
IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81

Please cite this article as: A. Bora, T. Bezboruah, Investigation on Reliability Estimation of Loosely Coupled Software as a Service Execution
Using Clustered and Non-Clustered Web Server, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics Vol. 33, No. 1,
(January 2020) 75-81

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Investigation on Reliability Estimation of Loosely Coupled Software as a Service

Execution Using Clustered and Non-Clustered Web Server

A. Bora*, T. Bezboruah

Department of Electronics & Communication Technology, Gauhati University, Guwahati, India

P A P E R I N F O

Paper history:
Received 20 May 2019
Received in revised form 01 October 2019
Accepted 08 November 2019

Keywords:
Clustered Web Server
Software as a Service
Multi Tenant Environment
Reliability

A B S T R A C T

Evaluating the reliability of loosely coupled Software as a Service through the paradigm of a cluster-

based and non-cluster-based web server is considered to be an important attribute for the service
delivery and execution. We proposed a novel method for measuring the reliability of Software as a

Service execution through load testing. The fault count of the model against the stresses of users is

deployed. A prototype application using Simple Object Access Protocol-based web service is
developed and the study is carried out over there. The experimental setup, architecture, load testing

results followed by a comparative study is discussed in this work. It is observed that the reliability of

the service by using clustered and non-clustered web server degrades after a specific limit of stress
level execution point. The comparative assessment predicts that the reliability of service by using a

cluster-based web server is better than the service with a non-cluster based web server. With an

increase in the stress level of usage in a multi-tenant environment, the service with clustered web

server delivers better reliability than the service without a clustered web server. The occurrences of

HyperText Transfer Protocol request failure in the service with a clustered web server is comparatively

less than its counterpart service without a clustered web server. The study helps in identifying the
applicability of the method and shows the effectiveness of such deployment.

doi: 10.5829/ije.2020.33.01a.09

1. INTRODUCTION1

The Software as a Service (SaaS) is a deployment way

for delivering software service to end-users over the

network. Instead of following the complex strategy of

developing, installing and configuring software

modules, the users of SaaS can access the business logic

(BL) over the internet [1]. The service providers of SaaS

provide the software modules with access rights to their

consumers [2, 3]. The users of SaaS can be categorized

into multi or single-tenant isolated consumers. Although

SaaS can be accessed from different isolated nodes, the

demand is comparatively observed in multi-tenant

services. The users in multi-tenant environment request

simultaneously the instances of SaaS application that is

hosted in the shared server. In a multi-tenant

environment, the end-users can save time and other

*Corresponding Author Email: abhijit.bora0099@gmail.com
(A. Bora)

resources that are primarily required for maintaining

stand-alone services [4–7].

The services of the SaaS platform is provided to

users of SaaS application along with authentication and

authorization control, secured communication and data

storage. The scalability of the SaaS application can be

achieved through clustered working nodes having

similar instances of the service. The reliability

estimation of SaaS execution is an important issue in the

research community. In this work, a prototype of SaaS

application with segregation of service layers is

deployed. The reliability estimation framework,

recorded HyperText Transfer Protocol (HTTP) fault

count and failure rate for the deployment of the

application by using clustered and non clustered web

server is discussed. The reliability during high stress of

usage is also evaluated in this study.

mailto:abhijit.bora0099@gmail.com

76 A. Bora and T. Bezboruah / IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81

2. RELATED WORK

In the research community, the way of evaluating the

reliability of SaaS in a multi-tenant environment is still

fewer. In the year 2006, Chong had discussed that SaaS

application can be classified into different levels based

on scalability, the efficiency of the multi-tenant

environment and configurability [8]. In the same year,

Saddik had developed a performance evaluation

framework by using a paradigm of a service-oriented

system [9]. The study revealed that quality of service is

an important perspective for deploying in the public

domain. In the year 2008, Mietzner et al. had discussed

the delivery model of SaaS application from the

perspective of the business domain and industrial

services [10]. In the year 2010, Chen presented a quality

evaluation framework for the deployment of SaaS

applications [11]. However, he did not present the

reliability aspects of such deployment. In the same year,

Kang had discussed the importance of service

integration and virtualization for evaluating the SaaS

model [12]. However, the experimental arrangement

and evaluation strategy were not done in his study. In

the year 2014, Medhi et al. had highlighted the quality

aspects of service delivery in the paradigm of SaaS

architecture [13]. The statistical evaluation of the data

had established the viability of such an estimation.

However, the importance of reliability using clustered

web servers was not discussed. In the same year,

Candeia et al. had discussed the importance of capacity

planning for the deployment of SaaS applications. They

raised that long term and short term capacity planning

of the deployment machines can lead to profit-making

for different business modules. They had highlighted

that the acceptable performance of the SaaS application

can be achieved through proper capacity planning of

system design [14]. In the same year, Rahmani et al. had

carried out a study for developing a reliability

estimation framework that can be followed for

interoperable system modules [15]. In the year 2017,

Sharif et al. had presented a strategy for the

management of workflow scheduling in a multi-tenant

environment [16]. The study had revealed that better

cost and time complexity of SaaS execution can be

achieved while satisfying system constraints and

privacy policy of service delivery. In the year 2017,

Medhi et al. had presented a quality evaluation

framework that can be followed if web services are used

for SaaS deployment [17]. In the year 2018, Gallardo et

al. had proposed a SaaS adaptation framework that can

be followed in industries. They had stated that the

adaptation rate of SaaS can be raised by following well-

established service policies. However, it lacks

experimental results [18]. Most of the recent study was

carried out on developing a strategy for evaluating

service execution [19]. In the year 2018, Ochei et al.

had presented a cross-case analysis of software

architecture and process models that are primarily

necessary for maintaining the trade-off associated with a

business organization [20]. In the same year, Bora et al.

had discussed the experimental arrangement and

reliability assessment of multi service-oriented system

for a higher load of usages [21]. The applicability of the

method was validated through statistical analysis. In the

year 2019, Kia et al. had proposed a novel hybrid

methodology based on wireless network protocol [22].

They had stated that the performance of service

execution can be enhanced through their proposed

system. In the same year, Ahmed et al. had presented a

novel implication methodology for comparing the SaaS

performance through scalability measurement [23]. The

applicability of the study was observed through a

comparative model based on the experimental

arrangement. Besker et al. (2019) had discussed a

review on the importance of technical debt and time

management policies for the effective delivery of the

SaaS execution [24]. They had stated that the quality

products of the system can be achieved through proper

testing strategy. However, limited studies are observed

that are carried out with experimental arrangements for

SaaS execution in the multi-tenant and clustered web

server. The novelty of the study can be observed in the

way the SaaS is deployed with segregation of service

layers and the evaluation of reliability while deploying

it through load balancing clustered (LBC) and the

nonLBC web server.

3. SYSTEM DESIGN AND METHODOLOGY

A novel system is designed and deployed by segregating

the services of SaaS into the consumer layer, parent

layer, service layer, and database layer. Each layer is

responsible for doing a specific job. The consumer layer

is the presentation layer for a graphical user interface

(GUI). It contains design standards for the end-users.

The parent layer works as a mediator between the

consumer layer and the service layer. It is the broker for

the service layer. It validates the communication

received from multi-tenants. The service layer is the

actual execution of the BL. The mathematical model

that is required for functional operation is deployed

here. The database layer is responsible for database

transaction management. The database operation is

handled by this layer. The four layers work together to

satisfy the request received from multi-tenant machines.

The architecture of the SaaS application is deployed in a

server machine with clustered and non clustered

configurations. The clustered web server has two

working nodes, each containing the instances of the

SaaS architecture. It also contains a load balancer that

handles the request among working nodes. The load

balancer periodically checks the existence of each

A. Bora and T. Bezboruah / IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81 77

worker. If in any situation, a working node fails in

processing instructions, the request of the end-user is

redirected to other working nodes. Thus, the end-user

will get a valid response from the SaaS application. The

layers are kept independent of each other. As such, the

coupling of modules is reduced. The consumer layer,

parent layer and service layer is developed by using web

service (WS) technology of JAX-WS with Java

programming language. The database layer contains a

database mapping of 15000 records of clinical health

data. A mapping among disease and medicines is

prepared for the system [25]. The multi-tenant of the

SaaS is generated by using Mercury LoadRunner ersion

8.0 [26]. The tenants of the SaaS access the system

simultaneously. Each execution set of tenants causes the

invocation of HTTP request that in turn generates the

Simple Object Access Protocol (SOAP) request for

SaaS application. The testbed is configured by using the

Mercury LoadRunner. It records the HTTP request

made and failed during the execution of the SaaS

application. The architecture of system design for SaaS

application deployment is shown in Figure 1 below. The

assessment framework for estimation of reliability of

such deployment is developed and shown by using a

flowchart in Figure 2.

Tenant

Generating

Machine

Load Balancing Web Server

Apache http Server + modjk

Worker

Node A

Worker

Node B

 Froward Request
Response

Generate

Request

Generate

Request

Architecture of SaaS Application

Consumer Layer

Parent Layer

Service Layer

Database Layer

Tenant

Generating

Machine

Non Load

Balancing Web

Server

Response

Figure 1. The architecture of system design for SaaS

application deployment

Figure 2. Flowchart for evaluating the reliability of SaaS

using LBC and nonLBC web server

4. EVALUATION OF EXPERIMENTAL RESULTS

This section highlights the recorded system metrics by

considering the HTTP request passed, failed and their

failure rate against different stresses of usages while

deploying SaaS by using clustered and non clustered

web servers. The SaaS model is executed for the stress

of usage for 50,100, 500, 800, 900, 1000, 1500, and

1800 system-generated virtual users (VU). A test case is

developed that can retrieve data from the data store

through a SaaS model. The system metrics such as total

HTTP requests made along with the failed HTTP

request out of the requested HTTP are recorded for the

study. A user entry schedule of 1 user with a think time

of 15sec is created by using a load testing tool Mercury

Load Runner. The entire SaaS model is executed under

this schedule. The schedule executes stress gradually

over the SaaS model. Once all users enter the system,

the test environment is set to run for 5 minutes for

steady-state. Then all users exist from the test

environment simultaneously. To observe how the SaaS

behaves beyond its capacity, the system is executed up

to 1800 user level. The recorded transaction responses

are shown in Table 1. It is observed that with an

increase in stress level, the HTTP request made is

increasing gradually in both cases. However, the HTTP

requests made by SaaS application by using LBC web

server are observed to be comparatively higher than the

LBC webserver. Since in LBC web server, the overhead

of HTTP processing for specific BL is distributed

among the clustered working nodes, for which the

number of HTTP request that processed is sufficient for

that stress level. In the case of SaaS in non LBC, it is

observed that for the stress level of 900, a total of 48525

HTTP requests are generated and a total of 15251 HTTP

requests are observed to be failed. The failure of the

HTTP request is observed to be increasing gradually

with SaaS in the non LBC web server.

TABLE 1. A comparative recorded metrics of SaaS using

LBC and Non LBC web server (Total HTTP request: THR,

Failed HTTP request: FHR, Failure Rate FHR/THR (%): FR)

Test

Case

Stress

Level

SaaS in Non LBC SaaS in LBC

THR FHR FR THR FHR FR

Data
retrieval

50 366 0 0 284 0 0

100 978 0 0 656 0 0

500 14863 0 0 12598 0 0

800 35924 0 0 19546 0 0

900 48525 15251 0.31 47659 0 0

1000 55082 17877 0.32 53275 0 0

1500 121226 79650 0.65 62975 0 0

1800 211675 170862 0.81 122616 42136 0.34

78 A. Bora and T. Bezboruah / IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81

However, in the case of SaaS in the LBC web server, a

total of 47659 HTTP requests are generated. In this

case, no failure record is observed. For the stress level

of 1800, the SaaS with the LBC web server has

executed a total of 122616 HTTP requests. In this case,

a total of 42136 HTTP requests are observed to be

failed.

To observe the failure distribution of SaaS by using

LBC and non LBC web server, a 30 repetitive execution

of the test environment is performed. For the stress level

of 900 users of SaaS in a non LBC web server, a data

sample of 30 records is observed and evaluated.

Similarly, the data sample is also prepared for the stress

level of 1800 users of SaaS in the LBC web server. The

histogram of the recorded data sample is prepared and

shown in Figure 3 and Figure 4. Figure 3 depicts that for

SaaS in a non LBC web server, the highest HTTP fault

count lies with the ranges from 13171 to 17339.

Similarly, Figure 4 depicts that for the LBC web server,

the highest HTTP fault count lies with the ranges from

40529 to 43753. The histogram shows the existence of a

single peak value in both cases.

Figure 3. Histogram of fault count against 900 VU using SaaS

in non LBC web server

Figure 4. Histogram of fault count against 1800 VU using

SaaS in LBC web server

As such, the normality of the failure record can be

assumed. To better understand the distribution of

recorded fault count, the normal probability plot (NPP)

is drawn for both the cases.The NPP of data sample is

shown in Figure 5 and Figure 6.

5. RELIABILITY OF SaaS

The reliability of SaaS is defined as the valid execution

of the service during its execution period in a multi-

tenant environment [27–29]. The reliability of SaaS by

using LBC and nonLBC web servers is evaluated

through the fault count model (FDM) [27]. From Table

1 it is observed that the SaaS execution in non LBC

server is showing a valid response up to the execution of

800 tenants. However, the SaaS execution in the LBC

server is showing valid response upto execution of 1500

tenants. As such, strong reliability can be assumed.

However, the SaaS execution for 900 tenants by using

non LBC server and 1800 tenants by using the LBC

server, the reliability is estimated by using Equation (1).

RSaaS = e-at (1)

Here, RSaaS is the reliability of SaaS execution, ‘a’ is the

rate of failure during the execution of SaaS in a multi-

Figure 5. NPP of fault count against 900 VU using SaaS in

non-LBC web server

Figure 6. NPP of fault count against 1800 VU using SaaS in

LBC web server

A. Bora and T. Bezboruah / IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81 79

tenant environment and ‘t’ is the observation time

duration. In this study, the value of ‘t’ is taken to be 1,

as the observation of SaaS execution is made for one

day. As such, for 900 tenants by using non LBC web

server, the ‘a’ is recorded to be 0.31. For 1800 tenants

by using LBC web server, the ‘a’ is recorded to be 0.34.

Using Equation (1), RSaaS for 900 tenants is evaluated to

be 0.73 and RSaaS for 1800 tenants is evaluated to be

0.71. As such, for SaaS by using non LBC web server, it

will serve 73% of incoming request in a multi-tenant

environment of 900 consumers. For SaaS by using the

LBC web server, it will serve 71% of incoming requests

in multi-tenant environment of 1800 consumers. In

other cases, the SaaS application can generate an

erroneous response to end-users.

6. OVERALL EVALUATION OF SaaS EXECUTION

The SaaS application is showing a valid response in a

multi-tenant environment by using both clustered and

non clustered webs server. The execution of SaaS in non

LBC web server is observed to be stable up to 800

tenants of the service. However, in the case of SaaS

with an LBC web server, it is stable upto 1500 tenants

of service. Beyond that stress of usages level, the SaaS

is generating invalid response against the incoming

requests. For SaaS in non LBC web server, the failure

records are observed at 900 tenants of the service. It had

generated 48525 requests and out of them, 15251

requests were failed. However, in the case of SaaS with

the LBC web server, it is recorded against 1800 tenants

of the service. It had generated 122616 requests and out

of them, 42136 requests were failed. The interpretation

of histogram and NPP reveals the normality of the

recorded fault count.The normal distribution of the SaaS

application is observed in both cases. The strong

reliability of SaaS can be achieved up to 800 and 1500

for non LBC and LBC web server, respectively. Beyond

that, the reliability of SaaS degrades. For 900 tenants of

the service with non LBC web server, the reliability of

SaaS is estimated to be 0.73. For 1800 tenants of the

service with an LBC web server, the reliability of SaaS

is estimated to be 0.71. So, the moderate response of

SaaS execution can be achieved in a multi-tenant

environment. The overall evaluation and assessment of

the SaaS execution in a multi-tenant environment

predict that the SaaS with the LBC web server provides

better reliability than SaaS without the LBC web server.

The strong stability of service delivery can be achieved

through SaaS with the LBC web server.

7. CONCLUSION

A novel methodology is proposed for estimating and

evaluating the deployment of SaaS application by using

non LBC and LBC web server. The applicability of

SaaS execution is observed in both cases. The

segregation of service layer for the deployment of SaaS

application in the LBC web server imputes better

reliability than its counterpart deployment by using a

nonLBC web server. In a multi-tenant environment, the

strong reliability for SaaS in the non LBC web server is

recorded up to 800 simultaneous consumers. However,

the strong reliability for SaaS in the non LBC web

server is recorded up to 1500 simultaneous consumers.

Both deployment techniques generate system failure

after specific usages of tenants. However, the

distribution of recorded failure is observed to be normal

in both cases. Form the overall assessment it can be

concluded that, with an increase in the stress level of

usage, the rate of failure of SaaS with the LBC web

server is comparatively lower than the SaaS without the

LBC web server. A better reliable and stable

information retrieval system can be achieved for a

multi-tenant environment. However, in this work, the

performance aspects of such deployment are not

discussed. As part of our future work, we propose to

study the quality of service for performance metrics of

SaaS execution for a multi-tenant environment.

8. REFERENCES

1. Li, W., Zhang, Z., Wu, S. and Wu, Z., “An implementation of

the SaaS level-3 maturity model for an educational credit bank

information system”, In 2010 International Conference on
Service Sciences, IEEE, (2010), 283–287.

2. Jamshidi, R., “Bi-level Model for Reliability based Maintenance

and Job Scheduling”, International Journal of Engineering-

Transactions C: Aspects, Vol. 31, No. 3, (2017), 432–439.

3. Salajegheh, A. and Saberi, M., “Preventing Key Performance

Indicators Violations Based on Proactive Runtime Adaptation in
Service Oriented Environment”, International Journal of

Engineering - Transaction B: Applications, Vol. 29, No. 11,

(2016), 1539–1548.

4. Tsai, C.H., Ruan, Y., Sahu, S., Shaikh, A. and Shin, K. G.,

“Virtualization-based techniques for enabling multi-tenant

management tools”, In International Workshop on Distributed
Systems: Operations and Management, Springer, (2007), 171–

182.

5. El-Damcese, M., Abbas, F. and El-Ghamry, E., “Reliability
Analysis of Three Elements in Series and Parallel Systems under

Time-varying Fuzzy Failure Rate”, International Journal of

Engineering - Transaction C: Aspects, Vol. 27, No. 4, (2014),
553–560.

6. Jacobs, D. and Aulbach, S., “Ruminations on multi-tenant
databases”, Datenbanksysteme in Business, Technologie und

Web (BTW 2007), Germany, (2007), 1–5.

7. Nouri, S., “Automotive Vendor’s Performance Evaluation and
Improvement Plan Presentation by Using a Data Envelopment

Analysis”, International Journal of Engineering - Transaction

B: Applications, Vol. 31, No. 2, (2018), 374–381.

8. Chong, F. and Carraro, G., “Architecture strategies for catching

the long tail”, Microsoft Corporation, Vol. 478, (2006), 9–10.

9. Saddik, A. E., “Performance measurements of web services-

80 A. Bora and T. Bezboruah / IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81

based applications”, IEEE Transactions on Instrumentation

and Measurement, Vol. 55, No. 5, (2006), 1599–1605.

10. Mietzner, R. and Leymann, F., “Generation of BPEL

customization processes for SaaS applications from variability

descriptors”, In 2008 IEEE International Conference on Services
Computing (Vol. 2), IEEE, (2008), 359–366.

11. Chen, X., A Service Quality Based Evaluation Model for SaaS

Systems, Dissertation Thesis, University of Alberta, (2010).

12. Kang, S., Myung, J., Yeon, J., Ha, S.W., Cho, T., Chung, J.M.

and Lee, S. G., “A general maturity model and reference

architecture for SaaS service”, In International Conference on
Database Systems for Advanced Applications, Springer, (2010),

337–346.

13. Medhi, S. and Bezboruah, T., “Investigations on implementation

of e-ATM Web Services based on NET technique”,

International Journal of Information Retrieval Research, Vol.
4, No. 2, (2014), 41–56.

14. Candeia, D., Santos, R.A. and Lopes, R., “Business-driven long-

term capacity planning for saas applications”, IEEE

Transactions on Cloud Computing, Vol. 3, No. 3, (2015), 290–

303.

15. Rahmani, M., Azadmanesh, A. and Siy, H., “Architectural
reliability analysis of framework-intensive applications: A web

service case study”, Journal of Systems and Software, Vol. 94,

(2014), 186–201.

16. Sharif, S., Watson, P., Taheri, J., Nepal, S. and Zomaya, A. Y.,

“Privacy-aware scheduling SaaS in high performance computing

environments”, IEEE Transactions on Parallel and Distributed

Systems, Vol. 28, No. 4, (2016), 1176–1188.

17. Medhi, S., Bora, A. and Bezboruah, T., “Investigations on

Evaluation of Some QoS Aspects of Service Oriented
Computing System Based on Web Services”, Sensors &

Transducers, Vol. 209, No. 2, (2017), 56–64.

18. Gallardo, G., Hernantes, J. and Serrano, N., “Designing SaaS for
Enterprise Adoption Based on Task, Company, and Value-Chain

Context”, IEEE Internet Computing, Vol. 22, No. 4, (2018),

37–45.

19. Mokhtari, H., Molla-Alizadeh, S. and Noroozi, A., “A reliability

based modelling and optimization of an integrated production

and preventive maintenance activities in flowshop scheduling

problem”, International Journal of Engineering - Transaction

C: Aspects, Vol. 28, No. 12, (2015), 1774–1781.

20. Ochei, L.C., Bass, J.M. and Petrovski, A., “Degrees of tenant

isolation for cloud-hosted software services: a cross-case
analysis”, Journal of Cloud Computing, Vol. 7, No. 1, (2018),

1–36.

21. Bora, A. and Bezboruah, T., “Some Aspects of Reliability
Evaluation of Multi Service Multi-Functional SOAP Based Web

Services”, International Journal of Information Retrieval

Research, Vol. 8, No. 4, (2018), 24–38.

22. Kia, G. and Hassanzadeh, A., “HYREP: A Hybrid Low-Power

Protocol for Wireless Sensor Networks”, International Journal

of Engineering - Transaction A: Basics, Vol. 32, No. 4, (2019),

519–527.

23. Ahmad, A.A.S. and Andras, P., “Scalability analysis
comparisons of cloud-based software services”, Journal of

Cloud Computing, Vol. 8, No. 1, (2019), 1–17.

24. Besker, T., Martini, A. and Bosch, J., “Software Developer
Productivity Loss Due to Technical Debt-A replication and

extension study examining developers’ development work”,

Journal of Systems and Software, Vol. 156, (2019), 41–61.

25. Drug Index, Passi Publications, India, (2012), January-March.

26. Application-testing tool: Mercury LoadRunner 8.0, Available at:

http://www.pcquest.com/pcquest/news/183659/application-
testing-tool-mercury-loadrunner-80”

27. Medhi, S., Bora, A. and Bezboruah, T., “Investigations on some

aspects of reliability of content based routing SOAP based
windows communication foundation services”, International

Journal of Information Retrieval Research, Vol. 7, No. 1,

(2017), 17–31.

28. Wang, L., Bai, X., Zhou, L. and Chen, Y., “A hierarchical

reliability model of service-based software system”, In 2009

33rd Annual IEEE International Computer Software and
Applications Conference (Vol. 1), IEEE, (2009), 199–208.

29. Shooman, M.L., Reliability of computer systems and networks:

fault tolerance, analysis, and design, John Wiley & Sons, (2003).

A. Bora and T. Bezboruah / IJE TRANSACTIONS A: Basics Vol. 33, No. 1, (January 2020) 75-81 81

Investigation on Reliability Estimation of Loosely Coupled Software as a Service

Execution Using Clustered and Non-Clustered Web Server

A. Bora, T. Bezboruah

Department of Electronics & Communication Technology, Gauhati University, Guwahati, India

P A P E R I N F O

Paper history:
Received 20 May 2019
Received in revised form 01 October 2019
Accepted 08 November 2019

Keywords:
Clustered Web Server
Software as a Service
Multi Tenant Environment
Reliability

 چکیده

و یابر خوشه یسرور وب مبتن یک یمپارادا یقاز طر یسسرو یکافزارها کاملاً همراه به عنوان نرم یناناطم یتقابل یابیارز

 یتقابل یریگاندازه یبرا یدروش جد یکشود. ما یمحسوب م یسسرو یارائه و اجرا یمهم برا یژگیو یک، یاخوشه یرغ

مدل در برابر استرس کاربران یها. تعداد گسلنمودیم یشنهادتست بار پ یقطر از یسسرو یافزار به عنوان اجرانرم نانیاطم

ساده ساخته یبه ش یبر پروتکل دسترس یوب ساده مبتن یسبا استفاده از سرو یهبرنامه نمونه اول یکمستقر شده است.

یسهمطالعه مقا یکش بار و به دنبال آن یآزما یج، نتای، معماریشیعه آزماشود. مجمویشده است و مطالعه در آنجا انجام م

شده پس از یبندگروه یرو غ یابا استفاده از سرور وب خوشه یسسرو یناناطم یتکار بحث شده است. قابل یندر ا یا

 یکبا استفاده از سیسرو یناناطم یت. بعلاوه قابلیدمشاهده گرد یافتهسطح استرس کاهش یاز نقطه اجرا یحد مشخص

یم ینیبپیش یقیتطب یابیاست ارز یاخوشه یرسرور وب غ یک یدارا یهایسبر خوشه بهتر از سرو تنیوب سرور مب

 یبهتر یناناطم یتقابل یابا وب سرور خوشه یسچند مستأجر، سرو یطمح یکسطح استرس استفاده در یشگردد. با افزا

 Hyper پروتکل انتقال پروتکل یتعدم موفق عکند. وقویدار فراهم مخوشهسرور وب یکبدون یسسرو یننسبت به ا

Text است. یاخود بدون داشتن سرور وب خوشه یهمتا یسنسبتاً کمتر از سرو یاوب سرور خوشه یکبا یسدر سرو

 . دهدیاستقرار را نشان م ینچن یکند و اثربخشیبودن روش کمک م یکاربرد ییمطالعه به شناسا ینا

doi: 10.5829/ije.2020.33.01a.09

