( ) [ (

Z

n l ins A
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A

n w

T s r s
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l a K n s
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 −
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(8) 

The role of the indicator function h in Equations (6)-(8) 

is that, under some conditions, a statement of the 

equation may be omitted, for example in Equation (6), if 

the distance between two successive inspections is one 

period, Equation (6) follows that: 

 

 
TABLE 2. The explanation of the Equation (7) 

insc  

Inspection cost 

( )pmc s  

Preventive maintenance cost 

1[ ( ) ,1 , )1 ]( ) (Ah z n T s r s +−  

Lost sale cost for the first period between two successive 
inspections 

1

1 0 , 2

0

( [ ( ) ,0 ( ,0)]  ) ( )
N

w w

s s A

s

P P h z n w T s r s − +



=

 + −  

The discounted expected value of the lost sale cost  

for the (w+1)th period between two successive inspections 

( {1, , 1}w l − ) 

TABLE 3. The explanation of Equation (8) 

insc  

Inspection cost 

1( ( ) ( ,0) ( ,0))Ah z n T s r s +−  

Lost sale cost for the first period between two successive 
inspections 

0 , 2

0

( ) [ ( ) ,0( 0 ]) ,( )
N

w w

s s A

s

P h z n w T s r s +



=

 + −  

The discounted expected value of the lost sale cost for the (w+1)th 
period between two successive inspections before PM execution 

( {1, , 2}w a − ) 

1 1

0 ,

0

2

( )

( ) (

1

 )

( ) { [ ( )

,1 ,1 ] }

N
a a

s s pm

s

A

P c s h z n a

T s r s

 − −



=

+

 + + −

 −

  

The discounted expected value of the sum of PM and lost sale 
costs for the (a)th period between two successive inspections  

1

0 1 0 ,

0

2

( ) [ ( )

,0 ( 0 ]( ,) )

N
w a w a

s s

k

A

P P P h z n w

T s r s

 − −



=

+

+

 −

  

The discounted expected value of the lost sale cost for the (w+1)th 
period between two successive inspections after PM execution 

( { , , 1}w a l − ) 

 

 

, 1,0 [ ( ) ,0 ( ,0)]( ) ( )Z

n l ins AC s c h z n T s r s += + −  

In Equations (6)-(8), the domain of each index is such 

that it contains all the combinations that may arise in the 

calculation of the cost between two successive 

inspections. Example 2 is designed for this purpose.  

Example 2. Suppose that in a problem K = 6, then the 

boundaries of Equations (6)-(8) are defined as shown in 

Table 4. 

Furthermore, In the calculation of the optimal 

solution of a problem with K=6 by using the proposed 

algorithm in section 4, depending on the considered 

inspection scheme, some of these seventy-seven 

combinations will be used to calculate 
, ( ),Z

n lC s a . 

 
3. 2. 2. Optimality Equation of the Proposed Model 
I         In this section, respecting the definition of the 

optimality equation’s components mentioned in the 

previous section, an optimality equation is constructed 

for each inspection plan. For this purpose, suppose that 

0( )  K

k kI i ==  is an arbitrary inspection plan and 

henceforth constant and ( )

0( ) ( ( ) )m I

n nJ I j I ==  is its 

corresponding stages sequence. Then, Equation (9) 

shows the optimality equation of the model I.  

  ,
,

,

1

( )
0,1, ,

, ( )

0

,
min { ,  

( ( )) }

{1, , ( )}

( ) ( )

( )

n n I n
I n

I n

n

Z

j I j l
a l

N
l

s s j I

s

V s C s a

a V s

n m I


−





=

= +





 P  (9) 

where, 
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TABLE 4. Total boundaries of Equations (6)-(8) 

 a n l 
Number of 

combinations 

b
o

u
n

d
a

ri
e
s 

o
f 

E
q

u
a

ti
o

n
 (

6
) 

0 

1 {1,2,3,4,5,6}l   6 

2 {1,2,3,4,5}l   5 

3 {1,2,3,4}l   4 

4 {1,2,3}l   3 

5 {1,2}l   2 

6 {1}l   1 

Number of combinations in the Equation (6) 21 

b
o

u
n

d
a

ri
e
s 

o
f 

E
q

u
a

ti
o

n
 (

7
) 

1 

1 {1,2,3,4,5,6}l   6 

2 {1,2,3,4,5}l   5 

3 {1,2,3,4}l   4 

4 {1,2,3}l   3 

5 {1,2}l   2 

6 {1}l   1 

Number of combinations in the Equation (7) 21 

b
o

u
n

d
a

ri
e
s 

o
f 

E
q

u
a

ti
o

n
 (

8
) 

2 

1 {2,3,4,5,6}l   5 

2 {2,3,4,5}l   4 

3 {2,3,4}l   3 

4 {2,3}l   2 

5 {2}l   1 

3 

1 {3,4,5,6}l   4 

2 {3,4,5}l   3 

3 {3,4}l   2 

4 {3}l   1 

4 

1 {4,5,6}l   3 

2 {4,5}l   2 

3 {4}l   1 

5 

1 {5,6}l   2 

2 {5}l   1 

6 1 {6}l   1 

Number of combinations in Equation (8) 35 

Number of total combinations in Equations (6)-

(8) 
77 

0
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,0 1 0

- ( ) 1 
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= += 

=

 =
= 


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3. 3. Proposed Model II with Uncertain Demand        
In this section, to consider the uncertainty of the demand, 

the first model is extended using the uncertain demand 

  instead of Z. The model is formulated as a stochastic 

dynamic programming model, the same as the first 

model. The components of the optimality equation for 

model II are defined as for model I except the state 

variable and the cost between two successive inspections. 

The state variable is changed to ( ),s z . In order to 

calculate the cost, ,, ( ) [ ( , ), , | ( )]n l nn lC s z E C s a Aa z=  

should be replaced with 
, ( ),Z

n lC s a , in which ( )nA z is 

the event of all scenarios whose nth component is  z  and 

[ | ]E   represents the conditional expected value. 

Therefore, in the extended model, the cost between two 

successive inspections is obtained as Equation (10). 
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


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R
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(10) 

where,  
( )

( ) ( ).( )
n

n

A z

P gA z






=   

Now, the optimality equation of the model II is obtained 

by adjusting Equation (9) as shown in Equation (11). 

 

,

,
,

11

1

,( )
0,1, ,

, ( )

) 0(

( ) ( )

( ( )) ( )

, min { , ,  

( ( )) , }

( 1, , ( ))

I n

n n I n
I n

nn

n

l

j I j l
a l

N

s s j Ij
j s

P

V s z C s z a

a V s

m I

A

n






−−

 −





=

= +



=


R

P  (11) 

where, 

0( ) , 0, ( s , )( )j IV s z z =   S    R , 

and, 

1
( )

n
j −

R  is a set of all 1nj − whose nth components 

belongs to
R . nj  ,

,I nl and ( )aP  are equal to those 

considered  for the Equation (9). 
 
 

4. SOLUTION METHOD 
 

In order to solve the models presented in the previous 

section, the following four-step algorithm is used. For 
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simplicity in describing the algorithm, the symbol   is 

used for the state variable in both models. That is, if the 

following algorithm is used to solve the first model, then 

s = , and if it is used to solve the second model, then 

( , )s z = . 

Step 1: For each element of I  as 
0( )  K

k kI i == (i.e. an 

arbitrary inspection plan and henceforth constant) 

execute steps 2 and 3. 

Step 2: Make the stages sequence ( )

0( ) ( ( ) )m I

n nJ I j I ==

corresponding to the inspection plan 
0( )  K

k kI i == . 

Step 3: For each state  , using the optimality equation, 

that is a backward recursive equation, calculate the 

optimal value and find the corresponding optimal 

decision and then name them 
( )

*

( ) ( )
m Ij IV   and * ( )Ia  , 

respectively. In other words, * ( )Ia   is the optimal 

decision about the time of executing of PM actions in the 

interval between the first and the second inspections 

when inspection plan is  I  and system state at the 

beginning of time horizon is . 

Step 4: For each state. . select the inspection plan with 

the minimum value 
( )

*

( ) ( )
m Ij IV 

 
as the optimal inspection 

plan corresponding to   in planning horizon and name 

it as * *

0( )K

k kI i == .  

Step 5: For each state of   and for the optimal 

inspection plan *I  corresponding to  , select 
*

*( )
I

a  as 

an optimal decision for PM execution between the first 

and second inspections. 
 
 

5. NUMERICAL STUDY 
 
In this section, an illustrative example is designed to 

analyze the strategy of the proposed models as well as 

investigate the effect of demand uncertainty in problem 

modeling. 

 

5. 1. Detailed Example       Suppose that the planning 

horizon consists of 6 time periods each of which is 30 

days along, the machine states space is {0,1,2,3,4}=S , 

the cost of each unit of lost sale is $5, the cost of each 

inspection is $250, the execution time of each inspection 

is one day and the discount factor is one. Relationship 

(12) shows the transition rate matrix that applies to 

relations (2) and (3) in order to satisfy the conditions 1 

and 2. The one-step transition matrixes are calculated in 

the absence and in the presence of PM execution by 

relations (4) and (5), respectively and shown in relations 

(13) and (14). Other parameters are listed in Table 5. 

0.0241 0.0134 0.0086 0.0011 0.0010
0 0.0200 0.0105 0.0051 0.0044
0 0 0.0144 0.0144 0
0 0 0 0.0133 0.0133
0 0 0 0 0

=

−
−

−
−

 
 
 
 
  

Q
 

(12) 

0

0.485 0.208 0.180 0.075 0.052
0 0.545 0.188 0.137 0.130
0 0 0.650 0.284 0.066
0 0 0 0.670 0.330
0 0 0 0 1

P =

 
 
 
 
  

 (13) 

1

0.485 0.208 0.180 0.075 0.052
0.485 0.208 0.180 0.075 0.052
0.485 0.208 0.180 0.075 0.052
0.485 0.208 0.180 0.075 0.052
0.485 0.208 0..180 0.075 0.052

P =

 
 
 
 
  

 (14) 

In order to investigate the demand uncertainty, 32 

different scenarios for demand in different periods are 

generated, each of which has a probability of occurrence 

equal to1/ 32 , and their tree is shown in Figure 2. The 

demand in the first period is 300, in the second and the 

third periods is 20% more or less than the previous one, 

and from the fourth period thereafter is 10% more or less 

than the previous one. 

 
5. 2. Results Analysis        MATLAB software is used 

to implement the solution algorithm. The goal of solving 

both models is to find the optimal inspection plan (the 

first stage decisions) in the planning horizon, as well as 

the appropriate interval to execute the PM (the second 

stage decisions) according to the state of the system at the 

inspection time. In the first model, the demand is certain 

and system state refers only to the machine status. While 

in the second model, the demand is uncertain and 

scenario-based and the state of the system shows both the 

status of the machine and the demand at the inspection 

 

 
TABLE 5. Cost and executing time of PM and production rate 

for each machine state 

s  ( )pmc s  ( )pmt s  ( )r s  

0 0 0 20 

1 300 1 16 

2 500 2 10 

3 900 3 2 

4 1500 4 0 

 

 

 
Figure 2. Scenarios tree 

1 2 3 4 5 6
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time. Table 6 shows the optimal inspection plans for the 

first and second models. These results indicate that the 

optimal inspection plan in the first model depends on the 

scenario and machine status at the beginning of the 

planning horizon, especially, higher demand or worse 

machine status will increase the number of inspections. 

Also, the optimal inspection plan for the second model 

depends, in addition to the machine status, on the demand 

at the beginning of the planning horizon. For example, 

the inspection plan 5I , which is the optimal solution of 

the first model for the average scenario and states 1 and 

2, is not optimal for states (1, 300)  and (2, 300) in the 

second model and instead, 11I  is optimal inspection plan. 

Tables 7 and 8 show the optimal solution to execute 

the PM according to the state of the system at the 

inspection time corresponding to the first and second 

model, respectively. Note that in the second model, the 

optimal PM execution interval depends on the demand 

and the scenario that has occurred up to that moment.  In 

Table 8, each number that refers to demand represents the 

set of all scenarios whose demand in that specific period 

is equal to the same demand quantity. Therefore, 

decisions about the PM execution interval for scenarios 

with the same demand should be alike. Moreover, if the 

machine state is worsened or the demand is increased, the 

preventive maintenance should be executed at the same 

time or earlier. 

 
5. 3. Discussion and Sensitivity Analysis        In the 

previous section, the numerical study showed how 

models work and how their solutions are utilized. Now, 

in this section, we intend to compare the performance of 

the two models for the same numerical example. Also, 

we investigate amount of reduction occurs in the total 

cost considering the demand uncertainty in the model. 

For this purpose, initially, the first model without 

considering demand is solved. For this purpose, in each 

period, the nominal production capacity (600 30 20)=   

is replaced with its demand. The scenario, which 

generated with this method, is called the nominal 

capacity scenario. Then the selfsame model is solved for 

optimistic, average, and pessimistic scenarios separately, 

that these are new scenarios with the least, average, and 

highest demand in each period, respectively. Afterward, 

the performance of the optimal inspection plan (first 

stage decision) obtained from the first model for 

aforementioned scenarios are evaluated. For example, for 

the optimistic scenario, the optimal value of the first 

model for the optimal inspection plan (
( )

*

( ) ( )
m Ij I sV ) is 

calculated in case of occurrence of thirty-two main 

scenarios, and then its expected value, named 
optimisticE , 

is defined as the performance of the inspection plan 

corresponding to the optimistic scenario. The same 

procedure is repeated for the nominal capacity, average 

and pessimistic scenarios, whose performance of their 

inspection plans are shown as nominalE , 
averageE and 

pessimisticE , respectively. Then, the second model, which is 

capable of considering all the scenarios simultaneously, 

is solved. The solution of this model is named the 

stochastic solution or here and now (HN) and consists of 

an optimal inspection plan, which is satisfactory for all 

scenarios. Finally, this solution is compared with the 

performance of inspection plans corresponding to 

aforesaid scenarios. Table 9 shows this comparison. 

These results show that despite machine state at the 

beginning of the planning horizon, the stochastic solution 

has a better or the same result as the nominal capacity, 

optimistic, average, and pessimistic scenarios solution. 

To analyze the sensitivity of solutions toward the unit 

lost sale cost h, VSS and EVPI measures in terms of 

percentage, are calculated for the different machine states 

 

 

TABLE 6. Optimal inspection plans 

Model I 

Scenario s Optimal inspection plan 

Nominal capacity
(600, 600, 600, 600, 600, 600)  

0 11 (1,0,1,0,1,0,1)I =  

1 

23 (1,1,0,1,1,0,1)I =  
2 

3 

4 

Optimistic (Least demand)
(300, 240,192,173,156,140)  

0 

1 (1,0,0,0,0,0,1)I =  1 

2 

3 
17 (1,1,0,0,0,0,1)I =  

4 

Average (Mean demand) 
(300, 300, 300, 300, 300, 300)  

0 

5 (1,0,0,1,0,0,1)I =  1 

2 

3 
21 (1,1,0,1,0,0,1)I =  

4 

Pessimistic (Highest 

demand) 
(300, 360, 432, 475, 523, 575)  

0 

11 (1,0,1,0,1,0,1)I =  1 

2 

3 
23 (1,1,0,1,1,0,1)I =  

4 

Model II 

System State Optimal inspection plan 

(0,300)  
5 (1,0,0,1,0,0,1)I =  

(1,300)  
11 (1,0,1,0,1,0,1)I =  

(2,300)  

(3,300)  
21 (1,1,0,1,0,0,1)I =  

(4,300)  
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TABLE 7. Optimal PM execution interval obtained from the first model corresponding to the four scenarios 

 

 

at the beginning of the planning horizon, and with the 

same data as the previous section but a different value of 

h, using Equations (15) and (16) and then presented in 

Figures 3 and 4. 

(%)
average

average average

E HNVSS
VSS

E E

−
= =  (15) 

(%)
EVPI HN WS

EVPI
HN HN

−
= =  (16) 

In Equation (15), WS is the solution obtained from the 

wait and see method in which the first model is solved 

thirty-two times for all scenarios separately, then the 

expected value of the total costs that are calculated is  

 

 

Nominal capacity 

s 
11

*

(1,0,1,0,1,0,1) ( )Ia s=  
23

*

(1,1,0,1,1,0,1) ( )Ia s=  

First inspection Second inspection 
Third 

inspection 

First 

inspection 

Second 

inspection 

Third 

inspection 

Fourth 

inspection 

0 2 2 2  2 0 2 

1  2 1 1 2 1 2 

2  1 1 1 2 1 1 

3  1 1 1 1 1 1 

4  1 1 1 1 1 1 

Optimistic scenario 

s 
1

*

(1,0,0,0,0,0,1) ( )Ia s=  
17

*

(1,1,0,0,0,0,1) ( )Ia s=  

First inspection First inspection Second inspection 

0 3  2 

1 2  2 

2 2  2 

3  1 1 

4  1 1 

Average scenario 

s 
5

*

(1,0,0,1,0,0,1) ( , )Ia s z=  
21

*

(1,1,0,1,0,0,1) ( )Ia s=  

First inspection Second inspection First inspection Second inspection Third inspection 

0 3 2  2 2 

1 2 2  2 2 

2 2 2  2 2 

3  1 1 1 1 

4  1 1 1 1 

Pessimistic scenario 

s 
11

*

(1,0,1,0,1,0,1) ( )Ia s=  
23

*

(1,1,0,1,1,0,1) ( )Ia s=  

First inspection Second inspection 
Third 

inspection 

First 

inspection 

Second 

inspection 

Third 

inspection 

Fourth 

inspection 

0 2 2 2  2 0 2 

1 2 2 2  2 1 2 

2 2 1 1  2 1 1 

3  1 1 1 1 1 1 

4  1 1 1 1 1 1 



 

  
TABLE 8. Optimal PM execution interval obtained from the second model in the presence of all scenarios 

5

*

(1,0,0,1,0,0,1) ( , )Ia s z=  

s 

First inspection Second inspection 

Z 

300 173 211 259 317 389 475 

0 3 0 0 2 2 2 2 

1  0 0 2 2 2 2 

2  0 0 2 2 1 1 

3  1 1 1 1 1 1 

4  1 1 1 1 1 1 

11

*

(1,0,1,0,1,0,1) ( , )Ia s z=  

s 

First inspection Second inspection Third inspection 

Z 

300 192 288 432 156 190 232 233 285 348 350 428 523 

0  2 2 2 0 0 0 0 0 0 0 2 2 

1 2 2 2 2 0 0 0 0 0 0 0 2 1 

2 2 2 2 1 0 0 0 0 0 1 1 1 1 

3  1 1 1 1 1 1 1 1 1 1 1 1 

4  1 1 1 1 1 1 1 1 1 1 1 1 

21

*

(1,1,0,1,0,0,1) ( , )Ia s z=  

s 

First inspection Second inspection Third inspection 

Z 

300 240 360 173 211 259 317 389 475 

0  2 2 0 0 2 2 2 2 

1  2 2 0 0 2 2 2 2 

2  2 2 0 0 2 2 1 1 

3 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 

 

 

defined as WS solution [22]. Figure 3 shows that the 

VSS (%) is zero for values of h thatare greater than a 

large value. This proves that whenthe unit lost sale 

cost exceeds a threshold, neglecting demand 

uncertainty in decision making does not affect total 

cost. Thus, the stochastic solution and solution for the 

average scenario have the same performance. In 

addition, the stochastic solution for 35h =  in the 

state 4 with 7.8% has the most reduction in the total 

costs. Also, Figure 4 shows that the maximum value 

of EVPI (%) is 4.2%, which indicates that completing 

the information about future demand decreases the 

total cost at most 4.2%. 

Finally, as an application of the proposed model, 

it can be applied to the optimization of the 

maintenance for blades of wind turbines in the 

offshore wind energy. Blades are a large and 

expensive part of a wind turbine whose function is to 

convert the kinetic energy of the wind into 

mechanical energy. The most common design of 

wind turbines is with three blades. Blades of wind 

turbines are typically built with hand-laid fiberglass. 

As mentioned in literature [24], the deterioration 

process of blades of the wind turbine can be 

considered as a continuous Markov process. Also, the 

demand for electrical energy usually is a stochastic 
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parameter that can be viewed as a scenario-based 

stochastic parameter. Therefore, According to 

assumptions of our problem, a wind turbine and its 

produced electrical energy can be defined as a single-

machine and a single-product, respectively. Under 

this condition, the proposed model leads to an 

appropriate strategy for the simultaneous planning of 

inspections and preventive maintenance in the 

presence of uncertain demand. 
 

 

 

 

TABLE 9. Improvement amount of HN in comparison 

with another four scenarios solution (%) 

s 

Scenario 

Nominal 

capacity 
Optimistic Average Pessimistic 

0 1.5 11.1 0 1.5 

1 9.4 15 0.3 0 

2 10.4 17.4 0.3 0 

3 4.1 6.3 0 4.1 

4 3.5 5.3 0 3.5 

 

 
Figure 3. VSS (%) measure in various states for different values of  h  

 

 

 

Figure 4. EVPI (%) measure in various states for different values of  h  

 
 

6. CONCLUSION 
 
In this paper, a single product single machine system has 

been studied where the machine deteriorates by a Markov 

stochastic process. The demand has been considered as a 

set of scenarios with an arbitrary finite discrete 

probability distribution in the planning horizon and it has 

been assumed that there is no action for improvement of 

the machine during operation and the machine becomes 

as good as a new machine after PM execution. To 

integrate the inspection and preventive maintenance 

planning in a finite time horizon and in a tactical level 

with considering demand in a certain, the stochastic 

dynamic process framework has been employed and a 

model for finding optimal inspection and PM execution 

interval has been presented whose structure has been 

depended on the selected inspection plan. The objective 

of the model is to minimize the sum of inspection, PM, 

and lost sale costs. In this model, the machine status at 

the beginning of each period has been considered as the 

state variable. Then, to analyze the effect of demand 

uncertainty on decisions and total cost, the second model 

has been extended. In the second model, the demand has 

been appended to the state variable of the first model and 

conditional expected value of the cost given the demand 

has been replaced with the cost in the first model. In both 

models, inspection time has been defined as a decision 

variable and it has been assumed that the value of the 

state variable is revealed only after inspection execution. 

For each inspection plan, the corresponding optimality 

equation has been solved and its results were stored. 

These results consist of optimal PM execution intervals 

that are dependent on the corresponding inspection plan. 

Comparing these results, the optimal inspection plan of 
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both models has been determined. Analysis of numerical 

results showed that the more the demand and the worse 

the state of the machine in the inspection time, the more 

inspection and PM must be done earlier or in the same 

time. Also, when the value of the unit lost sale is more 

than the threshold, neglecting demand uncertainty in 

decision making has no consequence. Two measures 

VSS (%) and EVPI (%) showed that the use of stochastic 

solution (HN) and completing the information about 

future demand decrease the total cost ultimately up to 7.8 

and 4.2%, respectively. At the end, as future research, we 

can point to inserting other decisions of aggregation 

production planning to the proposed models of this 

research. Also, establishing sufficient conditions that 

guarantee the monotonicity in both machine status and 

demand for the problem with the similar situation in an 

infinite time horizon can be interesting. 

 
 
7. REFERENCES 

R. Noori et al. / IJE TRANSACTIONS A: Basics  Vol. 33, No. 4, (April 2020)   607-620                                                   619  
11. Xu, M., Alam, M.N.E. and Kamarthi, S.,  “A Modified Dynamic 

Programming Model in Condition-Based Maintenance 

Optimization”, in  6th International Conference on Materials and 

Processing 2017, American Society of Mechanical Engineers, 

(2017). 



620                                                      R. Noori et al. / IJE TRANSACTIONS A: Basics  Vol. 33, No. 4, (April 2020)   607-620 

 

 

Persian Abstract 

 چکیده 

رود. هدف ماشین طبق یک فرایند مارکفی رو به زوال می  در شرایط عدم قطعیت تقاضا در نظر گرفته شده که در آن تک محصولتک ماشین و در این مقاله یک سیستم تولید 

ریزی  . بدین منظور با استفاده از برنامهاستگسسته  های  با بازرسی  ایطمبتنی بر شرریزی نگهداری و تعمیرات  ها و نت پیشگیرانه در برنامهبازرسیپیداکردن زمان بهینه برای انجام  

های بازرسی، نت و فروش  ن هزینهباشد. در این مدل تقاضا قطعی است و هدف، کمینه کردپویای تصادفی یک مدل )مدل اول( ارائه شده که متغیر حالت آن، وضعیت ماشین می

ای مبتنی بر سناریو توسعه داده شده است. ریزی تصادفی دو مرحلهاین مدل با استفاده از رویکرد برنامه  ر گرفتن عدم قطعیت تقاضا،باشد. سپس به منظور در نظاز دست رفته می

دوم در نظر گرفته   یحله اول و زمان مناسب برای اجرای نت پیشگیرانه به عنوان تصمیمات مرحلهدر مدل توسعه یافته )مدل دوم( انتخاب طرح بازرسی به عنوان تصمیمات مر

دهد اولاً، در زمان بازرسی هر چه تقاضا بیشتر یا ماشین  شده است. به منظور بررسی تأثیر عدم قطعیت تقاضا، یک مثال طراحی شده که تجزیه و تحلیل نتایج عددی آن نشان می

ی هر واحد فروش از دست رفته از یک  گردد. ثانیاً، وقتی هزینه ا در زمانی مشابه اجرا ها بیشتر و نت پیشگیرانه باید زودتر یری قرار داشته باشد، تعداد بازرسیدر وضعیت بدت

 ای به همراه ندارد.گیری هزینهحدی بیشتر باشد، نادیده گرفتن عدم قطعیت تقاضا در تصمیم

 


