Fluoride Precipitation of Cu Over Fe in a Selected pH Window

Authors

Departments of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran

Abstract

Fe is an impurity in most leach liquors. Its coexistence with copper in leaching solution of chalcopyrite (CuFeS2) which is the most important mineral of copper creates major extraction problems. Hydrochloric acid dissolves both copper and iron during chloride leaching of this mineral. Separation of Fe from Cu is thus necessary to obtain pure copper. This paper presents a novel method for precipitation of Cu over Fe from mixed chloride acidic liquors. Hydrofluoric acid is used as the major unraveling agent. Kinetic studies show that a second-order CuCl2 precipitation reaction with a chemical rate constant of k = 0.416 L/mol prevails the process at the room temperature. For validation of the results, precipitate characterization by x-ray fluorescence (XRF) and x-ray diffraction (XRD) and solution analysis by atomic absorption spectrometry (ABS) are performed. Nitrogen presence is shown to help separation of iron from copper. The optimum value of pH (1.09) is achieved when nitrogen helps parting of 99 % iron II ions in the solution and sole deposition of copper II chloride precipitate.

Keywords


1.     Elshkaki, A., Graedel, T., Ciacci, L. and Reck, B.K., "Resource demand scenarios for the major metals", Environmental Science & Technology,  Vol. 52, No. 5, (2018), 2491-2497.
2. Moskalyk ,R.R., Alfantazi, A.M., “Review of copper pyrometallurgical practice: today and tomorrow”, Minerals Engineering, Vol. 16, No. 10, (2003), 893-919.
3. Taskinen, P., Akdogan, G., Kojo, I., Lahtinen, M., Markku, I., Jokilaakso, A., “Matte converting in copper smelting”, Mineral Processing and Extractive Metallurgy, Transactions of the Institutions of Mining and Metallurgy, Vol. 128, No. 1-2, (2019), 58-73.
4.    Forsén, O., Aroma, J., Lundström, M., “Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance”, Recycling, Vol. 2, No. 4, (2017), 19.
5.   Tuncuk, A., Stazi, V., Akcil, A., Yazici, E.Y. and Deveci, H., "Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling", Minerals Engineering,  Vol. 25, No. 1, (2012), 28-37.
6.     Kim, E.-y., Kim, M.-s., Lee, J.-c., Jeong, J. and Pandey, B., "Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in hcl solution", Hydrometallurgy,  Vol. 107, No. 3-4, (2011), 124-132.
7.     Mostad, E., Rolseth, S. and Thonstad, J., "Electrowinning of iron from sulphate solutions", Hydrometallurgy,  Vol. 90, No. 2-4, (2008), 213-220.
8.     Kordosky, G., "Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually", Journal of the Southern African Institute of Mining and Metallurgy,  Vol. 102, No. 8, (2002), 445-450.
9.     Nayaka, G., Zhang, Y., Dong, P., Wang, D., Zhou, Z., Duan, J., Li, X., Lin, Y., Meng, Q. and Pai, K., "An environmental friendly attempt to recycle the spent li-ion battery cathode through organic acid leaching", Journal of Environmental Chemical Engineering,  Vol. 7, No. 1, (2019), 102854.
10. Alguacil, F.J., Garcia-Diaz, I., Lopez, F. and Rodriguez, O., "Recycling of copper flue dust via leaching-solvent extraction processing", Desalination and Water Treatment,  Vol. 56, No. 5, (2015), 1202-1207.
11.   Sato, H., Nakazawa, H. and Kudo, Y., "Effect of silver chloride on the bioleaching of chalcopyrite concentrate", International Journal of Mineral Processing,  Vol. 59, No. 1, (2000), 17-24.
12.   Shang, H., Wu, B., Wen, J.K. and Cui, X.L., "Analysis of microbial community in heap bioleaching of low-grade copper sulfide ores", in Key Engineering Materials, Trans Tech Publ. Vol. 777, (2018), 277-281.
13.   Yoon, H.-S., Kim, C.-J., Chung, K.W., Lee, J.-Y., Shin, S.M., Kim, S.-R., Jang, M.-H., Kim, J.-H., Lee, S.-I. and Yoo, S.-J., "Ultrasonic-assisted leaching kinetics in aqueous fecl 3-hcl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite", Korean Journal of Chemical Engineering,  Vol. 34, No. 6, (2017), 1748-1755.
13.   Cruz-Robles, I., Vaamonde, A.J.V., Alonso, E., Pérez-Rábago, C.A. and Estrada, C.A., "Potential of solar central tower systems for thermal applications in the production chain of copper by pyrometallurgical route", in AIP Conference Proceedings, AIP Publishing. Vol. 2033, (2018), 020002.
14.   Córdoba, E., Muñoz, J., Blázquez, M., González, F. and Ballester, A., "Leaching of chalcopyrite with ferric ion. Part i: General aspects", Hydrometallurgy,  Vol. 93, No. 3-4, (2008), 81-87.
15.  Turan, M.D., Boyrazli, M., Altundoğan, H.S., “Improving of copper extraction from chalcopyrite by using NaCl”, Journal of Central South University, Vol. 25, No. 1, (2018), 21–28.
16.   Rocchetti, L., Vegliò, F., Kopacek, B. and Beolchini, F., "Environmental impact assessment of hydrometallurgical processes for metal recovery from weee residues using a portable prototype plant", Environmental Science & Technology,  Vol. 47, No. 3, (2013), 1581-1588.
17.   Subramanian, M. and Manzer, L., "A" greener" synthetic route for fluoroaromatics via copper (II) fluoride", Science,  Vol. 297, No. 5587, (2002), 1665-1665.
18.   Al-Harahsheh, M., Kingman, S. and Al-Harahsheh, A., "Ferric chloride leaching of chalcopyrite: Synergetic effect of cucl2", Hydrometallurgy,  Vol. 91, No. 1-4, (2008), 89-97.
19.   Shahrina, S., Lau, W., Goha, P., Jaafara, J. and Ismaila, A., "Adsorptive removal of Cr (VI) and Cu (II) ions from water solution using graphene oxide–manganese ferrite (GMF) nanomaterials", International Journal of Engineering,  Vol. 31, No. 8, (2018), 1341-1346.
20.   Ruiz, M., Montes, K. and Padilla, R., "Chalcopyrite leaching in sulfate–chloride media at ambient pressure", Hydrometallurgy,  Vol. 109, No. 1-2, (2011), 37-42.
21.   Carneiro, M.F.C. and Leão, V.A., "The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate", Hydrometallurgy,  Vol. 87, No. 3-4, (2007), 73-82.
22.   Ayotte, P., Hébert, M. and Marchand, P., "Why is hydrofluoric acid a weak acid?", The Journal of Chemical Physics,  Vol. 123, No. 18, (2005), 184501.
23.  Wang, H., Zhang, S., Li, B., Pan, D.a., Wu, Y. and Zuo, T., "Recovery of waste printed circuit boards through pyrometallurgical processing: A review", Resources, Conservation and Recycling,  Vol. 126, (2017), 209-218.
24.   Kinnunen, P.H.M. and Puhakka, J.A., "Chloride‐promoted leaching of chalcopyrite concentrate by biologically‐produced ferric sulfate", Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology,  Vol. 79, No. 8, (2004), 830-834.
25.  Jafari M., G. Karimi, R. Ahmadi, "Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments", Physicochem. Probl. Miner. Process, Vol. 53, No. 2, (2017), 1228−1240.
23.   Valenta, R., Kemp, D., Owen, J., Corder, G. and Lèbre, É., "Re-thinking complex orebodies: Consequences for the future world supply of copper", Journal of Cleaner Production,  Vol. 220, (2019), 816-826.
26.   Dreisinger, D., "Copper leaching from primary sulfides: Options for biological and chemical extraction of copper", Hydrometallurgy,  Vol. 83, No. 1-4, (2006), 10-20.
27.   Chang-Li, L., Jin-Lan, X., Zhen-Yuan, N., Yi, Y. and Chen-Yan, M., "Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile acidianus manzaensis", Bioresource Technology,  Vol. 110, (2012), 462-467.
28.   Lu, Z., Jeffrey, M. and Lawson, F., "The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions", Hydrometallurgy,  Vol. 56, No. 2, (2000), 189-202.
29.  Jorjani, E., Ghahreman, A., “Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues; a review”, Hydrometallurgy, Vol. 171, (2017), 333-343.
30.   Cai, Y., Chen, X., Ding, J. and Zhou, D., "Leaching mechanism for chalcopyrite in hydrochloric acid", Hydrometallurgy,  Vol. 113, (2012), 109-118.
31.   O’malley, M. and Liddell, K., "Leaching of cufes 2 by aqueous fecl 3, hcl, and nacl: Effects of solution composition and limited oxidant", Metallurgical Transactions B,  Vol. 18, No. 3, (1987), 505-510.
32.   Habashi, F. and Toor, T., "Aqueous oxidation of chalcopyrite in hydrochloric acid", Metallurgical Transactions B,  Vol. 10, No. 1, (1979), 49-56.
33.   Mohanty, U., Rintala, L., Halli, P., Taskinen, P. and Lundström, M., "Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal production", Metals,  Vol. 8, No. 1, (2018), 40.
34.   Hao, X.-d., Liu, X.-d., Qin, Y., Liu, H.-w., Yin, H.-q., Qiu, G.-z. and Liang, Y.-l., "Comparative study on bioleaching of two different types of low-grade copper tailings by mixed moderate thermophiles", Transactions of Nonferrous Metals Society of China,  Vol. 28, No. 9, (2018), 1847-1853.
35.   Li, Y., Qian, G., Brown, P.L. and Gerson, A.R., "Chalcopyrite dissolution: Scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite", Geochimica Et Cosmochimica Acta,  Vol. 212, (2017), 33-47.
36.   Turkmen, Y. and Kaya, E., "Acidified ferric chloride leaching of a chalcopyrite concentrate", Journal of Ore Dressing,  Vol. 11, No. 22, (2009), 16-24.
37.  Valenta, R.K., Kemp, D., Owen, J.R., Corder, G.D., Lèbre, É., "Re-thinking complex orebodies: Consequences for the future world supply of copper", Journal of Cleaner Production, Vol. 220, (2018), 816-826.
38.   Sadrnezhaad, S.K., Alamdari, E., "Thermodynamics of Extraction of Zn2+ from Sulfuric Acid Media with a Mixture of Dehpa and Mehpa", International Journal of Engineering, Transactions B: Applications, Vol. 17, No. 2, (2004), 191-200.
39.   Sadrnezhad, K., Gharavi, A. and Namazi, A., "Software for kinetic process simulation", International Journal of Engineering,  Vol. 16, No. 1, (2003), 71-79.
40.   Sadrnezhaad, S.K., "Kinetic Processes in Metallurgy and Materials Engineering", 5th Ed., Amirkabir Publishing Corp., Tehran, (2017).
41.   Zhu, Z., Zhang, W. and Cheng, C.Y., "A synergistic solvent extraction system for separating copper from iron in high chloride concentration solutions", Hydrometallurgy,  Vol. 113, No., (2012), 155-159.